

# FCC Test Report (Bluetooth LE)

Report No.: RFBGQZ-WTW-P21031057-1

FCC ID: M72-EDGEE450

Test Model: POLY EDGE E450

Received Date: Mar. 30, 2021

Test Date: Apr. 08 ~ Apr. 19, 2022

Issued Date: May 17, 2022

Applicant: Polycom Inc.

Address: 6001 America Center Drive, San Jose, California 95002, United States

**Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003

**Designation Number:** 



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.



# **Table of Contents**

| Re | eleas | e Control Record                                                              | 4    |
|----|-------|-------------------------------------------------------------------------------|------|
| 1  | Cer   | tificate of Conformity                                                        | 5    |
| 2  | Sun   | nmary of Test Results                                                         | 6    |
|    | 21    | Measurement Uncertainty                                                       | 6    |
|    |       | Modification Record                                                           |      |
| 2  |       | neral Information                                                             |      |
| 3  |       |                                                                               |      |
|    |       | General Description of EUT                                                    |      |
|    | 3.2   | Description of Test Modes.                                                    |      |
|    | 22    | 3.2.1 Test Mode Applicability and Tested Channel Detail                       |      |
|    |       | Duty Cycle of Test Signal<br>Description of Support Units                     |      |
|    | 5.4   | 3.4.1 Configuration of System under Test                                      |      |
|    | 3.5   | General Description of Applied Standards and References                       | . 12 |
| л  |       | t Types and Results                                                           |      |
| 4  |       |                                                                               |      |
|    | 4.1   | Radiated Emission and Bandedge Measurement                                    | 14   |
|    |       | 4.1.1 Limits of Radiated Emission and Bandedge Measurement                    |      |
|    |       | <ul><li>4.1.2 Test Instruments</li><li>4.1.3 Test Procedures</li></ul>        |      |
|    |       | 4.1.4 Deviation from Test Standard                                            |      |
|    |       | 4.1.5 Test Set Up                                                             |      |
|    |       | 4.1.6 EUT Operating Conditions                                                | . 18 |
|    |       | 4.1.7 Test Results                                                            |      |
|    | 4.2   | Conducted Emission Measurement                                                | 26   |
|    |       | 4.2.1 Limits of Conducted Emission Measurement                                |      |
|    |       | 4.2.2 Test Instruments                                                        |      |
|    |       | 4.2.3 Test Procedures                                                         |      |
|    |       | <ul><li>4.2.4 Deviation from Test Standard</li><li>4.2.5 Test Setup</li></ul> |      |
|    |       | 4.2.6 EUT Operating Conditions                                                |      |
|    |       | 4.2.7 Test Results                                                            |      |
|    | 4.3   | 6 dB Bandwidth Measurement                                                    |      |
|    |       | 4.3.1 Limits of 6 dB Bandwidth Measurement                                    |      |
|    |       | 4.3.2 Test Setup                                                              | . 32 |
|    |       | 4.3.3 Test Instruments                                                        |      |
|    |       | 4.3.4 Test Procedure                                                          |      |
|    |       | 4.3.5 Deviation from Test Standard                                            |      |
|    |       | <ul><li>4.3.6 EUT Operating Conditions</li><li>4.3.7 Test Results</li></ul>   |      |
|    | ΔΔ    | Occupied Bandwidth Measurement                                                |      |
|    | т.т   | 4.4.1 Test Setup                                                              |      |
|    |       | 4.4.2 Test Instruments                                                        |      |
|    |       | 4.4.3 Test Procedure                                                          |      |
|    |       | 4.4.4 Deviation from Test Standard                                            | . 34 |
|    |       | 4.4.5 EUT Operating Conditions                                                |      |
|    |       | 4.4.6 Test Results                                                            |      |
|    | 4.5   | Conducted Output Power Measurement                                            |      |
|    |       | 4.5.1 Limits of Conducted Output Power Measurement                            |      |
|    |       | 4.5.2 Test Setup                                                              |      |
|    |       | <ul><li>4.5.3 Test Instruments</li><li>4.5.4 Test Procedures</li></ul>        |      |
|    |       | 4.5.5 Deviation from Test Standard                                            |      |
|    |       | 4.5.6 EUT Operating Conditions                                                |      |
|    |       | 4.5.7 Test Results                                                            |      |
|    |       |                                                                               |      |



|    | 4.6  | Power Spectral Density Measurement                         | 37 |
|----|------|------------------------------------------------------------|----|
|    |      | 4.6.1 Limits of Power Spectral Density Measurement         |    |
|    |      | 4.6.2 Test Setup                                           | 37 |
|    |      | 4.6.3 Test Instruments                                     | 37 |
|    |      | 4.6.4 Test Procedure                                       | 37 |
|    |      | 4.6.5 Deviation from Test Standard                         | 37 |
|    |      | 4.6.6 EUT Operating Condition                              | 37 |
|    |      | 4.6.7 Test Results                                         |    |
|    | 4.7  | Conducted Out of Band Emission Measurement                 | 39 |
|    |      | 4.7.1 Limits of Conducted Out of Band Emission Measurement | 39 |
|    |      | 4.7.2 Test Setup                                           | 39 |
|    |      | 4.7.3 Test Instruments                                     | 39 |
|    |      | 4.7.4 Test Procedure                                       |    |
|    |      | 4.7.5 Deviation from Test Standard                         | 39 |
|    |      | 4.7.6 EUT Operating Condition                              | 39 |
|    |      | 4.7.7 Test Results                                         | 40 |
| -  | D:-4 |                                                            | 40 |
| D  | PICt | ures of Test Arrangements                                  | 42 |
| Ap | pen  | dix – Information of the Testing Laboratories              | 43 |
|    | -    | -                                                          |    |



#### **Release Control Record**

| Issue No.              | Description      | Date Issued  |
|------------------------|------------------|--------------|
| RFBGQZ-WTW-P21031057-1 | Original Release | May 17, 2022 |



| Certificate of Co | onformity                                                          |
|-------------------|--------------------------------------------------------------------|
| Product:          | IP Phone                                                           |
| Brand:            | POLY                                                               |
| Test Model:       | POLY EDGE E450                                                     |
| Sample Status:    | Engineering Sample                                                 |
| Applicant:        | Polycom Inc.                                                       |
| Test Date:        | Apr. 08 ~ Apr. 19, 2022                                            |
| Standards:        | 47 CFR FCC Part 15, Subpart C (Section 15.247)<br>ANSI C63.10:2013 |

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Approved by :

1

Grina Wu

Gina Liu / Specialist

Date: May 17, 2022

May 17, 2022

Date:

Jeremy Lin

Jeremy Lin / Project Engineer



# 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C (Section 15.247) |                                |        |                                                                                          |  |  |
|------------------------------------------------|--------------------------------|--------|------------------------------------------------------------------------------------------|--|--|
| FCC<br>Clause                                  | Test Item                      | Result | Remarks                                                                                  |  |  |
| 15.207                                         | AC Power Conducted Emission    | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -12.80 dB<br>at 0.15400 MHz. |  |  |
| 15.205 & 209                                   | Radiated Emissions             | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -7.3 dB at<br>74.62 MHz.     |  |  |
| 15.247(d)                                      | Band Edge Measurement          | Pass   | Meet the requirement of limit.                                                           |  |  |
| 15.247(d)                                      | Antenna Port Emission          | Pass   | Meet the requirement of limit.                                                           |  |  |
| 15.247(a)(2)                                   | 6 dB Bandwidth                 | Pass   | Meet the requirement of limit.                                                           |  |  |
|                                                | Occupied Bandwidth Measurement | Pass   | Reference only                                                                           |  |  |
| 15.247(b)                                      | Conducted Power                | Pass   | Meet the requirement of limit.                                                           |  |  |
| 15.247(e)                                      | Power Spectral Density         | Pass   | Meet the requirement of limit.                                                           |  |  |
| 15.203                                         | Antenna Requirement            | Pass   | No antenna connector is used.                                                            |  |  |

Note:

1. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

#### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency          | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|--------------------|-----------------------------------|
| Conducted Emissions at mains ports | 150 kHz ~ 30 MHz   | 2.79 dB                           |
|                                    | 9 kHz ~ 30 MHz     | 3.00 dB                           |
| Radiated Emissions up to 1 GHz     | 30 MHz ~ 200 MHz   | 3.59 dB                           |
|                                    | 200 MHz ~ 1000 MHz | 3.60 dB                           |
| Radiated Emissions above 1 GHz     | 1 GHz ~ 18 GHz     | 2.29 dB                           |
|                                    | 18 GHz ~ 40 GHz    | 2.29 dB                           |

#### 2.2 Modification Record

There were no modifications required for compliance.



### 3 General Information

# 3.1 General Description of EUT

| • • •                      |                                      |  |  |  |
|----------------------------|--------------------------------------|--|--|--|
| Product                    | IP Phone                             |  |  |  |
| Brand                      | POLY                                 |  |  |  |
| Test Model                 | POLY EDGE E450                       |  |  |  |
| FW Version (FVIN)          | MFG 1.0.16                           |  |  |  |
| Status of EUT              | Engineering Sample                   |  |  |  |
| Devuer Querela Detiere     | 5Vdc from adapter                    |  |  |  |
| Power Supply Rating        | 48Vdc for PoE                        |  |  |  |
| Modulation Type            | GFSK                                 |  |  |  |
| Transfer Rate              | 1 Mbps                               |  |  |  |
| Operating Frequency        | 2402 ~ 2480 MHz                      |  |  |  |
| Number of Channel          | 40                                   |  |  |  |
| Channel Spacing            | 2MHz                                 |  |  |  |
| Output Power               | 1.327 mW                             |  |  |  |
| Antenna Type               | Refer to Note                        |  |  |  |
| Antenna Connector          | NA                                   |  |  |  |
| Accessory Device           | Refer to Note                        |  |  |  |
| Data Cable Supplied        | Refer to Note                        |  |  |  |
| Note:                      |                                      |  |  |  |
| 1. The EUT contains follow | wing accessory devices.              |  |  |  |
| Adapter                    |                                      |  |  |  |
| Brand                      | Mass Power                           |  |  |  |
| Model                      | S018-1A050300VU                      |  |  |  |
| Input Power                | 100-240Vac 50/60Hz, 0.6A             |  |  |  |
| Output Power               | 5Vdc, 3A                             |  |  |  |
| DC Output Cable            | 1.5m non-shielded cable without core |  |  |  |
|                            |                                      |  |  |  |
| PoE (Support unit)         |                                      |  |  |  |
| Brand                      | CERIO                                |  |  |  |
| Model POE-S48G2            |                                      |  |  |  |
|                            |                                      |  |  |  |
|                            | Adapter for PoE (Support unit)       |  |  |  |
| Brand                      | L.T.E                                |  |  |  |

| Brand           | L.T.E                                |
|-----------------|--------------------------------------|
| Model           | LTE36ES-S5-1                         |
| Input Power     | 100-240Vac, 50/60Hz, 0.75A           |
| Output Power    | 48Vdc, 0.75A                         |
| DC Output Cable | 1.8m non-shielded cable without core |



| Coil Cable  | _        |
|-------------|----------|
| Brand       | EXCELTEK |
| Model       | PE00003  |
| Signal Line | 570mm    |

| LAN Cable   |          |  |
|-------------|----------|--|
| Brand       | EXCELTEK |  |
| Model       | PO02008  |  |
| Signal Line | 1.524m   |  |

#### 2. Power Setting as below.

| CH 0  | Default |
|-------|---------|
| CH 19 | Default |
| CH 39 | Default |

\* This FW version is used for testing purpose3. The antenna information is listed as below.

| Antenna Type      | PCB  |      |      |
|-------------------|------|------|------|
| Antenna Connector | NA   |      |      |
| Frequency (MHz)   | 2400 | 2450 | 2480 |
| Gain (dBi)        | 2.66 | 2.73 | 2.60 |

4. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

5. The EUT is not capable of simultaneous transmission.



# 3.2 Description of Test Modes

40 channels are provided to this EUT:

| Channel | Freq. (MHz) |
|---------|-------------|---------|-------------|---------|-------------|---------|-------------|
| 0       | 2402        | 10      | 2422        | 20      | 2442        | 30      | 2462        |
| 1       | 2404        | 11      | 2424        | 21      | 2444        | 31      | 2464        |
| 2       | 2406        | 12      | 2426        | 22      | 2446        | 32      | 2466        |
| 3       | 2408        | 13      | 2428        | 23      | 2448        | 33      | 2468        |
| 4       | 2410        | 14      | 2430        | 24      | 2450        | 34      | 2470        |
| 5       | 2412        | 15      | 2432        | 25      | 2452        | 35      | 2472        |
| 6       | 2414        | 16      | 2434        | 26      | 2454        | 36      | 2474        |
| 7       | 2416        | 17      | 2436        | 27      | 2456        | 37      | 2476        |
| 8       | 2418        | 18      | 2438        | 28      | 2458        | 38      | 2478        |
| 9       | 2420        | 19      | 2440        | 29      | 2460        | 39      | 2480        |

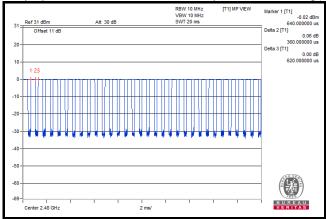


| 3.2.1 | Test Mode Applicability and Tested Channel Detail |  |
|-------|---------------------------------------------------|--|
|-------|---------------------------------------------------|--|

| UT Configure                                                                                                                                                                                               |                                                                                                                                                                                                  | Applica                                                                                                                                                                                                         | able To                                                                                                                                                                          |                                                                                                         | Dee                                                                                                                                                                                                                                                              | cription                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode                                                                                                                                                                                                       | RE≥1G                                                                                                                                                                                            | RE<1G                                                                                                                                                                                                           | PLC                                                                                                                                                                              | APCM                                                                                                    | DO                                                                                                                                                                                                                                                               | onption                                                                                                                                                       |
| А                                                                                                                                                                                                          | $\checkmark$                                                                                                                                                                                     | $\checkmark$                                                                                                                                                                                                    | $\checkmark$                                                                                                                                                                     | $\checkmark$                                                                                            | Powered by adapter                                                                                                                                                                                                                                               |                                                                                                                                                               |
| В                                                                                                                                                                                                          | -                                                                                                                                                                                                | $\checkmark$                                                                                                                                                                                                    | $\checkmark$                                                                                                                                                                     | -                                                                                                       | Powered by POE                                                                                                                                                                                                                                                   |                                                                                                                                                               |
| PLC: F<br>e:<br>The EUT had                                                                                                                                                                                | ower Line Con                                                                                                                                                                                    |                                                                                                                                                                                                                 | AP(                                                                                                                                                                              | <b>CM:</b> Antenna<br>is. The worst                                                                     | d Emission below 1 GHz<br>Port Conducted Measureme<br>case was found when positiv<br>test items chosen the worst                                                                                                                                                 | oned on <b>X-plane</b> .                                                                                                                                      |
| Pre-Scan<br>between a                                                                                                                                                                                      | has been co<br>vailable moo<br>channel(s) w                                                                                                                                                      | dulations, dat<br>vas (were) se                                                                                                                                                                                 | etermine the<br>a rates and a<br>elected for the                                                                                                                                 | antenna po<br>e final test                                                                              | e mode from all possibl<br>rts (if EUT with antenna<br>as listed below.                                                                                                                                                                                          | a diversity architectu                                                                                                                                        |
| Mode                                                                                                                                                                                                       | Availabl                                                                                                                                                                                         | e Channel                                                                                                                                                                                                       | Tested Cl                                                                                                                                                                        | nannel                                                                                                  | Modulation Type                                                                                                                                                                                                                                                  | Data Rate (Mbps)                                                                                                                                              |
| А                                                                                                                                                                                                          | 0 t                                                                                                                                                                                              | o 39                                                                                                                                                                                                            | 0, 19,                                                                                                                                                                           | 39                                                                                                      | GFSK                                                                                                                                                                                                                                                             | 1                                                                                                                                                             |
| between a                                                                                                                                                                                                  | vailable moo                                                                                                                                                                                     | dulations, dat                                                                                                                                                                                                  | a rates and a                                                                                                                                                                    | intenna po                                                                                              | e mode from all possibl<br>rts (if EUT with antenna<br>as listed below                                                                                                                                                                                           |                                                                                                                                                               |
| between a Following                                                                                                                                                                                        | vailable moo<br>channel(s) w                                                                                                                                                                     | dulations, dat                                                                                                                                                                                                  | a rates and a                                                                                                                                                                    | antenna po<br>e final test                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                               |
| between a<br>Following<br>UT Configure                                                                                                                                                                     | vailable moo<br>channel(s) w<br>Availabl                                                                                                                                                         | dulations, dat<br>vas (were) se                                                                                                                                                                                 | a rates and a<br>elected for the                                                                                                                                                 | antenna po<br>e final test                                                                              | rts (if EUT with antenna as listed below.                                                                                                                                                                                                                        | a diversity architectu                                                                                                                                        |
| between a<br>Following<br>UT Configure<br>Mode<br>A, B<br>wer Line Co<br>Pre-Scan<br>between a<br>Following<br>UT Configure<br>Mode                                                                        | vailable moo<br>channel(s) w<br>Availabl<br>0 t<br>onducted Er<br>has been co<br>vailable moo<br>channel(s) w                                                                                    | dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>mission Test<br>nducted to de<br>dulations, dat                                                                                                         | a rates and a<br>elected for the<br>Tested Cl<br>0<br><u>t:</u><br>etermine the<br>a rates and a                                                                                 | worst-case                                                                                              | rts (if EUT with antenna<br>as listed below.<br>Modulation Type                                                                                                                                                                                                  | a diversity architectu<br>Data Rate (Mbps)<br>1                                                                                                               |
| between a<br>Following<br>UT Configure<br>A, B<br>wer Line Co<br>Pre-Scan<br>between a<br>Following                                                                                                        | vailable moo<br>channel(s) w<br>Availabl<br>0 t<br>onducted Er<br>has been co<br>vailable moo<br>channel(s) w<br>Availabl                                                                        | dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>mission Test<br>nducted to de<br>dulations, dat<br>vas (were) se                                                                                        | a rates and a<br>elected for the<br>Tested Cl<br>0<br>t:<br>etermine the<br>a rates and a<br>elected for the                                                                     | worst-case                                                                                              | rts (if EUT with antenna<br>as listed below.<br>Modulation Type<br>GFSK<br>e mode from all possible<br>rts (if EUT with antenna<br>as listed below.                                                                                                              | a diversity architectu<br>Data Rate (Mbps)<br>1<br>e combinations<br>a diversity architectu                                                                   |
| between a<br>Following<br>UT Configure<br>Mode<br>A, B<br>Wer Line Co<br>Pre-Scan<br>between a<br>Following<br>UT Configure<br>Mode<br>A, B<br>UT Configure<br>Mode<br>A, B                                | vailable mod<br>channel(s) w<br>Available<br>0 t<br>onducted Er<br>has been co<br>vailable mod<br>channel(s) w<br>Available<br>0 t<br>Conducted<br>ncludes all to<br>has been co<br>vailable mod | dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>mission Test<br>nducted to de<br>dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>Measureme<br>est value of e<br>nducted to de<br>dulations, dat | a rates and a<br>elected for the<br>Tested Cl<br>0<br>t:<br>etermine the<br>a rates and a<br>elected for the<br>0<br><b>nt:</b><br>each mode, b<br>etermine the<br>a rates and a | worst-case<br>annel<br>worst-case<br>antenna po<br>e final test<br>hannel<br>but only inc<br>worst-case | rts (if EUT with antenna<br>as listed below.<br>Modulation Type<br>GFSK<br>e mode from all possible<br>rts (if EUT with antenna<br>as listed below.<br>Modulation Type<br>GFSK<br>ludes spectrum plot of<br>e mode from all possible<br>rts (if EUT with antenna | a diversity architectu<br>Data Rate (Mbps)<br>1<br>e combinations<br>a diversity architectu<br>Data Rate (Mbps)<br>1<br>worst value of each<br>e combinations |
| between a<br>Following<br>UT Configure<br>Mode<br>A, B<br>Wer Line Co<br>Pre-Scan<br>between a<br>Following<br>UT Configure<br>Mode<br>A, B<br>tenna Port<br>This item i<br>mode.<br>Pre-Scan<br>between a | vailable mod<br>channel(s) w<br>Available<br>0 t<br>onducted Er<br>has been co<br>vailable mod<br>channel(s) w<br>Available<br>0 t<br>Conducted<br>ncludes all to<br>has been co<br>vailable mod | dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>mission Test<br>nducted to de<br>dulations, dat<br>vas (were) se<br>e Channel<br>o 39<br>Measureme<br>est value of e<br>nducted to de<br>dulations, dat | a rates and a<br>elected for the<br>Tested Cl<br>0<br>t:<br>etermine the<br>a rates and a<br>elected for the<br>0<br><b>nt:</b><br>each mode, b<br>etermine the<br>a rates and a | worst-case<br>annel<br>worst-case<br>antenna po<br>e final test<br>hannel<br>but only inc<br>worst-case | rts (if EUT with antenna<br>as listed below.<br>Modulation Type<br>GFSK<br>e mode from all possible<br>rts (if EUT with antenna<br>as listed below.<br>Modulation Type<br>GFSK<br>ludes spectrum plot of<br>e mode from all possible                             | a diversity architectu<br>Data Rate (Mbps)<br>1<br>e combinations<br>a diversity architectu<br>Data Rate (Mbps)<br>1<br>worst value of each<br>e combinations |

| EUT Configure<br>Mode | Available Channel | Tested Channel | Modulation Type | Data Rate (Mbps) |
|-----------------------|-------------------|----------------|-----------------|------------------|
| А                     | 0 to 39           | 0, 19, 39      | GFSK            | 1                |




Test Condition:

| Applicable To | Environmental Conditions | Input Power           | Tested by |  |
|---------------|--------------------------|-----------------------|-----------|--|
| RE≥1G         | 21 deg. C, 70 % RH       | 120Vac, 60Hz          | Greg Lin  |  |
| RE<1G         | 20 deg. C, 66 % RH       | 120Vac, 60Hz<br>48Vdc | Rex Wang  |  |
| PLC           | 22 deg. C, 73 % RH       | 120Vac, 60Hz<br>48Vdc | Greg Lin  |  |
| APCM          | 25 deg. C, 65 % RH       | 120Vac, 60Hz          | Chun Wu   |  |

# 3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered.

#### Duty cycle = 0.36/0.62 = 0.581, Duty factor = 10 \* log(1/0.581) = 2.36



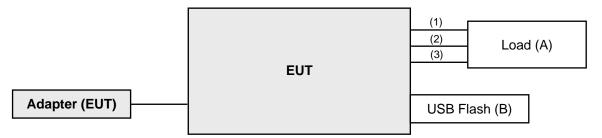


# 3.4 Description of Support Units

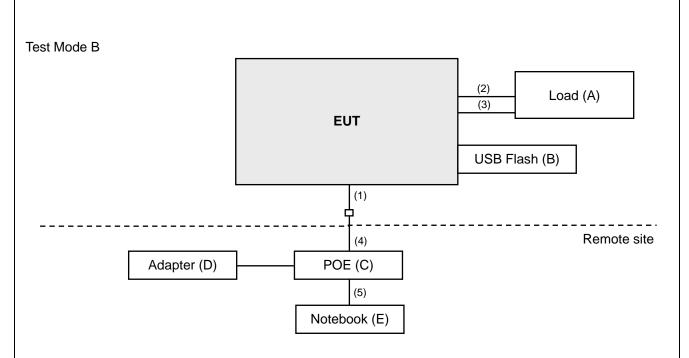
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product   | Brand   | Model No.    | Serial No.            | FCC ID | Remarks            |
|----|-----------|---------|--------------|-----------------------|--------|--------------------|
| Α. | Load      | NA      | NA           | NA                    | NA     | -                  |
| В. | USB Flash | SanDisk | SDDDC3-032G  | NA                    | NA     | -                  |
| C. | POE       | CERIO   | POE-S48G2    | NA                    | NA     | Provided by client |
| D. | Adapter   | L.T.E   | LTE36ES-S5-1 | E36ES-S5-1 NA NA Prov |        | Provided by client |
| E. | Notebook  | HP      | 11-u018TU    | 8CG70505V9            | NA     | -                  |

Note:


1. All power cords of the above support units are non-shielded (1.8m).

2. Item E acted as communication partner to transfer data.


| ID | Cable Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks                         |
|----|--------------------|------|------------|-----------------------|--------------|---------------------------------|
| 1. | LAN                | 1    | 1.524      | Ν                     | 0            | RJ45, Cat5e<br>Accessory of EUT |
| 2. | LAN                | 1    | 1.5        | N                     |              | RJ45, Cat5e                     |
| 3. | RJ9                | 1    | 1          | Ν                     | 0            | -                               |
| 4. | LAN                | 1    | 1.5        | N                     | 0            | RJ45, Cat5e                     |
| 5. | LAN                | 1    | 10         | N                     | 0            | RJ45, Cat5e                     |

#### 3.4.1 Configuration of System under Test

#### Test Mode A







# 3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

#### **Test Standard:**

#### FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

# **References Test Guidance:**

#### KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.



# 4 Test Types and Results

### 4.1 Radiated Emission and Bandedge Measurement

#### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F (kHz)                         | 300                              |
| 0.490 ~ 1.705        | 24000/F (kHz)                        | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

#### Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.



#### 4.1.2 Test Instruments

| Description &<br>Manufacturer            | Model No.                             | Serial No.                      | Date of Calibration | Due Date of<br>Calibration |  |
|------------------------------------------|---------------------------------------|---------------------------------|---------------------|----------------------------|--|
| Preamplifier<br>Agilent                  | 8447D                                 | 2944A10638                      | 2021/6/5            | 2022/6/4                   |  |
| Bi_Log Antenna<br>Schwarbeck             | VULB9168                              | 9168-160                        | 2021/10/28          | 2022/10/27                 |  |
| RF Coaxial Cable<br>WOKEN                | 8D-FB                                 | Cable-CH9-01                    | 2021/6/5            | 2022/6/4                   |  |
| Horn Antenna<br>Schwarzbeck              | 9120D                                 | 9120D-1169                      | 2021/11/14          | 2022/11/13                 |  |
| Preamplifier<br>Agilent                  | 8449B                                 | 3008A02367                      | 2022/2/16           | 2023/2/15                  |  |
| RF Coaxial Cable<br>HUBER+SUHNER&EMCI    | SUCOFLEX 104&<br>EMC104-SM-SM80<br>00 | CABLE-CH9-02<br>(248780+171006) | 2022/1/15           | 2023/1/14                  |  |
| RF Coaxial Cable<br>HUBER+SUHNER         | SUCOFLEX 104                          | CABLE-CH9-(2507<br>95/4)        | 2022/1/15           | 2023/1/14                  |  |
| RF FLITER<br>MICRO-TRONICS               | BRM50716                              | 060                             | 2022/1/10           | 2023/1/9                   |  |
| RF FLITER<br>MICRO-TRONICS               | BRM17690                              | 004                             | 2022/1/10           | 2023/1/9                   |  |
| Boresight antenna tower<br>fixture<br>BV | BAF-02                                | 5                               | NA                  | NA                         |  |
| Pre-Ammlifier<br>EMCI                    | EMC 184045                            | 980116                          | 2021/10/5           | 2022/10/4                  |  |
| Horn Antenna<br>Schwarzbeck              | BBHA 9170                             | BBHA9170241                     | 2021/10/26          | 2022/10/25                 |  |
| RF Coaxial Cable<br>HUBER+SUHNER&EMCI    | SUCOFLEX 104&<br>EMC104-SM-SM80<br>00 | CABLE-CH9-02<br>(248780+171006) | 2022/1/15           | 2023/1/14                  |  |
| RF Coaxial Cable<br>HUBER+SUHNER         | SUCOFLEX 104                          | CABLE-CH9-(2507<br>95/4)        | 2022/1/15           | 2023/1/14                  |  |
| Boresight antenna tower<br>fixture<br>BV | BAF-02                                | 5                               | NA                  | NA                         |  |
| Software<br>BV ADT                       | ADT_Radiated_<br>V7.6.15.9.5          | NA                              | NA                  | NA                         |  |
| Antenna Tower &Turn<br>BV ADT            | AT100                                 | AT93021705                      | NA                  | NA                         |  |
| Turn Table<br>BV ADT                     | TT100                                 | TT93021705                      | NA                  | NA                         |  |
| Turn Table Controller<br>BV ADT          | SC100                                 | SC93021705                      | NA                  | NA                         |  |
| Test Receiver<br>Agilent                 | N9038A                                | MY51210203                      | 2021/9/22           | 2022/9/21                  |  |
| Spectrum Analyzer<br>ROHDE & SCHWARZ     | FSP40                                 | 100039                          | 2021/6/10           | 2022/6/9                   |  |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.



# 4.1.3 Test Procedures

# For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### Note:

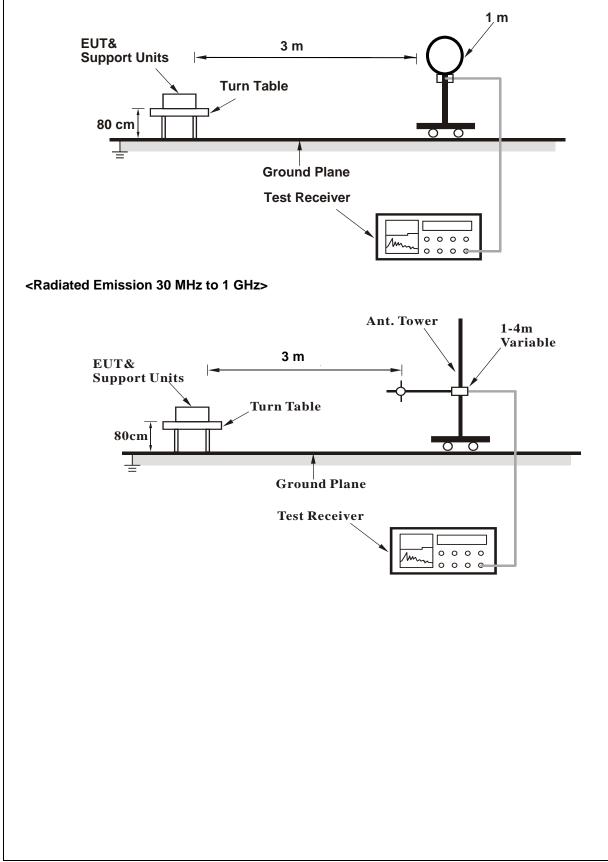
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

# For Radiated Emission above 30 MHz

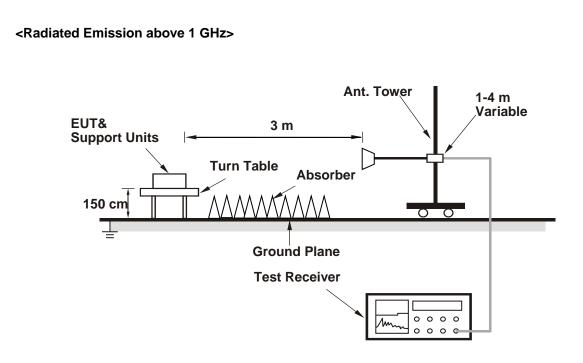
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (RBW = 1 MHz, VBW = 3 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


# 4.1.4 Deviation from Test Standard

No deviation.




#### 4.1.5 Test Set Up

### <Radiated Emission below 30 MHz>







For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.



# 4.1.7 Test Results

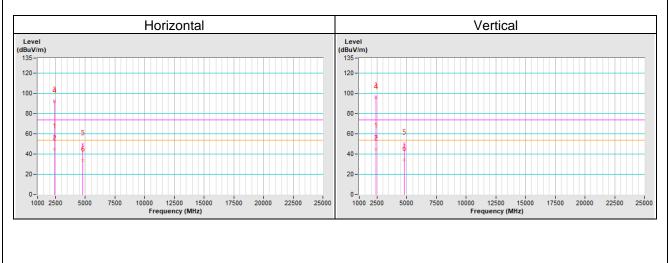
#### Above 1 GHz Data:

| RF Mode         | TX BT-LE 1M    | Channel                          | CH 0 : 2402 MHz                                            |
|-----------------|----------------|----------------------------------|------------------------------------------------------------|
| Frequency Range | 1 GHz ~ 25 GHz | Detector Function<br>& Bandwidth | (PK) RB = 1 MHz, VB = 3 MHz<br>(AV) RB = 1 MHz, VB = 3 kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions      | 21°C, 70% RH                                               |
| Tested By       | Greg Lin       | Test Date                        | 2022/4/15                                                  |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |  |
| 1  | 2390.00                                              | 56.6 PK                       | 74.0              | -17.4          | 1.50 H                   | 173                        | 23.8                   | 32.8                           |  |  |  |
| 2  | 2390.00                                              | 44.5 AV                       | 54.0              | -9.5           | 1.50 H                   | 173                        | 11.7                   | 32.8                           |  |  |  |
| 3  | *2402.00                                             | 92.9 PK                       |                   |                | 1.50 H                   | 173                        | 60.1                   | 32.8                           |  |  |  |
| 4  | *2402.00                                             | 91.7 AV                       |                   |                | 1.50 H                   | 173                        | 58.9                   | 32.8                           |  |  |  |
| 5  | 4804.00                                              | 50.0 PK                       | 74.0              | -24.0          | 1.65 H                   | 218                        | 44.2                   | 5.8                            |  |  |  |
| 6  | 4804.00                                              | 34.0 AV                       | 54.0              | -20.0          | 1.65 H                   | 218                        | 28.2                   | 5.8                            |  |  |  |

|    | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 2390.00                                            | 57.0 PK                       | 74.0              | -17.0          | 2.19 V                   | 142                        | 24.2                   | 32.8                           |  |  |
| 2  | 2390.00                                            | 44.9 AV                       | 54.0              | -9.1           | 2.19 V                   | 142                        | 12.1                   | 32.8                           |  |  |
| 3  | *2402.00                                           | 96.7 PK                       |                   |                | 2.19 V                   | 142                        | 63.9                   | 32.8                           |  |  |
| 4  | *2402.00                                           | 95.5 AV                       |                   |                | 2.19 V                   | 142                        | 62.7                   | 32.8                           |  |  |
| 5  | 4804.00                                            | 50.6 PK                       | 74.0              | -23.4          | 2.38 V                   | 164                        | 44.8                   | 5.8                            |  |  |
| 6  | 4804.00                                            | 34.5 AV                       | 54.0              | -19.5          | 2.38 V                   | 164                        | 28.7                   | 5.8                            |  |  |

#### **Remarks:**


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency.





| RF Mode         | TX BT-LE 1M    | Channel                          | CH 19:2440 MHz                                             |
|-----------------|----------------|----------------------------------|------------------------------------------------------------|
| Frequency Range | 1 GHz ~ 25 GHz | Detector Function<br>& Bandwidth | (PK) RB = 1 MHz, VB = 3 MHz<br>(AV) RB = 1 MHz, VB = 3 kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions      | 21°C, 70% RH                                               |
| Tested By       | Greg Lin       | Test Date                        | 2022/4/15                                                  |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | *2440.00                                             | 93.3 PK                       |                   |                | 1.53 H                   | 183                        | 60.5                   | 32.8                           |  |  |
| 2  | *2440.00                                             | 92.1 AV                       |                   |                | 1.53 H                   | 183                        | 59.3                   | 32.8                           |  |  |
| 3  | 4880.00                                              | 50.0 PK                       | 74.0              | -24.0          | 1.78 H                   | 211                        | 44.5                   | 5.5                            |  |  |
| 4  | 4880.00                                              | 33.8 AV                       | 54.0              | -20.2          | 1.78 H                   | 211                        | 28.3                   | 5.5                            |  |  |
|    |                                                      | An                            | tenna Polari      | ty & Test Dis  | stance : Vert            | ical at 3 m                |                        |                                |  |  |
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | *2440.00                                             | 97.3 PK                       |                   |                | 1.94 V                   | 138                        | 64.5                   | 32.8                           |  |  |
| 2  | *2440.00                                             | 96.0 AV                       |                   |                | 1.94 V                   | 138                        | 63.2                   | 32.8                           |  |  |
| 3  | 4880.00                                              | 50.8 PK                       | 74.0              | -23.2          | 2.51 V                   | 156                        | 45.3                   | 5.5                            |  |  |
| 4  | 4880.00                                              | 34.1 AV                       | 54.0              | -19.9          | 2.51 V                   | 156                        | 28.6                   | 5.5                            |  |  |

### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency.



| RF Mode         | TX BT-LE 1M    | Channel                          | CH 39:2480 MHz                                             |
|-----------------|----------------|----------------------------------|------------------------------------------------------------|
| Frequency Range | 1 (Hz ~ 25 (Hz | Detector Function<br>& Bandwidth | (PK) RB = 1 MHz, VB = 3 MHz<br>(AV) RB = 1 MHz, VB = 3 kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions      | 21°C, 70% RH                                               |
| Tested By       | Greg Lin       | Test Date                        | 2022/4/15                                                  |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | *2480.00                                             | 92.9 PK                       |                   |                | 1.53 H                   | 169                        | 60.0                   | 32.9                           |  |
| 2  | *2480.00                                             | 91.7 AV                       |                   |                | 1.53 H                   | 169                        | 58.8                   | 32.9                           |  |
| 3  | 2483.50                                              | 57.6 PK                       | 74.0              | -16.4          | 1.53 H                   | 169                        | 24.7                   | 32.9                           |  |
| 4  | 2483.50                                              | 45.4 AV                       | 54.0              | -8.6           | 1.53 H                   | 169                        | 12.5                   | 32.9                           |  |
| 5  | 4960.00                                              | 50.0 PK                       | 74.0              | -24.0          | 1.78 H                   | 203                        | 44.3                   | 5.7                            |  |
| 6  | 4960.00                                              | 33.8 AV                       | 54.0              | -20.2          | 1.78 H                   | 203                        | 28.1                   | 5.7                            |  |
|    |                                                      | An                            | tenna Polari      | ty & Test Dis  | stance : Vert            | ical at 3 m                |                        |                                |  |
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | *2480.00                                             | 96.7 PK                       |                   |                | 1.88 V                   | 133                        | 63.8                   | 32.9                           |  |
| 2  | *2480.00                                             | 95.5 AV                       |                   |                | 1.88 V                   | 133                        | 62.6                   | 32.9                           |  |
| 3  | 2483.50                                              | 58.1 PK                       | 74.0              | -15.9          | 1.88 V                   | 133                        | 25.2                   | 32.9                           |  |
| 4  | 2483.50                                              | 46.0 AV                       | 54.0              | -8.0           | 1.88 V                   | 133                        | 13.1                   | 32.9                           |  |
| 5  | 4960.00                                              | 50.5 PK                       | 74.0              | -23.5          | 2.45 V                   | 161                        | 44.8                   | 5.7                            |  |
| 6  | 4960.00                                              | 34.1 AV                       | 54.0              | -19.9          | 2.45 V                   | 161                        | 28.4                   | 5.7                            |  |

#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

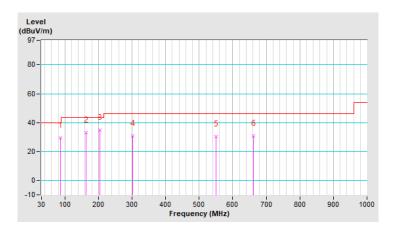
4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency.



# 9 kHz ~ 1 GHz Worst-Case Data:

| Mode A |  |
|--------|--|
|        |  |

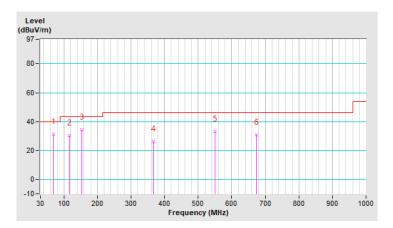

| RF Mode         | TX BT-LE 1M    | Channel                       | CH 0:2402 MHz    |
|-----------------|----------------|-------------------------------|------------------|
| Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | (QP) RB = 120kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions   | 20°C, 66% RH     |
| Tested By       | Rex Wang       | Test Date                     | 2022/4/8         |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 87.23                                                | 29.3 QP                       | 40.0              | -10.7          | 1.00 H                   | 5                          | 44.0                   | -14.7                          |  |  |
| 2  | 163.86                                               | 32.9 QP                       | 43.5              | -10.6          | 1.50 H                   | 76                         | 41.8                   | -8.9                           |  |  |
| 3  | 204.60                                               | 34.7 QP                       | 43.5              | -8.8           | 1.50 H                   | 76                         | 46.2                   | -11.5                          |  |  |
| 4  | 302.57                                               | 30.8 QP                       | 46.0              | -15.2          | 1.00 H                   | 293                        | 37.6                   | -6.8                           |  |  |
| 5  | 549.92                                               | 30.2 QP                       | 46.0              | -15.8          | 1.25 H                   | 17                         | 31.8                   | -1.6                           |  |  |
| 6  | 661.47                                               | 31.0 QP                       | 46.0              | -15.0          | 1.00 H                   | 14                         | 30.7                   | 0.3                            |  |  |

#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



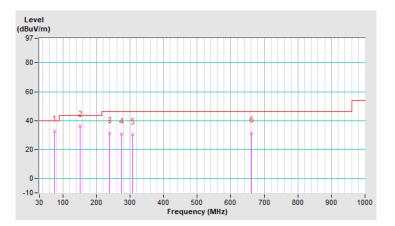



| RF Mode         | TX BT-LE 1M    | Channel                       | CH 0:2402 MHz    |
|-----------------|----------------|-------------------------------|------------------|
| Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | (QP) RB = 120kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions   | 20°C, 66% RH     |
| Tested By       | Rex Wang       | Test Date                     | 2022/4/8         |

|    | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 69.77                                              | 31.1 QP                       | 40.0              | -8.9           | 1.00 V                   | 141                        | 42.1                   | -11.0                          |  |  |
| 2  | 116.33                                             | 30.2 QP                       | 43.5              | -13.3          | 1.50 V                   | 155                        | 41.9                   | -11.7                          |  |  |
| 3  | 153.19                                             | 34.6 QP                       | 43.5              | -8.9           | 1.00 V                   | 155                        | 43.4                   | -8.8                           |  |  |
| 4  | 366.59                                             | 26.2 QP                       | 46.0              | -19.8          | 1.50 V                   | 10                         | 31.9                   | -5.7                           |  |  |
| 5  | 549.92                                             | 32.9 QP                       | 46.0              | -13.1          | 1.25 V                   | 265                        | 34.5                   | -1.6                           |  |  |
| 6  | 673.11                                             | 31.0 QP                       | 46.0              | -15.0          | 1.00 V                   | 297                        | 30.5                   | 0.5                            |  |  |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz  $\sim$  1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



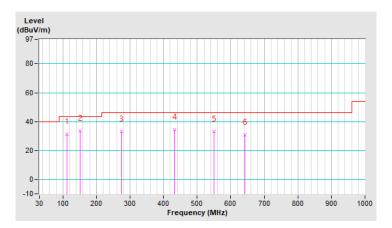



#### Mode B

| Mode D          |                |                               |                  |  |  |  |  |
|-----------------|----------------|-------------------------------|------------------|--|--|--|--|
| RF Mode         | TX BT-LE 1M    | Channel                       | CH 0:2402 MHz    |  |  |  |  |
| Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | (QP) RB = 120kHz |  |  |  |  |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions   | 20°C, 66% RH     |  |  |  |  |
| Tested By       | Rex Wang       | Test Date                     | 2022/4/8         |  |  |  |  |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 74.62                                                | 32.7 QP                       | 40.0              | -7.3           | 1.00 H                   | 141                        | 44.9                   | -12.2                          |  |  |
| 2  | 150.28                                               | 36.0 QP                       | 43.5              | -7.5           | 1.00 H                   | 332                        | 44.8                   | -8.8                           |  |  |
| 3  | 239.52                                               | 31.4 QP                       | 46.0              | -14.6          | 1.50 H                   | 79                         | 40.9                   | -9.5                           |  |  |
| 4  | 274.44                                               | 30.6 QP                       | 46.0              | -15.4          | 1.00 H                   | 51                         | 38.2                   | -7.6                           |  |  |
| 5  | 308.39                                               | 30.4 QP                       | 46.0              | -15.6          | 1.50 H                   | 283                        | 36.9                   | -6.5                           |  |  |
| 6  | 661.47                                               | 31.5 QP                       | 46.0              | -14.5          | 1.00 H                   | 14                         | 31.2                   | 0.3                            |  |  |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.






| RF Mode         | TX BT-LE 1M    | Channel                       | CH 0:2402 MHz    |
|-----------------|----------------|-------------------------------|------------------|
| Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | (QP) RB = 120kHz |
| Input Power     | 120 Vac, 60 Hz | Environmental<br>Conditions   | 20°C, 66% RH     |
| Tested By       | Rex Wang       | Test Date                     | 2022/4/8         |

|    | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |  |
|----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| No | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |  |
| 1  | 112.45                                             | 31.4 QP                       | 43.5              | -12.1          | 1.50 V                   | 19                         | 43.3                   | -11.9                          |  |  |  |
| 2  | 150.28                                             | 33.7 QP                       | 43.5              | -9.8           | 1.00 V                   | 249                        | 42.5                   | -8.8                           |  |  |  |
| 3  | 274.44                                             | 32.9 QP                       | 46.0              | -13.1          | 1.25 V                   | 182                        | 40.5                   | -7.6                           |  |  |  |
| 4  | 433.52                                             | 34.5 QP                       | 46.0              | -11.5          | 1.00 V                   | 315                        | 38.3                   | -3.8                           |  |  |  |
| 5  | 549.92                                             | 32.9 QP                       | 46.0              | -13.1          | 1.50 V                   | 262                        | 34.5                   | -1.6                           |  |  |  |
| 6  | 643.04                                             | 30.8 QP                       | 46.0              | -15.2          | 1.00 V                   | 5                          | 30.4                   | 0.4                            |  |  |  |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





# 4.2 Conducted Emission Measurement

#### 4.2.1 Limits of Conducted Emission Measurement

|                 | Conducted Limit (dBuV) |         |  |  |  |
|-----------------|------------------------|---------|--|--|--|
| Frequency (MHz) | Quasi-Peak             | Average |  |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

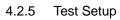
#### 4.2.2 Test Instruments

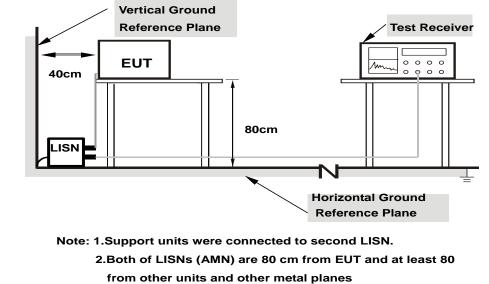
| Description &<br>Manufacturer               | Model No.                | Serial No.     | Date of<br>Calibration | Due Date of<br>Calibration |
|---------------------------------------------|--------------------------|----------------|------------------------|----------------------------|
| Test Receiver<br>ROHDE & SCHWARZ            | ESR3                     | 102783         | Dec. 20, 2021          | Dec. 19, 2022              |
| RF signal cable (with<br>10dB PAD)<br>Woken | 5D-FB                    | Cable-cond2-01 | Sep. 04, 2021          | Sep. 03, 2022              |
| LISN/AMN<br>ROHDE & SCHWARZ<br>(EUT)        | ESH2-Z5                  | 100100         | Feb. 17, 2022          | Feb. 16, 2023              |
| LISN/AMN<br>ROHDE & SCHWARZ<br>(Peripheral) | ESH3-Z5                  | 100312         | Sep. 17, 2021          | Sep. 16, 2022              |
| Software<br>ADT                             | BV ADT_Cond_<br>V7.3.7.4 | NA             | NA                     | NA                         |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-12047.

#### 4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.


**Note:** The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.



# 4.2.4 Deviation from Test Standard

No deviation.

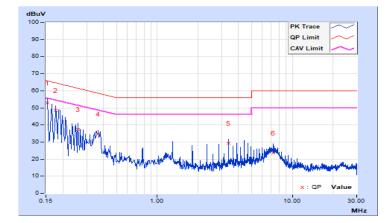




- 4.2.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.



# 4.2.7 Test Results

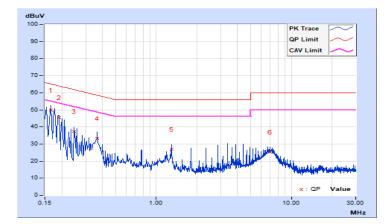

# **CONDUCTED WORST-CASE DATA**

#### Mode A

| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) / Average<br>(AV), 9kHz |
|-----------------|------------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120 Vac, 60 Hz   | Environmental<br>Conditions                    | 22°C, 73% RH                            |
| Tested by       | Greg Lin         | Test Date                                      | 2022/4/8                                |

|    | Phase Of Power : Line (L)                                                 |       |       |                 |       |                |       |       |        |        |  |
|----|---------------------------------------------------------------------------|-------|-------|-----------------|-------|----------------|-------|-------|--------|--------|--|
| No | Frequency Correction Reading Value Emission Level<br>Factor (dBuV) (dBuV) |       |       | Limit<br>(dBuV) |       | Margin<br>(dB) |       |       |        |        |  |
|    | (MHz)                                                                     | (dB)  | Q.P.  | AV.             | Q.P.  | AV.            | Q.P.  | AV.   | Q.P.   | AV.    |  |
| 1  | 0.15400                                                                   | 10.13 | 42.85 | 24.85           | 52.98 | 34.98          | 65.78 | 55.78 | -12.80 | -20.80 |  |
| 2  | 0.17800                                                                   | 10.15 | 38.24 | 19.93           | 48.39 | 30.08          | 64.58 | 54.58 | -16.19 | -24.50 |  |
| 3  | 0.25800                                                                   | 10.18 | 27.31 | 14.80           | 37.49 | 24.98          | 61.50 | 51.50 | -24.01 | -26.52 |  |
| 4  | 0.36600                                                                   | 10.23 | 24.32 | 17.49           | 34.55 | 27.72          | 58.59 | 48.59 | -24.04 | -20.87 |  |
| 5  | 3.37400                                                                   | 10.39 | 18.92 | 16.69           | 29.31 | 27.08          | 56.00 | 46.00 | -26.69 | -18.92 |  |
| 6  | 7.26600                                                                   | 10.43 | 13.28 | 8.45            | 23.71 | 18.88          | 60.00 | 50.00 | -36.29 | -31.12 |  |

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



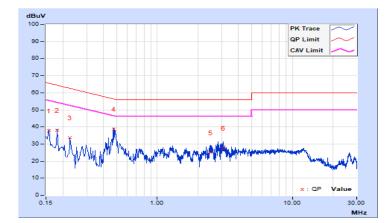



| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) / Average<br>(AV), 9kHz |
|-----------------|------------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120 Vac, 60 Hz   | Environmental<br>Conditions                    | 22°C, 73% RH                            |
| Tested by       | Greg Lin         | Test Date                                      | 2022/4/8                                |

|    | Phase Of Power : Neutral (N)                               |       |       |       |             |                |       |       |        |        |  |
|----|------------------------------------------------------------|-------|-------|-------|-------------|----------------|-------|-------|--------|--------|--|
| No | FrequencyCorrectionReading ValueEmissionNoFactor(dBuV)(dBu |       |       |       | nit<br>suV) | Margin<br>(dB) |       |       |        |        |  |
|    | (MHz)                                                      | (dB)  | Q.P.  | AV.   | Q.P.        | AV.            | Q.P.  | AV.   | Q.P.   | AV.    |  |
| 1  | 0.16600                                                    | 10.16 | 39.66 | 20.68 | 49.82       | 30.84          | 65.16 | 55.16 | -15.34 | -24.32 |  |
| 2  | 0.19000                                                    | 10.18 | 35.19 | 16.75 | 45.37       | 26.93          | 64.04 | 54.04 | -18.67 | -27.11 |  |
| 3  | 0.24600                                                    | 10.21 | 27.16 | 8.32  | 37.37       | 18.53          | 61.89 | 51.89 | -24.52 | -33.36 |  |
| 4  | 0.36600                                                    | 10.25 | 23.09 | 15.03 | 33.34       | 25.28          | 58.59 | 48.59 | -25.25 | -23.31 |  |
| 5  | 1.29400                                                    | 10.32 | 16.51 | 14.43 | 26.83       | 24.75          | 56.00 | 46.00 | -29.17 | -21.25 |  |
| 6  | 6.99400                                                    | 10.45 | 14.74 | 9.61  | 25.19       | 20.06          | 60.00 | 50.00 | -34.81 | -29.94 |  |

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



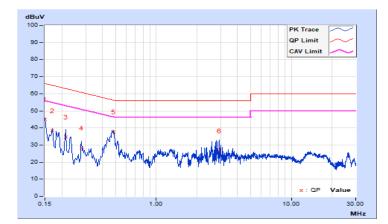



#### Mode B

| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) / Average<br>(AV), 9kHz |
|-----------------|------------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120 Vac, 60 Hz   | Environmental<br>Conditions                    | 22°C, 73% RH                            |
| Tested by       | Greg Lin         | Test Date                                      | 2022/4/8                                |

|    | Phase Of Power : Line (L) |                      |                                               |       |                 |       |                |       |        |        |  |
|----|---------------------------|----------------------|-----------------------------------------------|-------|-----------------|-------|----------------|-------|--------|--------|--|
| No | Frequency                 | Correction<br>Factor | Reading Value Emission Level<br>(dBuV) (dBuV) |       | Limit<br>(dBuV) |       | Margin<br>(dB) |       |        |        |  |
|    | (MHz)                     | (dB)                 | Q.P.                                          | AV.   | Q.P.            | AV.   | Q.P.           | AV.   | Q.P.   | AV.    |  |
| 1  | 0.15800                   | 10.13                | 27.57                                         | 16.95 | 37.70           | 27.08 | 65.57          | 55.57 | -27.87 | -28.49 |  |
| 2  | 0.18200                   | 10.14                | 27.80                                         | 12.25 | 37.94           | 22.39 | 64.39          | 54.39 | -26.45 | -32.00 |  |
| 3  | 0.22600                   | 10.14                | 23.68                                         | 11.86 | 33.82           | 22.00 | 62.60          | 52.60 | -28.78 | -30.60 |  |
| 4  | 0.47400                   | 10.16                | 28.58                                         | 21.08 | 38.74           | 31.24 | 56.44          | 46.44 | -17.70 | -15.20 |  |
| 5  | 2.49000                   | 10.23                | 14.64                                         | 6.25  | 24.87           | 16.48 | 56.00          | 46.00 | -31.13 | -29.52 |  |
| 6  | 3.07800                   | 10.24                | 17.36                                         | 9.79  | 27.60           | 20.03 | 56.00          | 46.00 | -28.40 | -25.97 |  |

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



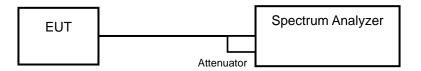



| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) / Average<br>(AV), 9kHz |
|-----------------|------------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120 Vac, 60 Hz   | Environmental<br>Conditions                    | 22°C, 73% RH                            |
| Tested by       | Greg Lin         | Test Date                                      | 2022/4/8                                |

|    | Phase Of Power : Neutral (N) |                                                                           |       |                 |       |                |       |       |        |        |  |
|----|------------------------------|---------------------------------------------------------------------------|-------|-----------------|-------|----------------|-------|-------|--------|--------|--|
| No | Frequency                    | Frequency Correction Reading Value Emission Level<br>Factor (dBuV) (dBuV) |       | Limit<br>(dBuV) |       | Margin<br>(dB) |       |       |        |        |  |
|    | (MHz)                        | (dB)                                                                      | Q.P.  | AV.             | Q.P.  | AV.            | Q.P.  | AV.   | Q.P.   | AV.    |  |
| 1  | 0.15000                      | 10.14                                                                     | 34.87 | 22.28           | 45.01 | 32.42          | 66.00 | 56.00 | -20.99 | -23.58 |  |
| 2  | 0.17000                      | 10.14                                                                     | 28.13 | 15.97           | 38.27 | 26.11          | 64.96 | 54.96 | -26.69 | -28.85 |  |
| 3  | 0.21400                      | 10.15                                                                     | 24.62 | 10.62           | 34.77 | 20.77          | 63.05 | 53.05 | -28.28 | -32.28 |  |
| 4  | 0.27800                      | 10.16                                                                     | 18.02 | 9.94            | 28.18 | 20.10          | 60.88 | 50.88 | -32.70 | -30.78 |  |
| 5  | 0.48190                      | 10.17                                                                     | 27.48 | 21.23           | 37.65 | 31.40          | 56.31 | 46.31 | -18.66 | -14.91 |  |
| 6  | 2.92200                      | 10.25                                                                     | 16.44 | 4.82            | 26.69 | 15.07          | 56.00 | 46.00 | -29.31 | -30.93 |  |

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value






#### 4.3 6 dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

#### 4.3.2 Test Setup



#### 4.3.3 Test Instruments

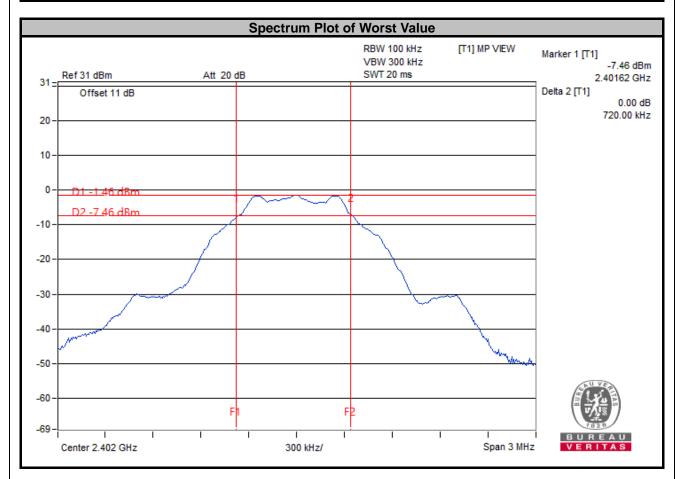
Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW)  $\ge$  3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

#### 4.3.5 Deviation from Test Standard

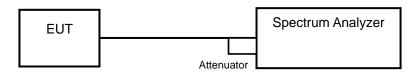
No deviation.


#### 4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



#### 4.3.7 Test Results


| Channel | Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass / Fail |
|---------|-----------------|-------------------------|------------------------|-------------|
| 0       | 2402            | 0.72                    | 0.5                    | Pass        |
| 19      | 2440            | 0.72                    | 0.5                    | Pass        |
| 39      | 2480            | 0.73                    | 0.5                    | Pass        |





#### 4.4 Occupied Bandwidth Measurement

#### 4.4.1 Test Setup



#### 4.4.2 Test Instruments

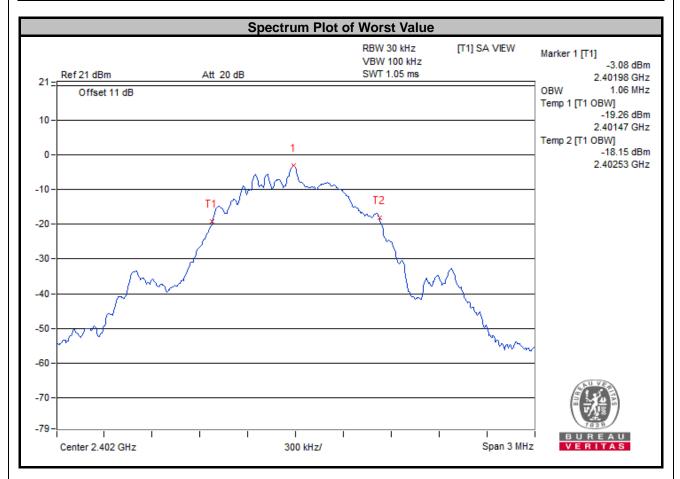
Refer to section 4.1.2 to get information of above instrument.

#### 4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to sampling. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

#### 4.4.4 Deviation from Test Standard

No deviation.


#### 4.4.5 EUT Operating Conditions

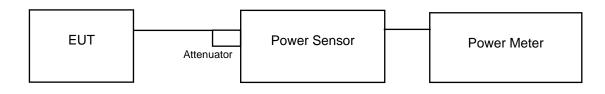
The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



#### 4.4.6 Test Results

| Channel | Frequency (MHz) | Occupied Bandwidth<br>(MHz) | Pass / Fail |
|---------|-----------------|-----------------------------|-------------|
| 0       | 2402            | 1.06                        | Pass        |
| 19      | 2440            | 1.05                        | Pass        |
| 39      | 2480            | 1.05                        | Pass        |






### 4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

#### 4.5.2 Test Setup



#### 4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.5.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

#### 4.5.5 Deviation from Test Standard

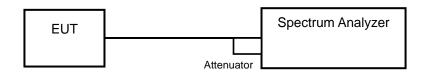
No deviation.

# 4.5.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

#### 4.5.7 Test Results

| Channel | Freq. (MHz) | Peak Power |       | Average Power |       | Power Limit |             |
|---------|-------------|------------|-------|---------------|-------|-------------|-------------|
|         |             | (mW)       | (dBm) | (mW)          | (dBm) | (mW)        | Pass / Fail |
| 0       | 2402        | 0.9954     | -0.02 | 0.929         | -0.32 | 1000        | Pass        |
| 19      | 2440        | 1.327      | 1.23  | 1.265         | 1.02  | 1000        | Pass        |
| 39      | 2480        | 1.054      | 0.23  | 0.9886        | -0.05 | 1000        | Pass        |




# 4.6 Power Spectral Density Measurement

4.6.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 4.6.2 Test Setup



#### 4.6.3 Test Instruments

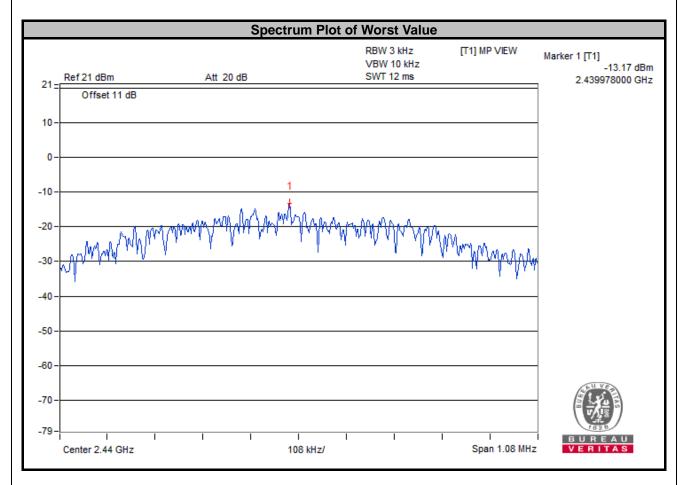
Refer to section 4.1.2 to get information of above instrument.

#### 4.6.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to:  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ .
- d. Set the VBW  $\geq$  3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

#### 4.6.5 Deviation from Test Standard

No deviation.


#### 4.6.6 EUT Operating Condition

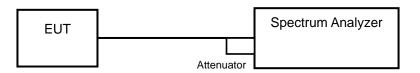
The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



#### 4.6.7 Test Results

| Channel | Frequency<br>(MHz) | PSD<br>(dBm/3 kHz) | Limit<br>(dBm/3 kHz) | Pass / Fail |
|---------|--------------------|--------------------|----------------------|-------------|
| 0       | 2402               | -14.77             | 8                    | Pass        |
| 19      | 2440               | -13.17             | 8                    | Pass        |
| 39      | 2480               | -14.24             | 8                    | Pass        |






# 4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

#### 4.7.2 Test Setup



#### 4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.7.4 Test Procedure

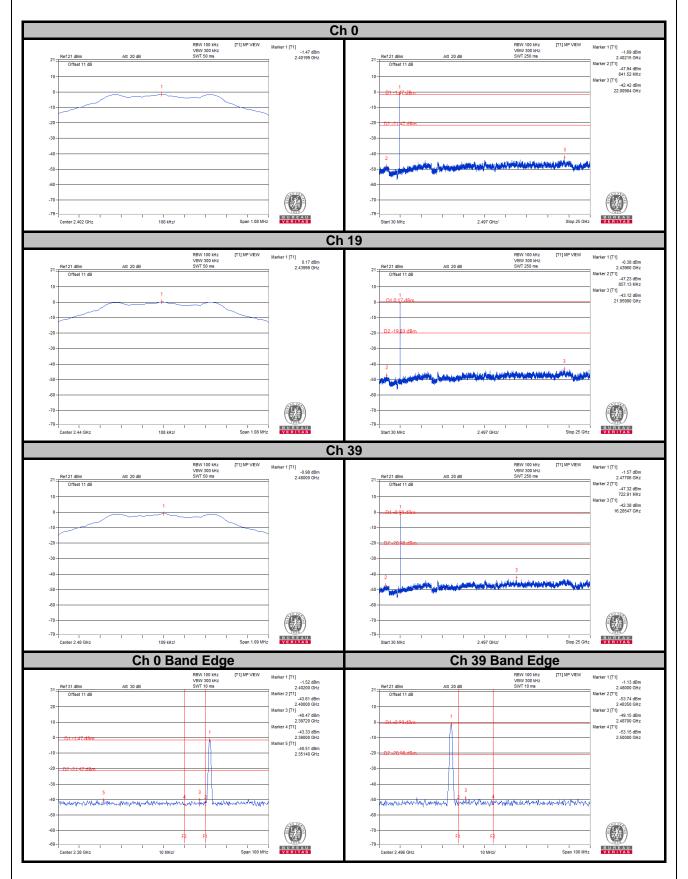
# MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW  $\ge$  300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

# MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.7.5 Deviation from Test Standard

No deviation.


#### 4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



# 4.7.7 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.





#### **BT-LE 1M Channel 0** Horizontal (Peak) Horizontal (Average) Level dBuV/m) 140 -Level (dBuV/m) 140 -40 -2310 50-2310 2350 2360 2370 Frequency (MHz) 2350 2360 2370 Frequency (MHz) Vertical (Peak) Vertical (Average) Level dBuV/m) 140-Level (dBuV/m) 140-40-2310 50-2310 2350 2360 2370 Frequency (MHz) 2350 2360 2370 Frequency (MHz) **BT-LE 1M Channel 39** Horizontal (Peak) Horizontal (Average) Level dBuV/m) 140-Level (dBuV/m) 140-50-2462 2465 40-2462 2465 2480 2485 Frequency (MHz) Frequency (MHz) Vertical (Peak) Vertical (Average) Level dBuV/m) 140 -Level (dBuV/m) 140------50-2462 2465 40-2480 Frequency (MHz) 2462 2465 Frequency (MHz)

# Annex A- Band Edge Measurement



# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



#### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----