

FCC Test Report Report No.: RFBDGE-WTW-P21051150-3 FCC ID: M72-CCX505 Test Model: CCX 505 Received Date: Jun. 04, 2021 Test Date: Jun. 22 ~ Jun. 23, 2021 Issued Date: Jul. 16, 2021 Applicant: Polycom Inc. Address: 6001 America Center Dr, San Jose, CA 95002, United States Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Re	Release Control Record							
1	Certificate of Conformity5							
2	S	Summary of Test Results	6					
	2.1 2.2	Measurement Uncertainty Modification Record						
		General Information						
3	Ċ							
	3.1	General Description of EUT						
	3.2	Description of Test Modes						
	3.2.1	Test Mode Applicability and Tested Channel Detail.						
	3.3 3.4	Duty Cycle of Test Signal Description of Support Units						
	3.4.1	Configuration of System under Test						
	3.5	General Description of Applied Standards and References						
4		est Types and Results						
	4.1	Radiated Emission and Bandedge Measurement	13					
	4.1.1	0						
		Test Instruments						
		Test Procedures						
		Deviation from Test Standard Test Setup						
		EUT Operating Conditions						
		Test Results						
	4.2	Conducted Emission Measurement						
	4.2.1	Limits of Conducted Emission Measurement						
		Test Instruments						
		Test Procedures						
		Deviation from Test Standard						
		Test Setup						
		EUT Operating Conditions						
	4.2.7 4.3	Test Results Number of Hopping Frequency Used						
	4.3.1	Limits of Hopping Frequency Used Measurement						
		Test Setup						
		Test Instruments						
		Test Procedure						
		Deviation fromTest Standard						
		Test Results						
	4.4	Dwell Time on Each Channel						
		Limits of Dwell Time on Each Channel Measurement						
		Test Setup						
		Test Instruments Test Procedures						
		Deviation from Test Standard						
		Test Results						
	4.5	Channel Bandwidth						
	4.5.1	Limits of Channel Bandwidth Measurement						
		Test Setup						
		Test Instruments						
		Deviation from Test Standard						
		EUT Operating Condition						
	4.5.7 4.6	Test Results Hopping Channel Separation						
	+.0	nopping channel separation	57					

	Limits of Hopping Channel Separation Measurement.			
	Test Setup			
	Test Instruments			
	Test Procedure			
	Deviation from Test Standard			
	Test Results			
	Maximum Output Power			
4.7.1	Limits of Maximum Output Power Measurement	39		
	Test Setup			
	Test Instruments			
	Test Procedure			
	Deviation fromTest Standard			
4.7.6	EUT Operating Condition	39		
4.7.7	Test Results	40		
4.8	Conducted Out of Band Emission Measurement	41		
4.8.1	Limits Of Conducted Out Of Band Emission Measurement	41		
4.8.2	Test Instruments	41		
4.8.3	Test Procedure	41		
4.8.4	Deviation from Test Standard	41		
4.8.5	EUT Operating Condition	41		
4.8.6	Test Results	41		
Annex A	A- Band Edge Measurement	46		
5 P	ictures of Test Arrangements	47		
Appendix – Information of the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RFBDGE-WTW-P21051150-3	Original release.	Jul. 16, 2021

Certificate of Conformity 1

Product:	Business Media Phone
Brand:	Poly
Test Model:	CCX 505
Sample Status:	Engineering sample
Applicant:	Polycom Inc.
Test Date:	Jun. 22 ~ Jun. 23, 2021
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : _________, Date: _________, Jul. 16, 2021 Polly Chien / Specialist

Approved by : _______ Bruce Chen / Senior Engineer , Date: ______ Jul. 16, 2021

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.60dB at 0.18519MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.					
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -6.34dB at 2390.00MHz.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	Antenna connector is IPEX NGFF connector not a standard connector.					

Note:

- 1. If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.86 dB
	200MHz ~ 1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Business Media Phone
Brand	Poly
Test Model	CCX 505
Power Supply Rating	48Vdc (Adapter)
Modulation Type	GFSK, π /4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1/2/3Mbps
Operating Frequency	2402~2480MHz
Number of Channel	79
Output Power	3.999mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	Refer to note
Cable Supplied	Refer to note

Note:

1. The EUT uses the following devices.

2. Item	Brand	Model	Specification	Remark
Adapter 1	Polycom	FSP025-DINANS	I/P: 100-240Vac, 50-60Hz, 900mA O/P: 48Vdc, 0.52A Cable: 1.8m power cable with 2 cores	Accessory
Adapter 2	Polycom	FSP025-DINANS2	I/P: 100-240Vac, 50-60Hz, 900mA O/P: 48Vdc, 0.52A Cable: 1.8m power cable with 2 cores	Accessory
Network Cable (RJ45)	NA	NA	1.8m non-shielded RJ45 cable without core	Accessory

*After the pretesting adapter as above, adapter 1 is found to be the worst case test and chosen for final test.

3. The following antenna was provided to the EUT.

Ant. Type	PCB								
Connecter	IPEX NGFF	PEX NGFF							
		Antenna Gain(dBi)						
Antenna	2400~2500MHz	5150~5350MHz	5470~5720MHz	5725~5850MHz					
AWAN (MAIN)	2.30	2.92	2.95	2.95					
INPAQ (MAIN)	2.86	2.84	2.49	2.79					

* The maximum antenna gain is chosen for final test.

*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

4. 2.4GHz & 5GHz & BT technology cannot transmit at same time.

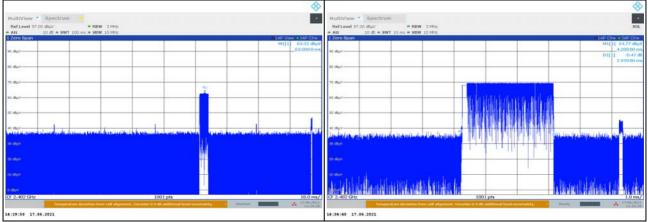
3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	DE: 10		icable to	10011		Descripti	on		
Mode	RE≥1G	RE<1G	PLC	APCM					
-	N	<u>۷</u>	√	√	-				
		ion above	1GHz & Bandedge	e RE<1G	Radiated	Emission below 1GF	łz		
Measure									
	wer Line Conduc	cted Emiss	sion	APCM:	Antenna F	Port Conducted Meas	urement		
Note: 1. The EUT had been pre-tested on the positioned of each 2 axis (X & Z). The worst case was found when positioned on Z-plane.									
For radiated emiss	ion (below 1GH	lz) and pov	ver line conducted	emission test i	tems chos	sen the worst maximu	ım fundamental		
ission level chann	el.								
									
diated Emissio	n lest (Abov	/e 1GHz)	<u>):</u>						
Pre-Scan ha	s been cond	ucted to	determine the	worst-case	mode fro	om all possible co	ombinations		
						T with antenna di			
architecture)		,			- (,		
,		s (were) s	selected for the	final test as	s listed b	pelow.			
EUT Configure				Modula					
Mode	Available Ch	nannel	Tested Channel	Techno		Modulation Type	Pakcet Type		
-	0 to 78	}	0, 39, 78	FHS		GFSK	DH5		
-	0 to 78	3	0, 39, 78	FHS	S	8DPSK	3DH5		
between ava architecture)	ilable modula	ations, d		ntenna port	s (if EU	om all possible co T with antenna di pelow.			
between ava architecture)	ilable modula annel(s) was 	ations, d s (were) s	ata rates and a selected for the	ntenna port	s (if EU [:] s listed l	T with antenna di pelow.	versity		
between ava architecture) Following ch	ilable modula annel(s) was Available Ch	ations, d s (were) s nannel	ata rates and a selected for the Tested Channel	final test as Modula Techno	s (if EU s listed l tion logy	T with antenna di pelow. Modulation Type	Versity Pakcet Type		
between ava architecture) Following ch EUT Configure	ilable modula annel(s) was 	ations, d s (were) s nannel	ata rates and a selected for the	ntenna port final test as Modula	s (if EU s listed l tion logy	T with antenna di pelow.	versity		
between ava architecture) Following ch EUT Configure Mode -	ilable modula annel(s) was Available Ch 0 to 78	ations, d s (were) s nannel	ata rates and a selected for the Tested Channel	final test as Modula Techno	s (if EU s listed l tion logy	T with antenna di pelow. Modulation Type	Versity Pakcet Type		
between ava architecture) Following ch EUT Configure Mode -	ilable modula annel(s) was Available Ch 0 to 78	ations, d s (were) s nannel	ata rates and a selected for the Tested Channel	final test as Modula Techno	s (if EU s listed l tion logy	T with antenna di pelow. Modulation Type	Versity Pakcet Type		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi	ations, d s (were) s nannel s ion Test:	ata rates and a selected for the Tested Channel 39	final test as Modula Techno FHS	s (if EU s listed t tion logy S	T with antenna di pelow. Modulation Type	Versity Pakcet Type DH5		
between ava architecture) Following ch EUT Configure <u>Mode</u> - wer Line Cond Pre-Scan ha	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu	ations, d s (were) s hannel ion Test: ucted to	ata rates and a selected for the Tested Channel 39 determine the v	ntenna port final test as Modula Techno FHS worst-case	s (if EU s listed l ttion logy S mode fro	T with antenna di pelow. Modulation Type GFSK	Pakcet Type DH5		
between ava architecture) Following ch EUT Configure <u>Mode</u> - wer Line Cond Pre-Scan ha	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu	ations, d s (were) s hannel ion Test: ucted to	ata rates and a selected for the Tested Channel 39 determine the v	ntenna port final test as Modula Techno FHS worst-case	s (if EU s listed l ttion logy S mode fro	T with antenna di pelow. Modulation Type GFSK om all possible co	Pakcet Type DH5		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture)	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula	ations, d s (were) s hannel ion Test: ucted to ations, d	ata rates and a selected for the Tested Channel 39 determine the v	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di	Pakcet Type DH5		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture)	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was	ations, d <u>s (were) s</u> <u>hannel</u> <u>ion Test:</u> ucted to ations, d <u>s (were) s</u>	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the	ntenna port	s (if EU s listed t ttion logy S mode fro s (if EU s listed t	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow.	versity Pakcet Type DH5 ombinations versity		
between ava architecture) Following ch EUT Configure Mode - ver Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula	ations, d <u>s (were) s</u> <u>hannel</u> <u>ion Test:</u> ucted to ations, d <u>s (were) s</u>	ata rates and a selected for the Tested Channel 39 determine the ata rates and a	ntenna port	s (if EU s listed k ttion logy S mode fro s (if EU s listed k ttion	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di	Pakcet Type DH5		
between ava architecture) Following ch EUT Configure Mode - <u>ver Line Cond</u> Pre-Scan ha between ava architecture) Following ch	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was	ations, d s (were) s hannel ion Test: ucted to ations, d s (were) s hannel	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU s listed l tion logy	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type	versity Pakcet Type DH5 ombinations versity		
between ava architecture) Following ch EUT Configure <u>Mode</u> - <u>wer Line Cond</u> Pre-Scan ha between ava architecture) Following ch EUT Configure	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch	ations, d s (were) s hannel ion Test: ucted to ations, d s (were) s hannel	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU s listed l tion logy	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow.	versity Pakcet Type DH5 ombinations versity Pakcet Type		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode -	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was Available Ch 0 to 78	ations, d	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU s listed l tion logy	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type	versity Pakcet Type DH5 ombinations versity Pakcet Type		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was Available Ch 0 to 78	ations, d	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 tt:	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU s listed l tion logy S	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type GFSK	versity Pakcet Type DH5 ombinations versity Pakcet Type DH5		
between ava architecture) Following ch EUT Configure Mode - Wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was Available Ch 0 to 78	ations, d	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 tt:	ntenna port	s (if EU s listed l tion logy S mode fro s (if EU s listed l tion logy S	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type	versity Pakcet Type DH5 ombinations versity Pakcet Type DH5		
between ava architecture) Following ch EUT Configure Mode - Wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode.	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was Available Ch 0 to 78 nducted Meas ludes all test	ations, d (were) s hannel ion Test: ucted to ations, d (were) s hannel suremen t value of	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 <u>at:</u> f each mode, b	ntenna port	s (if EU s listed b tion logy s (if EU s listed b tion logy S des spe	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type GFSK	versity Pakcet Type DH5 Ombinations versity Pakcet Type DH5 St value of each		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula annel(s) was Available Ch 0 to 78 nducted Meas ludes all test	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel suremen t value of ucted to	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 dt: f each mode, b determine the	ntenna port	s (if EU s listed b tion logy S mode fro s (if EU s listed b tion logy S des spe mode fro	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co	versity Pakcet Type DH5 Ombinations versity Pakcet Type DH5 St value of each ombinations		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel suremen t value of ucted to	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 dt: f each mode, b determine the	ntenna port	s (if EU s listed b tion logy S mode fro s (if EU s listed b tion logy S des spe mode fro	T with antenna di below. Modulation Type GFSK om all possible co T with antenna di below. Modulation Type GFSK	versity Pakcet Type DH5 Ombinations versity Pakcet Type DH5 St value of each ombinations		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava architecture)	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel surement t value of ucted to ations, d	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 <u>att:</u> f each mode, but determine the ata rates and a	ntenna port	s (if EU s listed t tion logy s mode fro s (if EU s listed t tion logy s des spe mode fro s (if EU	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co T with antenna di	versity Pakcet Type DH5 Ombinations versity Pakcet Type DH5 St value of each ombinations		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava architecture)	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel surement t value of ucted to ations, d	ata rates and a selected for the Tested Channel 39 determine the ata rates and a selected for the Tested Channel 39 dt: f each mode, b determine the	ntenna port	s (if EU s listed t tion logy s mode fro s (if EU s listed t tion logy s des spe mode fro s (if EU	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co T with antenna di	versity Pakcet Type DH5 Ombinations versity Pakcet Type DH5 St value of each ombinations		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava architecture)	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu ilable modula annel(s) was	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel surement t value of ucted to ations, d s (were) s (were) s	ata rates and a selected for the Tested Channel 39 determine the v ata rates and a selected for the 39 determine the v ata rates and a selected for the determine the v ata rates and a	ntenna port	s (if EU s listed b tion logy s (if EU s listed b tion logy des spe mode fro s (if EU s listed b	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co T with antenna di pelow.	versity Pakcet Type DH5 ombinations versity Pakcet Type DH5 st value of each ombinations versity		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava architecture) Following ch	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu	ations, d (were) s hannel ion Test: ucted to ations, d s (were) s hannel surement t value of ucted to ations, d s (were) s (were) s	ata rates and a selected for the Tested Channel 39 determine the v ata rates and a selected for the 39 determine the v ata rates and a selected for the determine the v ata rates and a selected for the Tested Channel	ntenna port	s (if EU s listed b tion logy s (if EU s listed b tion logy des spe mode fro s (if EU s listed b tion logy	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co T with antenna di pelow. Modulation Type	versity Pakcet Type DH5 DH5 DH5 Pakcet Type Pakcet Type DH5 St value of each ombinations versity Pakcet Type Pakcet Type Pakcet Type		
between ava architecture) Following ch EUT Configure Mode - wer Line Cond Pre-Scan ha between ava architecture) Following ch EUT Configure Mode - tenna Port Cor This item inc mode. Pre-Scan ha between ava architecture) Following ch	ilable modula annel(s) was Available Ch 0 to 78 ucted Emissi s been condu ilable modula Available Ch 0 to 78 ducted Meas ludes all test s been condu ilable modula annel(s) was	ations, d (were) s hannel ion Test: ucted to ations, d (were) s hannel suremen t value of ucted to ations, d s (were) s hannel b (we	ata rates and a selected for the Tested Channel 39 determine the v ata rates and a selected for the 39 determine the v ata rates and a selected for the determine the v ata rates and a	ntenna port	s (if EU s listed b tion logy s mode fro s (if EU s listed b tion logy des spe mode fro s (if EU s listed b tion logy S	T with antenna di pelow. Modulation Type GFSK om all possible co T with antenna di pelow. Modulation Type GFSK ectrum plot of wor om all possible co T with antenna di pelow.	versity Pakcet Type DH5 ombinations versity Pakcet Type DH5 st value of each ombinations versity		



Test Condition:

Applicable to	Environmental Conditions Input Power		Tested by
RE≥1G	23deg. C, 67%RH	48Vdc	Adair Peng
RE<1G	24deg. C, 66%RH	48Vdc	Edison Lee
PLC	23deg. C, 66%RH	48Vdc	Cookie Ku
APCM	25deg. C, 60%RH	48Vdc	Ivan Tseng

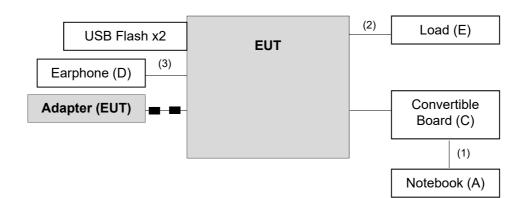
3.3 Duty Cycle of Test Signal

Duty cycle = 2.97*1/100 = 0.0297, Duty factor = 20 * log(0.0297) = -30.54

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	LENOVO	T480	PF1EZSA2	FCC DoC Approved	-
D	USB Flash SanDisk		SDDDC-032G	NA	NA	Туре-С
В.	USB Flash	HP	v250W	05	NA	Туре-А
C.	Convertible Board	NA	NA	NA	NA	Provided by client
D.	. Earphone Avaya A		Avaya L119	18RX42400E5A	NA	Provided by client
Ε.	Load NA NA		NA	NA	-	


Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as a communication partner to transfer data.

ID	Cable Descriptions	Qty.	Qty. Length (m) Shieldin (Yes/No		Cores (Qty.)	Remarks
1.	USB cable	1	0.8	Y	0	-
2.	LAN cable	2	1.8	N	0	Provided by client
3.	Audio cable	1	0.14	Ν	0	Provided by client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102579	Jul. 07, 2020	Jul. 06, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Sep. 16, 2020	Sep. 15, 2021
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Nov. 04, 2020	Nov. 03, 2021
HORN Antenna SCHWARZBECK	9120D	209	Nov. 22, 2020	Nov. 21, 2021
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 22, 2020	Nov. 21, 2021
Loop Antenna TESEQ	HLA 6121	45745	Jul. 06, 2020	Jul. 05, 2021
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	Aug. 16, 2020	Aug. 15, 2021
Preamplifier Agilent (Above 1GHz)	8449B	3008A02465	Mar. 22, 2021	Mar. 21, 2022
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH3-01	Aug. 16, 2020	Aug. 15, 2021
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 16, 2020	Aug. 15, 2021
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104-SM-SM- 8000	Cable-CH3-03 (309224+170907)	Aug. 16, 2020	Aug. 15, 2021
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY55190 004/MY55190007/MY55 210005	Jul. 13, 2020	Jul. 12, 2021

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

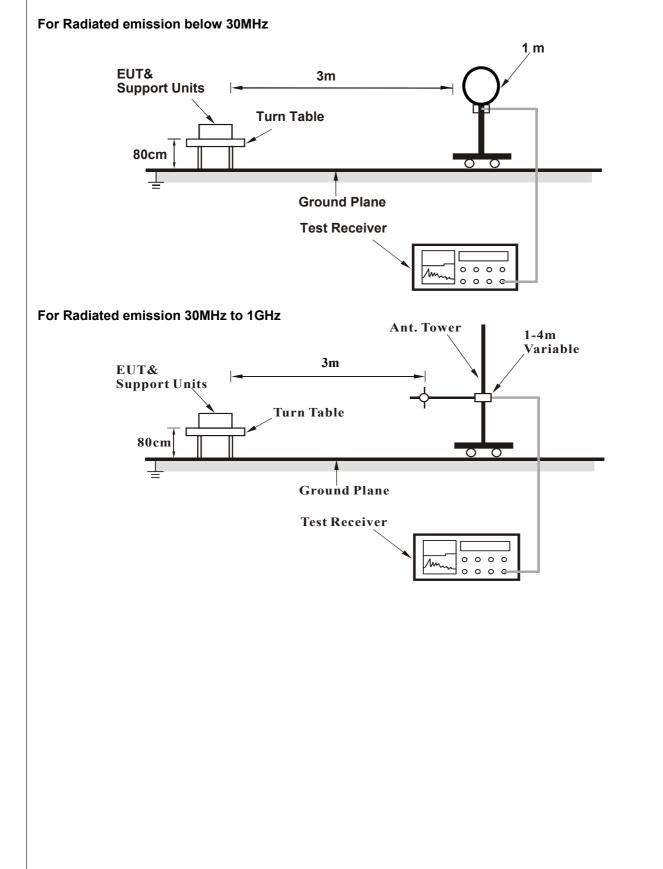
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

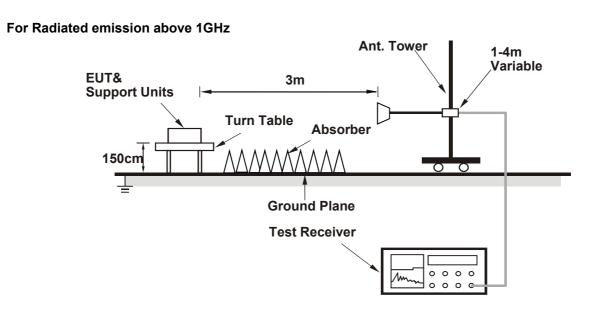
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. According to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. The duty cycle correction factor refer to Chapter 3.3 of this report.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard



No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	59.86 PK	74.00	-14.14	1.13 H	353	25.50	34.36
2	2390.00	47.66 AV	54.00	-6.34	1.13 H	353	13.30	34.36
3	*2402.00	103.20 PK			1.13 H	353	68.86	34.34
4	*2402.00	72.66 AV			1.13 H	353	38.32	34.34
5	4804.00	49.72 PK	74.00	-24.28	1.62 H	178	43.20	6.52
6	4804.00	19.18 AV	54.00	-34.82	1.62 H	178	12.66	6.52
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	⁻ 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	59.56 PK	74.00	-14.44	1.24 V	126	25.20	34.36
2	2390.00	47.66 AV	54.00	-6.34	1.24 V	126	13.30	34.36
3	*2402.00	97.54 PK			1.24 V	126	63.20	34.34
4	*2402.00	67.00 AV			1.24 V	126	32.66	34.34
5	4804.00	49.06 PK	74.00	-24.94	1.61 V	169	42.54	6.52
6	4804.00	18.52 AV	54.00	-35.48	1.61 V	169	12.00	6.52

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	103.49 PK			1.31 H	349	69.10	34.39
2	*2441.00	72.95 AV			1.31 H	349	38.56	34.39
3	4882.00	48.98 PK	74.00	-25.02	1.77 H	185	43.30	5.68
4	4882.00	18.44 AV	54.00	-35.56	1.77 H	185	12.76	5.68
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	⁻ 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	98.70 PK			1.20 V	138	64.40	34.30
2	*2441.00	68.20 AV			1.20 V	138	33.90	34.30
3	4882.00	49.30 PK	74.00	-24.70	1.77 V	169	43.70	5.60
4	4882.00	18.80 AV	54.00	-35.20	1.77 V	169	13.20	5.60

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	99.87 PK			1.28 H	355	65.50	34.37	
2	*2480.00	69.33 AV			1.28 H	355	34.96	34.37	
3	2483.50	42.49 PK	74.00	-31.51	1.28 H	355	44.70	-2.21	
4	2483.50	11.95 AV	54.00	-42.05	1.28 H	355	14.16	-2.21	
5	4960.00	50.49 PK	74.00	-23.51	1.66 H	179	44.20	6.29	
6	4960.00	19.95 AV	54.00	-34.05	1.66 H	179	13.66	6.29	
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	⁻ 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	94.87 PK			1.17 V	113	60.50	34.37	
2	*2480.00	64.33 AV			1.17 V	113	29.96	34.37	
3	2483.50	49.69 PK	74.00	-24.31	1.17 V	113	51.90	-2.21	
4	2483.50	19.15 AV	54.00	-34.85	1.17 V	113	21.36	-2.21	
5	4960.00	49.79 PK	74.00	-24.21	1.63 V	163	43.50	6.29	
6	4960.00	19.25 AV	54.00	-34.75	1.63 V	163	12.96	6.29	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	59.76 PK	74.00	-14.24	1.38 H	1	25.40	34.36
2	2390.00	47.50 AV	54.00	-6.50	1.38 H	1	13.14	34.36
3	*2402.00	102.74 PK			1.38 H	1	68.40	34.34
4	*2402.00	72.20 AV			1.38 H	1	37.86	34.34
5	4804.00	49.62 PK	74.00	-24.38	1.50 H	178	43.10	6.52
6	4804.00	19.08 AV	54.00	-34.92	1.50 H	178	12.56	6.52
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	- 3 M	_
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	59.86 PK	74.00	-14.14	1.49 V	122	25.50	34.36
2	2390.00	47.66 AV	54.00	-6.34	1.49 V	122	13.30	34.36
3	*2402.00	96.04 PK			1.49 V	122	61.70	34.34
4	*2402.00	65.50 AV			1.49 V	122	31.16	34.34
5	4804.00	49.72 PK	74.00	-24.28	1.55 V	168	43.20	6.52
6	4804.00	19.18 AV	54.00	-34.82	1.55 V	168	12.66	6.52

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	102.99 PK			1.36 H	353	68.60	34.39
2	*2441.00	72.45 AV			1.36 H	353	38.06	34.39
3	4882.00	48.68 PK	74.00	-25.32	1.77 H	192	43.00	5.68
4	4882.00	18.14 AV	54.00	-35.86	1.77 H	192	12.46	5.68
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	- 3 M	
NO.	EMISSION LIMIT		MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	98.59 PK			1.46 V	124	64.20	34.39
2	*2441.00	68.05 AV			1.46 V	124	33.66	34.39
3	4882.00	48.48 PK	74.00	-25.52	1.59 V	163	42.80	5.68
4	4882.00	17.94 AV	54.00	-36.06	1.59 V	163	12.26	5.68

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	97.57 PK			1.35 H	352	63.20	34.37
2	*2480.00	67.03 AV			1.35 H	352	32.66	34.37
3	2483.50	52.99 PK	74.00	-21.01	1.35 H	352	55.20	-2.21
4	2483.50	22.45 AV	54.00	-31.55	1.35 H	352	24.66	-2.21
5	4960.00	49.09 PK	74.00	-24.91	1.66 H	171	42.80	6.29
6	4960.00	18.55 AV	54.00	-35.45	1.66 H	171	12.26	6.29
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	⁻ 3 M	
NO.	FREQ. (MHz)	FREQ. EMISSION LIMIT		MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	93.07 PK			1.47 V	184	58.70	34.37
2	*2480.00	62.53 AV			1.47 V	184	28.16	34.37
3	2483.50	48.89 PK	74.00	-25.11	1.47 V	184	51.10	-2.21
4	2483.50	18.35 AV	54.00	-35.65	1.47 V	184	20.56	-2.21
5	4960.00	48.89 PK	74.00	-25.11	1.61 V	167	42.60	6.29
6	4960.00	18.35 AV	54.00	-35.65	1.61 V	167	12.06	6.29

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

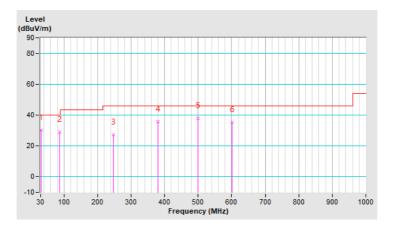
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is :average = peak value + 20log(Duty cycle) where the duty factor is calculated from following formula:

Below 1GHz worst-case data: GFSK

CHANNEL	TX Channel 39	DETECTOR	Quesi Besk (QD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	32.81	30.10 QP	40.00	-9.90	2.00 H	182	41.00	-10.90
2	87.64	29.10 QP	40.00	-10.90	1.00 H	170	43.50	-14.40
3	246.49	27.20 QP	46.00	-18.80	1.00 H	159	35.90	-8.70
4	380.04	35.70 QP	46.00	-10.30	2.00 H	175	40.70	-5.00
5	499.54	37.80 QP	46.00	-8.20	1.00 H	171	40.10	-2.30
6	600.75	35.20 QP	46.00	-10.80	1.50 H	237	34.90	0.30


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

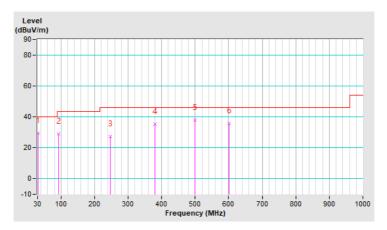
3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	32.81	29.60 QP	40.00	-10.40	1.50 V	182	40.50	-10.90				
2	91.86	28.80 QP	43.50	-14.70	1.00 V	165	43.00	-14.20				
3	246.49	27.20 QP	46.00	-18.80	1.50 V	163	35.90	-8.70				
4	380.04	35.50 QP	46.00	-10.50	1.00 V	174	40.50	-5.00				
5	499.54	37.70 QP	46.00	-8.30	1.50 V	177	40.00	-2.30				
6	600.75	35.80 QP	46.00	-10.20	2.00 V	262	35.50	0.30				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

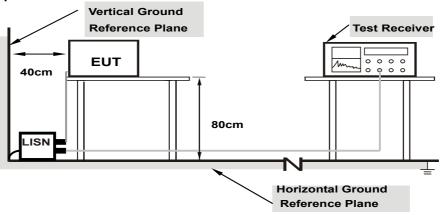
Tested date: Jun. 22, 2021

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102412	Jan. 29, 2021	Jan. 28, 2022
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 04, 2020	Sep. 03, 2021
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 28, 2021	Jan. 27, 2022
V-LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Aug. 18, 2020	Aug. 17, 2021
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).

3. The VCCI Site Registration No. is C-12047.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

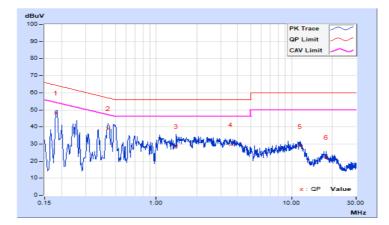
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

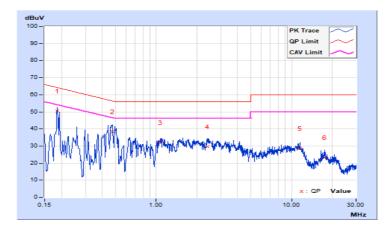

4.2.7 Test Results

Worst-case data: GFSK

Phase Line (L)			e (L)			etector Fu	nction		Quasi-Peak (QP) / Average (AV)		
	Frog	Corr.	r. Reading Value I		Emissio	Emission Level		Limit		Margin	
No	Freq. Factor		[dB ((uV)]	[dB	(uV)]	[dB (uV)]	(d	B)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18170	10.07	38.08	22.96	48.15	33.03	64.41	54.41	-16.26	-21.38	
2	0.44273	10.09	29.05	21.59	39.14	31.68	57.01	47.01	-17.87	-15.33	
3	1.40902	10.15	18.54	7.09	28.69	17.24	56.00	46.00	-27.31	-28.76	
4	3.53606	10.21	19.58	10.21	29.79	20.42	56.00	46.00	-26.21	-25.58	
5	11.54765	10.34	18.43	9.75	28.77	20.09	60.00	50.00	-31.23	-29.91	
6	18.15946	10.42	11.93	3.10	22.35	13.52	60.00	50.00	-37.65	-36.48	

Remarks:

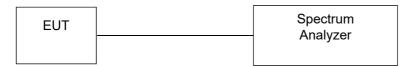
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase Neutral (N)			D	Detector Function			Quasi-Peak (QP) / Average (AV)			
	Cor		Readin	Reading Value Emis		ssion Level Lim		nit	it Margin	
No Freq.		Facto	r [dB ((uV)]	[dB	(uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.18519	10.08	3 40.57	27.34	50.65	37.42	64.25	54.25	-13.60	-16.83
2	0.47412	10.11	28.17	17.34	38.28	27.45	56.44	46.44	-18.16	-18.99
3	1.08159	10.15	5 21.72	12.99	31.87	23.14	56.00	46.00	-24.13	-22.86
4	2.39825	10.19	9 19.46	12.50	29.65	22.69	56.00	46.00	-26.35	-23.31
5	11.50855	10.44	18.17	9.28	28.61	19.72	60.00	50.00	-31.39	-30.28
6	17.60033	10.59) 12.71	3.95	23.30	14.54	60.00	50.00	-36.70	-35.46

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

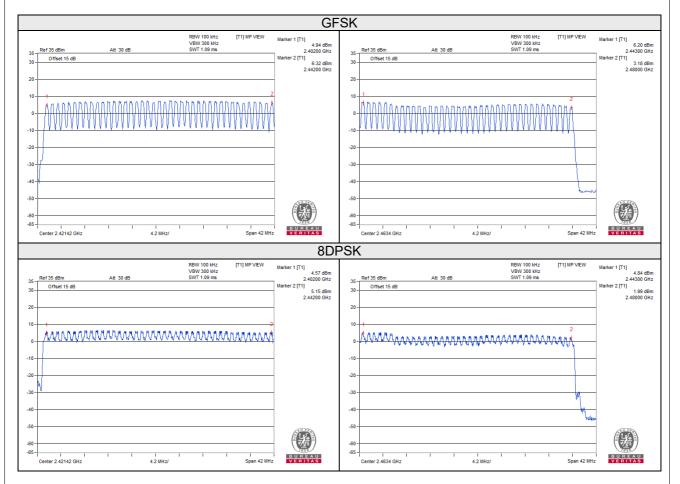
4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

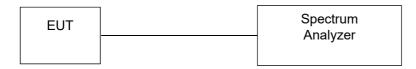
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to the test result. On the plots, it shows that the hopping frequencies are equally spaced.



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

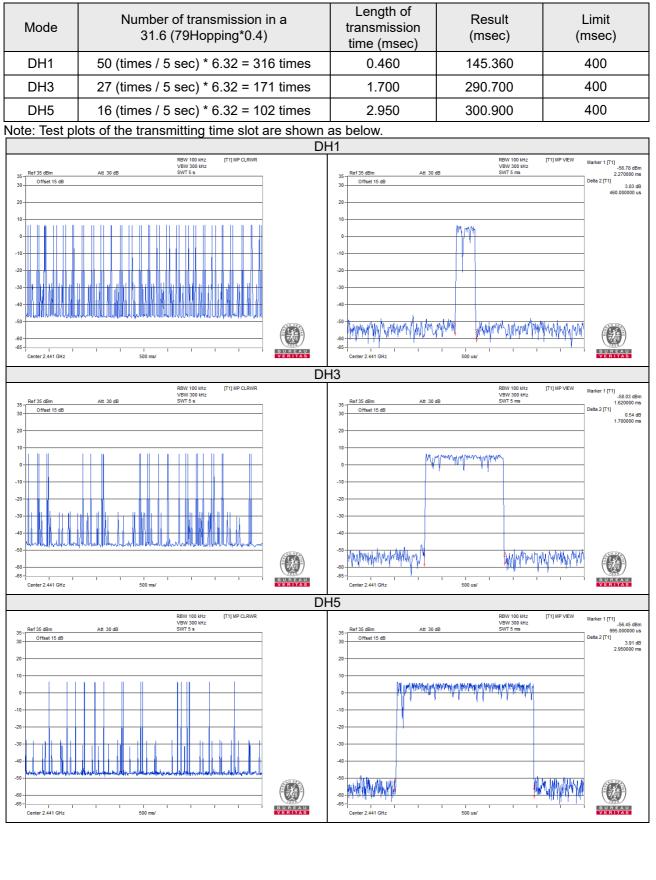
4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

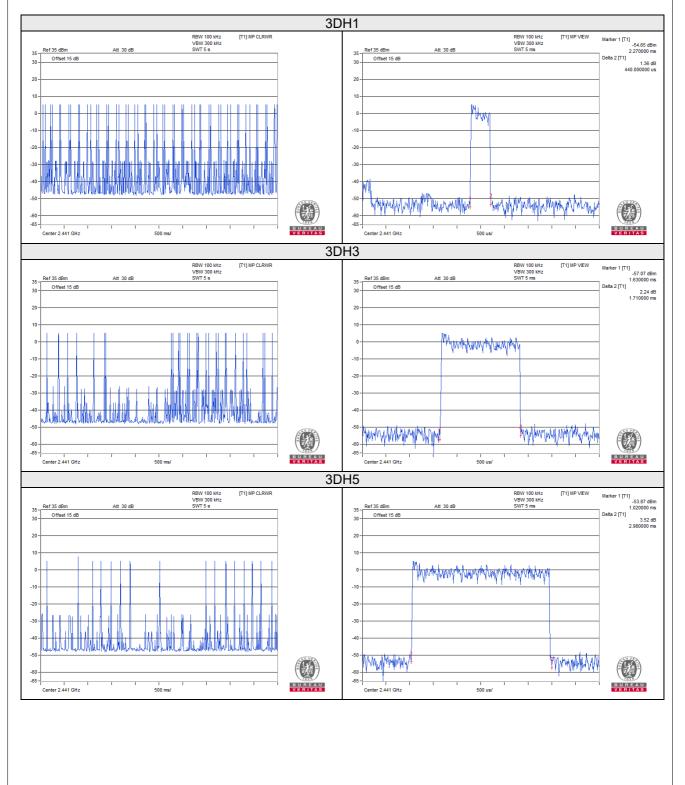
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.


4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	51 (times / 5 sec) * 6.32 = 323 times	0.440	142.120	400
3DH3	27 (times / 5 sec) * 6.32 = 171 times	1.710	292.410	400
3DH5	16 (times / 5 sec) * 6.32 = 102 times	2.980	303.960	400

Note: Test plots of the transmitting time slot are shown as below.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

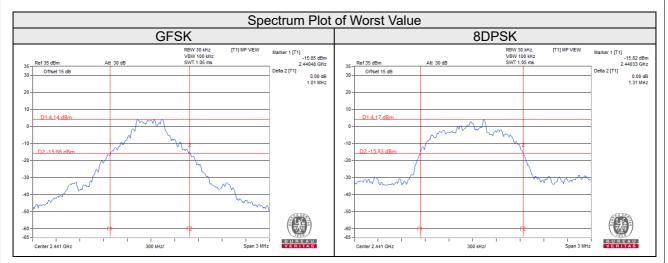
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)		
Channel		GFSK	8DPSK	
0	2402	0.97	1.31	
39	2441	1.01	1.31	
78	2480	0.98	1.31	

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

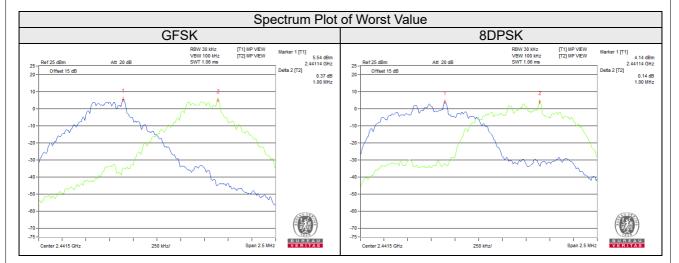
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

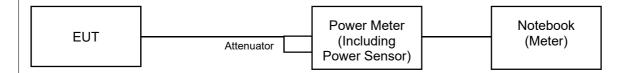
4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.97	1.31	0.65	0.88	Pass
39	2441	1.00	1.00	1.01	1.31	0.68	0.88	Pass
78	2480	1.00	1.00	0.98	1.31	0.66	0.88	Pass

Note: The minimum limit is two-third 20dB bandwidth.


4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

For Peak Power

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

For Average Power

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation fromTest Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

For Peak Power

Channel	Frequency (MHz)	Peak Power (mW)		Peak Power (dBm)		Power Limit	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	(mW)	Fass / Faii
0	2402	3.105	1.052	4.92	0.22	125 / 1000 Note	Pass
39	2441	3.999	1.514	6.02	1.80	125 / 1000 Note	Pass
78	2480	2.710	0.968	4.33	-0.14	125 / 1000 Note	Pass

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 3.2 of the results.

For Average Power

Channel	Fraguanay (MHz)	Average P	ower (mW)	Average Power (dBm)		
	Frequency (MHz)	GFSK	8DPSK	GFSK	8DPSK	
0	2402	3.062	1.026	4.86	0.11	
39	2441	3.936	1.483	5.95	1.71	
78	2480	2.618	0.935	4.18	-0.29	

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

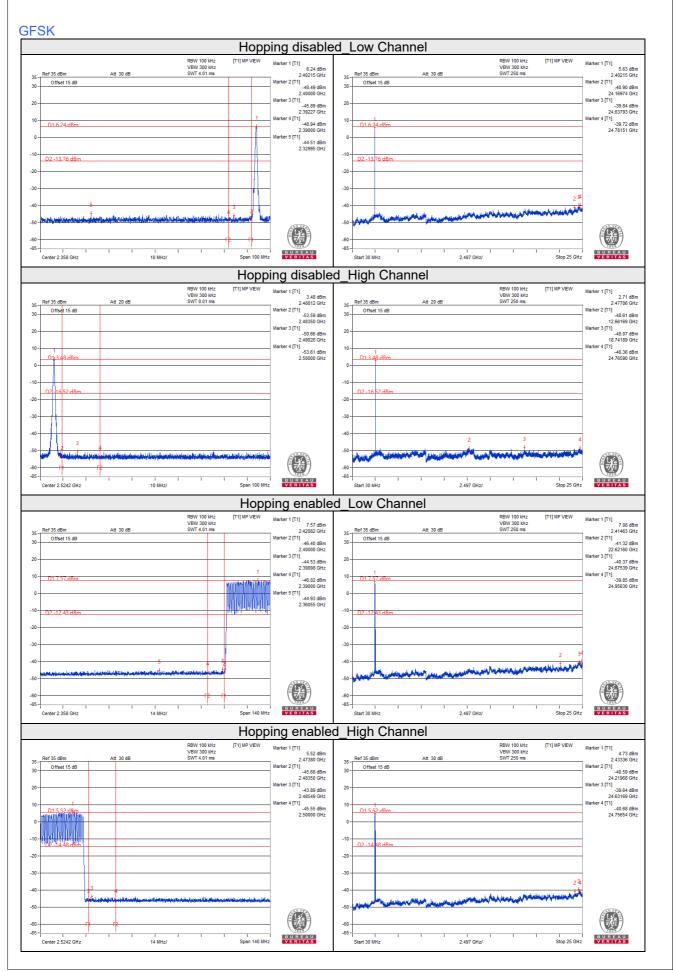
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

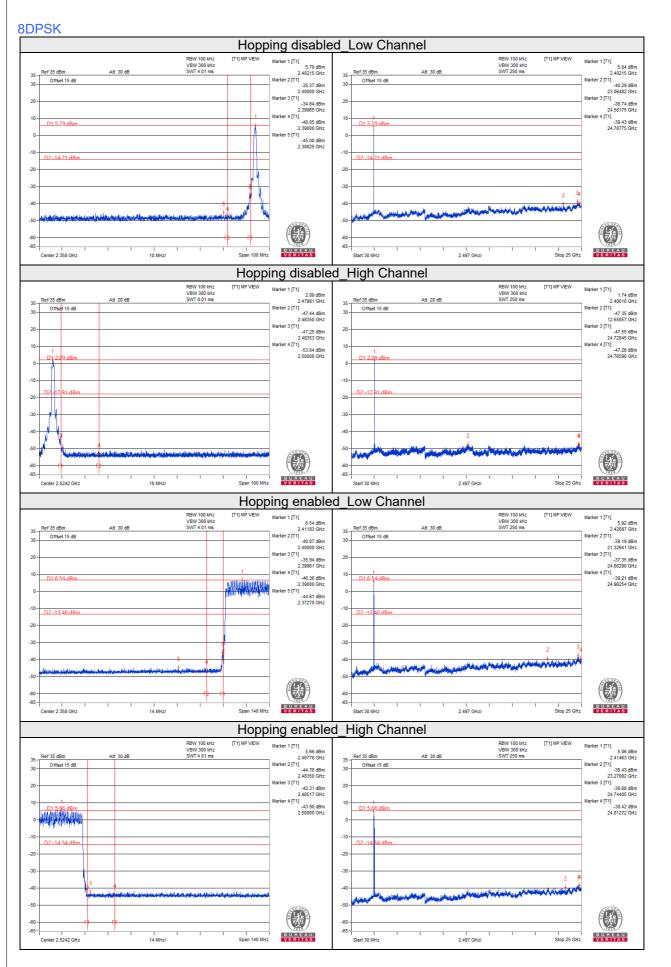
4.8.4 Deviation from Test Standard

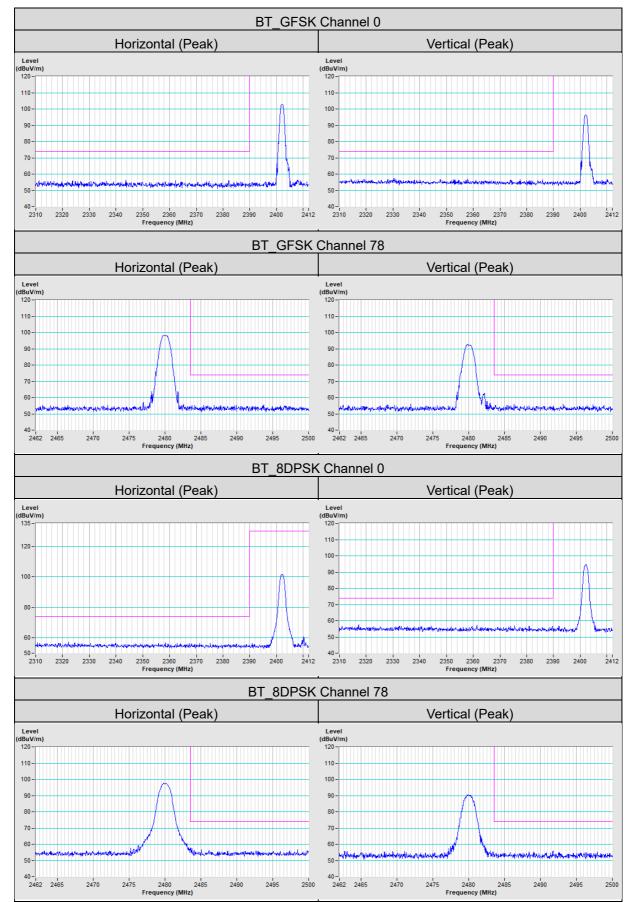
No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



Annex A- Band Edge Measurement

Report No.: RFBDGE-WTW-P21051150-3

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---