FCC/IC Certification Test Report Point Six Wireless Trafsys 418MHz People Counter Report Number 11dBi007 May 2, 2011

Testing Certificate #1985.01

ADMINISTRATIVE INFORMATION

Historical record:

Because dBi Corporation is a testing entity, and not a manufacturer, this original test report of the Trafsys 418MHz People Counter is being transmitted to the manufacturer, Point Six Wireless. dBi will keep a copy for its historical records and to satisfy A2LA-Audit requirements. We strongly recommend archiving the unit that we tested, to facilitate answering future inquiries regarding this product.

Retention of records:

The FCC requires the records for a Class A or Class B product to be retained by the responsible party for at least two years after the manufacture of said product has been permanently discontinued. These records should include the original certification or verification test report, quality audit data, and the test procedures used.

The European Union requires the Declaration of Conformity (DoC) and all supporting data for a product bearing the CE Marking to be retained, and available for inspection by enforcement authorities, for 10 years after placing the product on the market.

Australia and New Zealand require the Declaration of Conformity, test reports, a description of the product, documentation that clearly identifies the product, and paperwork showing the product's brand name, model number, etc. to be kept for at least five years after the product ceases to be supplied to Australia or New Zealand.

Measurement uncertainties:

The Lexmark Electromagnetic Compatibility Laboratory (EMC Lab) has a documented calculation of the measurement uncertainties associated with tests performed at the Lexmark site.

Ongoing compliance:

This report applies only to the sample tested. Point Six is responsibility for ensuring that the production models of this product complies with the FCC and Industry Canada (IC) requirements, and continue to complies throughout its manufacturing life. Point Six should check any changes to the product that could change its interference profile.

A2LA approval:

dBi Corporation has been accredited by the American Association for Laboratory Accreditation (A2LA) for Radiated Emissions and Conducted Emissions, Electromagnetic Interference, and Electrostatic Discharge testing. Copies of our Accreditation Certificate and Scope of Accreditation follow.

The Federal Communications Commission (FCC) recognized the Lexmark site as meeting section 2.948 of the FCC Rules in letters dated October 30, 2007 (Registration No. 949691) and January 14, 2010 (Registration No. 991141). Industry Canada recognizes the Lexmark site in letters dated November 16, 2009 (number 2376A-1) and March 20, 2009 (number 2376A-3). **Please note:** This report may be copied as needed, as long as it is copied in its entirety.

11dBi007 Page 2 of 37

The American Association for Laboratory Accreditation

Accredited Laboratory

A2LA has accredited

DBI CORPORATION

Lexington, KY

for technical competence in the field of

Electrical Testing

the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 8th day of September 2010.

President & CEO
For the Accreditation Council
Certificate Number 1985.01
Valid to September 30, 2012

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

The American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

dBi CORPORATION 216 Hillsboro Avenue¹ Lexington, KY 40511-2105 John R. Barnes Phone: 859 253 1178

ELECTRICAL (EMC)

Valid To: September 30, 2012

Certificate Number: 1985.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests:

Test Technology

Test Method(s)

Radiated Emissions (Up to 18 GHz) FCC 47 CFR Part 15, Subpart A, B and C (Using C63.4: 2003, 2009 and C63.10: 2009); ICES-003:2004 (using CAN/CSA-CEI/IEC CISPR 22:2002); CISPR 22 (1997, 2003, 2005, 2008); EN 55022 (1994, 1998, 2006); AS/NZS CISPR 22 (2006, 2009); VCCI V-3 (2009, 2010); IEC 61000-6-3: 2006; EN 61000-6-3: 2007; AS/NZS 61000-6-3: 2007; AS/NZS 61000-6-4: 2007; IEC 61000-6-4: 2006; EN 61000-6-4: 2007; EN 55013: 2001(Up to 1 GHz); AS/NZS CISPR 13: 2004 (Up to 1 GHz); CISPR 13: 2001(Up to 1 GHz); IEC 61326-1: 2005; EN 61326-1: 2006; IEC 61326-2-3: 2006; EN 61326-2-3: 2006

(A2LA Cert. No. 1985.01) 09/08/2010

Peter Mhye Page 1 of 4

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

Test Technology	Test Method(s)
Conducted Emissions	FCC 47 CFR Part 15 (using C63.4-2003, 2009, C63.10-2009); ICES-003 (2004 using CAN/CSA-CEI/IEC CISPR 22:2002); CISPR 22 (1997, 2003, 2005, 2008); EN 55022 (1994, 1998, 2006); AS/NZS CISPR 22 (2006, 2009); VCCI V-3 (2009, 2010); IEC 61000-6-3: 2006; EN 61000-6-3: 2007; AS/NZS 61000-6-3: 2007; AS/NZS 61000-6-4: 2007; IEC 61000-6-4: 2006; EN 61000-6-4: 2007; EN 55013: 2001; AS/NZS CISPR 13: 2004; IEC 61326-1: 2005; EN 61326-1: 2006; IEC 61326-2-3: 2006; EN 61326-2-3: 2006
Disturbance Power	EN 55013: 2001; AS/NZS CISPR 13: 2004; CISPR 13: 2001
Harmonics	IEC 61000-3-2: 2005; EN 61000-3-2: 2006; AS/NZS 61000-3-2: 2007
Flicker	IEC 61000-3-3 (1994, 2002, 2008); EN 61000-3-3 (1995, 2008); AS/NZS 61000-3-3: 2006
Electrostatic Discharge	IEC 61000-4-2 (1995, 2008); EN 61000-4-2 (1995, 2009); AS/NZS 61000-4-2: 2002)
Radiated Immunity (80 MHz to 150MHz, 6V/m; 150 MHz to 1 GHz, 10V/m; 1GHz to 2GHz, 3V/m; 2GHz to 3GHz, 1V/m)	IEC 61000-4-3 (1995, 2002, 2006); EN 61000-4-3 (1996, 2006); AS/NZS 61000-4-3: 2006
Electrical Fast Transient/Burst	IEC 61000-4-4 (1995, 2004); EN 61000-4-4 (1995, 2004); AS/NZS 61000-4-4: 2006

(A2LA Cert. No. 1985.01) 09/08/2010

Peter Mbrye Page 2 of 4

EN 61000-6-4: 2007; AS/NZS 61000-6-2: 2006; AS/NZS 61000-6-4: 2007

IEC 61326-1: 2005;

EN 61326-1: 2006; IEC 61326-2-6: 2006; IEC 61326-2-6: 2006

EN 55013: 2001; AS/NZS CISPR 13: 2004;

CISPR 13: 2001

Test Technology Test Method(s) IEC 61000-4-5 (1995, 2005); Surge Immunity EN 61000-4-5 (1995, 2006); AS/NZS 61000-4-5: 2006 Conducted Immunity IEC 61000-4-6 (1996, 2003, 2008); EN 61000-4-6 (1996, 2009); AS/NZS 61000-4-6: 2006 IEC 61000-4-8 (1993, 2001); Magnetic Field Immunity EN 61000-4-8: 1993; AS/NZS 61000-4-8: 2002 Voltage Dip Immunity IEC 61000-4-11 (1994, 2001, 2004); EN 61000-4-11 (1994, 2004); AS/NZS 61000-4-11: 2005 ITE Product Family CISPR 24: 1997; EN 55024: 1998; CISPR 22:1997, 2003, 2005, 2008; EN 55022:1994, 1998, 2006; AS/NZS CISPR 22:2006, 2009; AS/NZS CISPR 24:2002; VCCI V-3 2009, 2010 IEC 61000-6-1: 2005; Generic Devices for Residential, Commercial, and Light Industrial Use EN 61000-6-1: 2007; IEC 61000-6-3: 2006; EN 61000-6-3: 2007; AS/NZS 61000-6-1: 2006; AS/NZS 61000-6-3: 2007 Generic Devices for Industrial Use IEC 61000-6-2: 2005; EN 61000-6-2: 2005; IEC 61000-6-4: 2006;

(A2LA Cert. No. 1985.01) 09/08/2010

Electrical Equipment for Measurement,

Sound and Television Broadcast Receivers

Control and Laboratory Use

and Associated Equipment

Peter Mhye Page 3 of 4

- Types of products, materials, and/or industry that the laboratory tests:
 -Information Technology Equipment (ITE) Computers, Printers, Peripheral Devices;
 -Generic Devices for Residential, Commercial, and Light Industrial Use;
 -Generic Devices for Industrial Use;

- -Electrical Equipment for Measurement, Control, and Laboratory Use; -Sound and Television Broadcast Receivers and Associated Equipment

¹Note: Testing is performed using the equipment and facility at: Lexmark International EMC Laboratory 740 New Circle Road NW

Lexington, KY 40550-1876

(A2LA Accreditation Certificate 0872.01)

(A2LA Cert. No. 1985.01) 09/08/2010

Peter Mhye Page 4 of 4

ADMINISTRATIVE DATA

Manufacturer:

Point Six Wireless 161 Prosperous Place, Suite 200 Lexington, KY 40509

Appliance/Product: Trafsys 418MHz People Counter

Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Power Line Filters and RF Suppression Components: see attached sheets

Measurement Equipment used: see attached sheets.

Measurements According to, and Sample Units Comply with:

FCC 47 CFR Part 15-2008 for the US, using ANSI C63.4:2003, with >= 10.19dB Margin for Radiated Emissions.

RSS-210 Issue 8 (December 2010) for Canada, using RSS-Gen Issue 3 (December 2010), with >= 10.19dB margin for Radiated Emissions

Industry Canada (IC) ICES-003:2004 Class B for Canada, using CAN/CSA-CEI/IEC CISPR 22:02, with >= 10.19dB margin for Radiated Emissions.

Report Prepared By: John R. Barnes KS4GL, PE, NCE, NCT, ESDC Eng, ESDC Tech, PSE, SM IEEE

Testing Performed by:

dBi Corporation

216 Hillsboro Avenue

Lexington, KY 40511-2105, USA

on April 20-23, 2011

at: Lexmark International, Inc.

Development Lab.

Lexington, KY 40550, USA

Reviewed and Approved by: John R. Barnes KS4GL, PE, NCE, NCT, ESDC Eng, ESDC Tech, PSE, SM IEEE

SIGNED

DATE May 2, 2011

John R. Barnes, PRESIDENT dBi Corp.

11dBi007 Page 8 of 37

INFORMATION RELATING TO PRODUCT RF INTERFERENCE

Appliance/Product: Trafsys 418MHz People Counter

Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Power Line Filters: none

RF Suppression Components: none

Clock Frequencies: 8MHz and 418MHz

External Cables: none.

Electronic Printed Circuit Boards:

EZIO 418 TX-G Module P/N: P3249
Trafsys IR People P/N: P3241
Trafsys IR Beacon P/N: P3242

Size of Product: 105mm long x 31mm wide x 56mm high (two units)

Weight of Product: 0.2kg

Operating Environment: Indoors

Test Samples Received: April 20, 2011

Overall Test Plan:

These units shall be tested as tabletop equipment. Equipment that normally is stacked, may be stacked in any convenient order. Tests may be performed in any order, except that that the last two tests shall be (if required):

1. Electrostatic Discharge (ESD).

2. Surge Immunity.

Composition of Equipment-Under-Test (EUT): Standard

Assembly of EUT (Options): Standard

Input/Output Ports: None

Auxiliary Equipment (AE): None

Cabling and grounding: No cables. No intentional grounding.

Test Configuration: Standalone unit, orientation to be determined during testing.

11dBi007 Page 9 of 37

Operating Mode:

Monitoring infrared beam and transmitting data once every 5 seconds.

Symptoms of Malfunction for Immunity Tests:

Stops transmitting, or transmits incorrect data.

Performance Criteria for Immunity Tests:

- 1 or A = normal performance within the specification limits.
- 2 or B = temporary degradation, or temporary loss of function or performance during the test, which is self-recoverable.
- 3 or C = temporary degradation, or temporary loss of function or performance during the test, which requires operator intervention.
- 4 or D = loss of data, degradation, or loss of function or performance during the test, which is not recoverable due to damage to the hardware or software of the EUT.

11dBi007 Page 10 of 37

Radiated Emissions 30-4,180 MHz (Internal Battery)

Radiated Emission Standards:

FCC 47 CFR Part 15-2008 section 15.231(e) and Class B, using ANSI C63.4-2003 RSS-210 Issue 8 (December 2010) section A1.1.5, using RSS-Gen Issue 3 (December 2010)

ICES-003:2004 Class B, using CAN/CSA-CEI/IEC CISPR 22:02

Appliance/Product: Trafsys 418MHz People Counter

Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Serial Number: FCC1

Host and Other Peripherals: None **Name of Test:** Radiated Interference

Test Procedure: ANSI C63.4-2003, RSS-Gen Issue 3 (December 2010)

Test Location: 10m & 5m semianechoic chamber

Test Distance: 10m as a digital device, & 3m as an intentional radiator

Test Instrumentation: See attached sheets

Notes: Tests performed at 22.5°C, 42.5% relative humidity, and 98.86kPa atmospheric pressure in 10m chamber. Tests performed at 23.3°C, 61.7% relative humidity, and 98.81kPa atmospheric pressure in 5m chamber. Before starting any approval tests, we do Total Cals on all of the receivers, then do a Radiated Checkout of the 10m Chamber (antenna, cables, and preamp) if one has not been performed within the last week. The expanded uncertainty (k=2 for 95% probability) is +/-3.26dB for electric fields from 30MHz to 1000MHz; +/-3.84dB for electric fields from 1GHz to 18GHz, and +/-3.40dB for electric and magnetic fields below 30MHz;

Most Radiated Emissions tests at 10m distance are performed in the 10m Chamber. Most Radiated Emissions tests at 3m distance are performed in the 5m Chamber. All Radiated Emissions tests above 1GHz are performed in the 5m Chamber, and may require the use of a suitable extrapolation factor if the Radiated Emissions limit(s) is specified at a distance over 5m. For Europe, Australia, and New Zealand, Radiated Emissions tests below 30MHz are performed at the Open Air Test Site (OATS) away from the groundplane. For the US and Canada, Radiated Emissions tests below 30MHz may be performed in the 10m Chamber, in the 5m Chamber, or at the OATS.

In general, we prefer to put the auxiliary equipment (AE) on the table with the equipment-under-test (EUT). Noisy AE, such as a Class A host computer or Class A router being used to test a Class B product, may be installed in the pit under the turntable or in the control room, cabled to the EUT through the hole in the middle of the turntable— with ferrites on the cable(s) underneath the turntable.

The equipment-under-test (EUT) and auxiliary equipment (AE) are placed on a table

11dBi007 Page 11 of 37

according to the test plan and the test procedures. This table is 0.8m high for most Radiated Emission tests. Some European Union (EU) and Australia/New Zealand (AUS/NZ) Radiated Emission tests of tabletop intentional radiators require boxes/reams of paper or foam blocks under the EUT, to raise it to 1.0m or 1.5m height. We position the EUT and AE in a typical operating configuration, along the back edge/front edge/center of the table, with units spaced 10cm apart. Units that are designed to be stacked may be stacked in any convenient order (usually with the EUT on top for easy access). A computer monitor may be set alongside or on top of the host computer. A brick/wallwart power supply for the EUT must be placed on the table—plugged into a power strip if the linecord won't reach the floor. Brick/wallwart power supplies for AE sit on the floor.

If standard cables are available for an EUT's input/output port(s), we prefer to use them. If cables are custom-made for each installation of an EUT, we use cables that are at least 1m long. At least one port of each type on the EUT is connected to AE with a cable—except that we do not put cables on ports that are used only for manufacturing or service. If the EUT has multiple ports of a certain type, we add cables (that may go to AE, terminate in dummy loads, or be left unterminated) until adding cables makes less than a 2dB worts-case increase in the emissions. The number of cables needed may be determined by testing this EUT, or by prior experience on previous products. If an EUT has several ports with identical functions that are mutually-exclusive—only one of them *can* be used in a particular installation of the EUT—we try to run the test with all of the cables attached, but only the noisiest port providing data to the EUT. If this configuration puts us over the limits, we experiment with one port at a time cabled to AE and providing data, with the other ports left unconnected. Then we make the official measurements using the noisiest port that will typically be used by users.

Linecords drop straight to the floor. Long input/output cables are draped over the edge of the table. If a cable hangs closer to the floor than 40cm, it must be serpentined into a bundle between 30cm and 40cm long, that will hang approximately horizontal and at least 40cm off the floor. Most of the tables that we use for Radiated Emissions tests have a shelf at 40cm height. A standard letter-size pad of paper is almost exactly 30cm long, and makes a convenient form for bundling cables. These cable bundles may be secured by tie-wraps, velcro strips, rubber bands, electrical tape, or other means.

We put the EUT in the typical operating mode that maximizes Radiated Emissions. This may require some experimenting to determine for sure, but is usually the mode that has as many subsystems of the EUT active simultaneously as possible, at their highest resolution, and operating at maximum speed.

For Radiated Emission tests from 30MHz to 1000MHz (1GHz), and maybe up to 3000MHz (3GHz), we use a linearly-polarized bilog antenna mounted on an antenna mast so we can vary its height from 1m to 4m. A low-noise preamplifier is mounted under the chamber floor, to lower the noise floor, boost the signal level, and increase the signal-to-noise ratio (SNR) of the measurements. The preamplifier's output cable goes to a splitter, which feeds two EMI receivers. For 30MHz to 1000MHz (1GHz) we set the

11dBi007 Page 12 of 37

EMI receivers for 120kHz 6dB resolution bandwidth (RBW). Above 1GHz we set the EMI receiver for 1MHz 6dB RBW.

Feeding two EMI receivers in parallel has a number of benefits:

- 1. For wideband scans, one EMI receiver monitors 30-500MHz while the second EMI receiver monitors 500-1000MHz, giving us < 1MHz-wide.frequency bins over the entire 970MHz span.
- 2. While making quasipeak/average/peak measurements with one EMI receiver, we can simultaneously watch the 5MHz span around this frequency to see just what the equipment-under-test (EUT) and auxiliary equipment (AE) are doing. This can be extremely useful when the noise level suddenly jumps up, to determine if a clock/ strobe turns on, a switching regulator turns on or changes mode, data transfers start/ stop, or whatever else may be causing the noise change.
- 3. We can simultaneously monitor two different frequency bands-- in close detail-- to see if noise on them has the same/different cause(s).
- 4. We can (manually) put one EMI Receiver into Spectrum Analyzer mode with 0-Hz span. This effectively turns it into a oscilloscope for one frequency, letting us see the waveform(s) that are causing us problems while we observe the noise level/noise envelope with the second receiver.
- 5. Any other crazy experiments that we may come up with while chasing down noise problems, where seeing time- and frequency-domain data, or two different types of frequency-domain data, can help us identify the noise source(s) and antenna(s).

For Radiated Emission tests above 1GHz, we use a linearly-polarized horn antenna mounted on an antenna mast so we can vary its height from 1m to 4m.. A preamplifier is mounted on the boom, right after any attenuators/filters connected to the horn antenna. The preamplifier's output cable goes to one EMI receiver. Above 1GHz we set the EMI receiver for 1MHz 6dB RBW.

For Radiated Emission tests below 30MHz, we use an unpolarized shielded-loop antenna on a tripod, set to a specified height. We can turn the loop antenna to maximize the received signal, which is *usually* with the EUT's antenna aimed at the loop antenna, and with the plane of the loop antenna roughly perpendicular to the line-of-sight between the loop antenna and the EUT's antenna. The signal cable and control cable go to one EMI receiver. For 9kHz to 150kHz we set the EMI receiver for 200Hz 6dB RBW. For 150kHz to 30MHz we set the EMI receiver for 9kHz 6dB RBW.

In the tables in this section, "Cable Correction Factor dB" is the total power loss (+dB)/gain (-dB) of the cable(s), preamplifier (if present), and splitter (if present) in the standard signal chain between the antenna and the EMI receiver. The Cable Correction Factor is measured with a vector network analyzer (VNA) during chamber/OATS calibration.

When testing intentional radiators, we may need to add an attenuator or filter at the antenna, to prevent overloading the preamplifier/EMI receiver. Strong input signals can generate spurious harmonics, cause signal compression, or desensitize the EMI receiver

11dBi007 Page 13 of 37

to other signals. These attenuators/ filters are calibrated, and we manually include their frequency-dependent losses in our calculations when we crunch the Radiated Emissions data.

At any time during the testing, if a measurement is above or close to a limit, we try to determine the cause of the problem, and fix it. Fixes to the EUT will be documented in the test notes and test report. If a piece of AE is the source of the noise, we may try a replacement (such as another hub/router, or using a crossover cable in place of a hub), or move the AE outside of the chamber. If AE is the source of the noise, and we can't resolve the problem any other way, we will measure these frequencies with the AE turned on and again with it turned off. We then note in the test notes, test plots, and test report that the excessive emissions at frequency _____ are due to _____ piece of AE.

The Radiated Emissions test programs automatically measure quasipeak (QP) emissions from 30MHz to 1000MHz (1GHz), and peak (PK+) and average (AV) emissions above 1GHz. All other measurements must be made manually, between a measurement run and the next narrowband run, or after stopping the Radiated Emissions test program. For a given waveform (shape, modulation, duty cycle) the true PK+, QP, and AV values are all be proportional to one another and to the magnitude of the signal. *Measured* PK+, QP, and AV values will be higher than the true PK+, QP, and AV values, because the receiving antenna picks up noise from the Auxilary Equipment (AE) in addition to the desired signal from the equipment-under- test (EUT), and the EMI Receiver also sees thermal (and other) noise from the antenna, cables, preamplifier(s), and itself. These unwanted noise sources set a noise floor (minimum noise level) that depends on the frequency, detector, bandwidth, and any filters that we are using. But an antenna polarization, azimuth (turntable angle), and antenna height that maximizes the measured value with one detector maximizes the measured values for all detectors.

For intentional radiators there is very little consistency between nations, between overlapping standards/regulations within a nation, between versions of a standard, or even *within a standard* for:

- Electric field strength, magnetic field strength, RF carrier current, effective radiated power (ERP), or equivalent isotropic radiated power (EIRP).
- 15dB, 20dB, or 33dB bandwidth.
- Of the fundamental, harmonics, out-of –band emissions, or spurious emissions,
- Measured with peak, quasipeak, or average detectors.
- Expressed in uV/m, dBuV/m, dBuA/m, or Watts
- Measured over a ground plane or not,
- At 300m, 30m, 10m, or 3m distance,
- Under 30MHz, extrapolated to other distances by using the square of the ratio of the distances (40dB/decade distance), by measurements at two distances on one radial from the EUT, or by using a frequency-dependent conversion factor,
- With tabletop EUT's on an 0.8m, 1.0m, or 1.5m high support,
- With floor-standing EUT's on a <= 12mm-thick insulator.
- With the center, or the bottom, of the loop antenna at 1m height,

11dBi007 Page 14 of 37

- Over 0°C to 35°C, 0°C to 40°C, 0°C to 55°C, -10°C to 55°C, -20°C to 50°C, or -20°C to +55°C temperature ranges,
- Over nominal supply voltage +/-10%, nominal-10% to nominal+30%, nominal +/-15%, with a freshly-charged battery, or with a new battery.
- At temperature extremes, over a temperature range, or at temperature *and* supply voltage extremes.
- At 0 minutes, 1 minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes, or 30 minutes after startup at a specific temperature/voltage.

For intentional radiators that operate under 30MHz, various standards require some or all of the following tests:

Test Name	Applies to xxxxHz xxxx	Status
Power-line conducted emissions		
Radiated emissions		
Transmitter spectrum mask		
Antenna port conducted signals		
Carrier frequency stability		
Occupied bandwidth		
Output power		
Power spectral density		
In-situ radiated emissions		
Cordless phone security code		
Cordless phone frequency pairing		
Input power		
Periodic operation		
Average value of pulsed emissions		
Compliance with periodic emissions		
Frequency hopping		
Millimeter wave device		
Transmitter etiquette		
UWB device		
Duty cycle		
Operating frequency		
Modulation bandwidth		
Out-of-band transmissions		
Spurious transmissions		
Receiver adjacent channel sensitivity		
Receiver blocking/desensitization		
Receiver spurious emissions		

11dBi007 Page 15 of 37

When testing intentional radiators operating under 30MHz, we record the temperature, humidity, atmospheric pressure, and supply voltage at the test site as a baseline value for temperature/supply voltage measurements. If the EUT is AC powered, we test it at nominal, low, and high input voltage for each distance/EUT height/loop-antenna height/mode. We check emissions at the fundamental frequency, and for any harmonics (up through the 10th harmonic) that fall into the frequency range being tested (i.e 9kHz to 30MHz, 30MHz to 1000MHz). For each test point (frequency, distance, EUT height, loop antenna height) we record the peak, quasipeak, and average values in whatever units the EMI receiver provides. With the EMI receiver set to a 1-second measurement time (so we have long enough to note the full reading), we observe the signal level for at least 10 seconds (>= 10 samples) with each detector, and record the highest level seen during this interval.

For the test report we'll translate these values into dBuV/m, dBuA/m, uV/m, and uA/m using the equations (or their inverses):

- Electric field strength in uV/m = 377 ohms * magnetic field strength in uA/m.
- Electric field strength in dBuV/m = 20 * log (electric field strength in uV/m).
- Magnetic field strength in dBuA/m = 20 * log (magnetic field strngth in uA/m)

Extrapolation to other measurement distances, or conversion to power in Watts, is done using the formulas in the specific standards,

To estimate emissions at temperatures other than those at which the Chamber/OATS test were run, we put the EUT in a thermal chamber. We attach a magnetic field (H-field) probe to the antenna of the EUT using rubber bands, tape, or some other means to keep it in a fixed position with respect to the EUT. A coaxial cable, running through a port in the side/back of the thermal chamber, connects the H-field probe to an EMI receiver outside the chamber. We do a TOTAL CAL of the EMI receiver before starting testing. We put the EUT in the same mode, with the same supply voltage, and at the same temperature, at which the reference Chamber/OATS tests were run. After letting the temperature of the EUT stabilize, we measure the EUT's output as our baseline measurement. Then we vary the temperature, supply voltage, time from power-up, etc., as needed to get the variations due to temperature, supply voltage, and whatever else is specified by the standard(s).

The US and Canada permit these measurements to be made with a groundplane (in the 10m or 5m Chamber) or without a groundplane (next to the open air test site (OATS)). A tabletop EUT sits on an 0.8m high table, with the center of the loop antenna 1.0m high and 3m or 10m from the EUT. We use inverse square of the ratio of distances (-40dB/decade distance) to correct for electric and magnetic fields at other distances.(FCC 47 CFR Part 15 15.31(f)(1)) For 9-90kHz and 110-490kHz we use average and peak measurements, with the peak limit 20dB above the average limit (FCC 47 CFR Part 15 15.35(b)), otherwise we use quasipeak measurements. The loop antenna is the most sensitive when the coil is perpendicular to the line-of-sight. Record the temperature, humidity, and atmospheric pressure, as the baseline for temperature-

11dBi007 Page 16 of 37

chamber tests. Measure the fundamental and all of the harmonics (up through the 10th) that fall into the frequency range 9kHz-30MHz..

For Europe, Australia, and New Zealand, these measurements must be made without a groundplane, at the open air test site (OATS). A tabletop EUT will be on a 1.0m or 1.5m high support (use the mag field table, and add boxes or reams of paper to get the desired height). Set the bottom of the loop antenna 1.0m high, 10m away.from the EUT. Make quasipeak measurements. The loop antenna is the most sensitive when the coil is perpendicular to the line-of-sight. Record the temperature, humidity, and atmospheric pressure, as the baseline for temperature-chamber tests. Measure the fundamental and all of the harmonics (up through the 10th) that fall into the frequency range 9kHz-30MHz...

To tell if our intentional-emitter measurements are significant, we measure the noise floor + ambient noise level with everything set up as for the real measurements, but with the EUT and any AE turned off. For measurements in the 10m or 5m Chamber, we leave the door between the chamber and the control room open, and close the doors to the other chamber and the debug area.

Many intentional radiators are designed to transmit infrequently, or only when some event occurs. For Radiated Emissions testing, we will need a test mode— or even special test code— to make the EUT transmit continuously, or frequently enough (say, once every one or two seconds) that we can measure its transmissions in a reasonable time.

Once we have everything set up, and we have made any necessary noise floor + ambient noise level measurements, we run the Radiated Emissions tests as follows:

- 1. Record temperature, humidity, atmospheric pressure, and supply voltage.
- 2. Turn on the EUT and AE, with a specified power source, and put the EUT in the desired operating mode.
- 3. Do preliminary scans to find the noisiest frequencies/antenna polarizations.
- 4. Maximize Radiated Emissions from the EUT.
- 5. Use the Radiated Emissions test programs to find and measure the noisiest frequencies, measuring the noise with at least one detector, and determining the azimuth (turntable angle) and antenna height that maximize the emissions for a given antenna polarization.
- 6. If required— manually measure the noise with other detectors at the same frequencies, antenna polarizations, azimuths, and antenna heights.
- 7. Repeat steps 1 through 6 at other operating modes and supply voltages/frequencies, as needed.

11dBi007 Page 17 of 37

For preliminary scans:from 30MHz to 1000MHz, we put the bilog antenna in vertical polarization, then let the turntable make one or more full turns with the antenna at 1m, 2.5m, and 4m heights. At 10m distance, these antenna positions are approximately 9° apart vertically, as seen from the EUT, At 5m distance they are approximately 18° apart vertically. An antenna would need to have a very-narrow beamwidth, and be aimed just right, for us to completely miss it in these preliminary scans. For convenience, we let the Spectrum Analyzer continue to scan while we change the antenna height, which gives us some additional nondeterministic coverage at intermediate heights. We quasipeak the 3-5 frequencies whose Radiated Emissions appear to be highest with respect to the test limits. Then we repeat this process with the bilog antenna in horizontal polarization.

For preliminary scans:above 1GHz, we put the horn antenna in vertical polarization, then let the turntable make one or more full turns with the antenna at 1m, and at a greater height if needed to provide full coverage of the EUT. We quasipeak the 3-5 frequencies whose Radiated Emissions appear to be highest with respect to the test limits. Then we repeat this process with the horn antenna in horizontal polarization.

For preliminary scans:below 30MHz, we set the loop antenna perpendicular to the line of sight to the center of the turntable, then we let the turntable make one or more full turns. We quasipeak the 3-5 frequencies whose Radiated Emissions appear to be highest with respect to the test limits.

For intentional radiators that can operate in any orientation, we do three sets of preliminary scans with the EUT on its bottom/top, front/back, and left side/right side. We record the EUT orientation that maximized emissions at the transmit frequency, and use this orientation for the rest of the Radiated Emissions tests.

If the preliminary scans show that any emissions from the EUT are over or close to the legal limits, we need to find and fix the problem(s). If all emissions from the EUT are at least 6dB below the legal limits, we can proceed directly to the official Radiated Emission test runs. Otherwise (the usual case) we need to move cables and linecords to maximize emissions. We return to the frequency, antenna polarization, azimuth, and antenna height with the minimum margin. We turn on the video projector in the chamber, or turn on the audio feedback, and take a baseline reading while standing near the back wall of the chamber. Now we move one cable or linecord at a time, then return to our standing position by the wall, to see whether we had any effect on emissions. We continue moving cables/linecords until any further changes reduce the emissions or leave them unchanged. This is our worst-case configuration of the cables/linecords, which we will photograph, and use for the official Radiated Emission test runs.

We now perform the official Radiated Emissions test runs. For each polarization of the antenna, we turn the turntable at least one full turn at each height that we used for our preliminary scans. The standards only require us to measure 6 frequencies, but I like to choose at least 10 frequencies at each antenna polarization that look "interesting". Even if the wideband scans don't show anything around 30MHz, I like to check a frequency

11dBi007 Page 18 of 37

down here, because I have been unpleasantly "surprised" on numerous occasions. For intentional radiators, I also check the fundamental and the 2nd through 10th harmonic just on general principles. I figure that it is much easier to collect a little extra data while everything is set up— which we can throw away if it isn't significant— than to have to retest the EUT later because we missed something important!

At each of these frequencies, we do a narrowband scan to find the precise frequency, then let the Radiated Emissions test program measure the maximum quasipeak emissions for 30MHz-1000MHz, or the maximum peak and average emissions above 1GHz. At the antenna height that we think will maximize emissions (usually 1m. or 4m for the bilog antenna in horizontal polarization), let the turntable make one or more full turns. Return to the azimuth with the highest emissions so far. Wait here for a few seconds, then vary the antenna height. If no other antenna height gives us higher emissions, we are done with this frequency/antenna polarization.

Otherwise we return to the antenna height with higher emissions, and spin the turntable again to see if another azimuth has even higher emissions, If the EMI receiver shows "overload", we increase its input attenuation in 10dB steps until it come out of this mode, We may want to bump the attenuation up another 10dB— to make sure that it doesn't change (a sign of signal compression)— then back down 10dB again to make an accurate measurement. If the signal is pulsing, we may jog the turntable clockwise and counterclockwise a few degrees to make sure we have found the tip of the lobe. One we have found the tip of the lobe, we sit there a few seconds to make sure that we catch the maximum emissions.

If we need measurements with other detectors, click the DONE icon to finish the quasipeak or peak/average measurements. Push the LOCAL button on the EMI receiver. Now turn on the desired detectors, and set the sampling time, to take PK+, QP, and AV measurements manually.

An alternative is to let the Radiated Emission test program take all of its normal measurements. Print out the results, and exit the program. Put the EMI receiver and the EMCO controller in local mode. Set the EMI receiver to continuous scan, with the PK+, QP, and AV detectors turned on, and an appropriate measurement time (usually 1s or 0.1s). Punch in a desired frequency. Turn the turntable to the desired azimuth, and raise/lower the antenna to the desired height. Watch the EMI receiver for 10+ seconds for each measurement, and record the highest PK+, QP, and AV measurements in the work notes. Do this for all of the frequencies on the list.

All quasipeak/average/peak measurements are made in EMI Receiver mode, so according to the receiver specifications, video bandwidth (VBW) doesn't apply, the bandwidth error is under 10% and the shape factor (B(60dB)/B(6dB)) is under 10.

11dBi007 Page 19 of 37

The People Counter transmitted at 5 second intervals to speed up testing. This was a special code spin for EMC testing. The standard code transmits once every 10 to 600 seconds.

Based on our experiences testing previous FCC Part 15.231(e) products, we put a calibrated 20dB attenuator right after the bilog antenna to prevent signal compression in the preamp/receiver chain. for 3m measurements from 30-1000MHz. We added its loss (20.194dB at 418MHz, 20.15dB at 836MHz) to the field strengths measured by the receiver in this band. We used a different antenna and preamp for measurements above 1GHz. The FCC Part 15.231(e) limits above 1GHz are lower than the FCC Class A limits above 1GHz, thus any linearity concerns had already been addressed during equipment calibration.

We measured PK+, QP, and AVE for 418MHz and 836MHz in manual mode, as follows:

- 1. With the equipment-under-test (EUT) upright, measure 418MHz and 836MHz in QP mode with the bilog antenna vertical and horizontal (Lexmark's EMC software records the azimuth and antenna elevation for the highest QP emissions). If the receiver shows an overload, increase input attenuation by 10dB, then redo the measurement.
- 2. Repeat step 1 with the EUT on its back or front.
- 3. Repeat step 1 with the EUT on its right or left side.
- 4. Study the plots to determine which orientation of the EUT had the highest emissions in OP mode.
- 5. Return the EUT to this position. With the bilog antenna vertical, go back to the azimuth and antenna elevation that maximized the QP emissions at a given frequency.
- 6. Using a 1 second sampling time, measure PK+ and QP, taking the maximum values seen on the receiver over 10-20 seconds. If the receiver showed an overload, or we still suspected signal compression, we increased the input attenuation by 10dB. If the measurement stayed the same, we used the previous reading. If the value increased, we continued increasing the attenuation in 10dB steps until the measurement stayed the same, then reduced the attenuation 10dB for the official measurement.
- 7. Using a 100 millisecond sampling time, measure AVE, taking taking the maximum value seen on the receiver over 10-20 seconds. (Since we could only catch the top 2 digits, we used 0.99dB as the fractional part to be conservative.)
- 8. In the calculations, add the attenuator's loss to the measured value to get the true field strength.
- 9. Repeat steps 5 to 8 with the bilog antenna horizontal.

Under Section 15.231(e), the average limit for the fundamental is calculated by linear interpolation from 1500uV/m at 260MHz to 5000uV/m at 470MHz when measured at 3m. Average limit = $((5000\text{uV/m}-1500\text{uV/m})*(418\text{MHz}-260\text{MHz})/(470\text{MHz}-260\text{MHz}))+1500\text{uV/m}=4133\text{uV/m}=20*\log(4133)~dB(\text{uV/m})=72.33dB(\text{uV/m}).$ Section 15.35(b) sets the peak limit for the fundamental to 20 dB above the average limit, or 92.33dB(uV/m) at 3m. For spurious emissions, Section 15.231(e) sets the average limit to 20dB below the maximum permitted fundamental level, or 52.33dB(uV/m) at 3m, with the peak limit 20dB higher at 72.33dB(uV/m).

11dBi007 Page 20 of 37

These sensors transmit a 14-16ms data burst, depending on the identification (ID) code. The duty cycle within a data burst is nominally 50%, but can be as high as 66%. Thus the maximum total transmit time is 0.66 * 16ms = 10.56ms within any 100ms time interval.

Averaged over a 100ms interval, the AVE measurement should be at least 20*log(10.56ms/100ms) = -19.53dB from PK+ measurements. The measured difference may be less if the AVE signal level is under the noise floor of the receiver, artificially increasing its value. On a previous product we were told that for pulsed emissions, that the AVE emissions must be calculated by *subtracting* a duty-cycle correction factor = 20*log(worst case ON-TIME (ms) in any 100ms window / 100 ms) from the peak value, with the duty-cycle correction factor between 0dB and 20dB. (There is a sign error in the description we were given, because log of a number between 0 and 1 is negative.) We have not found this requirement documented anywhere in the FCC Regulations or in ANSI C63.4-2003, but to keep everyone happy, we show both *measured* AVE values and *calculated* AVE values for this sensor.

Modifications to the Equipment Under Test: None

John R. Bann

Test Results: Tables 1 through 5 show that this unit meets the radiated interference requirements of FCC Part 15 Section 15.231(e) and RS-210 Section A1.1.5, and the Class B radiated interference requirements of FCC Part 15 and ICES-003..

SIGNED

_DATE <u>May 2, 2011</u>__

John R. Barnes, PRESIDENT dBi Corp.

11dBi007 Page 21 of 37

Radiated Emissions Data 30-4,180MHz

Appliance/Product: Trafsys 418MHz People Counter

Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Serial Number: FCC1

TABLE 1: QUASIPEAK EMISSIONS AT 10m

Receiver Receiver 22		Cable			Rad. Interference CISPR			
Meas.	Reading		Corr.	Antenna		Field Stre	ength	QPK
Freq.	Vert.	Horiz.	Factor	Factor	Atten.	Vert.	Horiz.	Limit
MHz	dB(uV)	dB(uV)	dB	dB(/m)	dB	dB(uV/m)	dB(uV/m)	dB(uV/m)
30.630		14.871	-20.970	18.454	0.000		12.355	30
30.868		15.255	-21.200	18.323	0.000		12.378	30
31.570	16.253		-21.876	17.937	0.000	12.314		30
33.680		16.686	-21.961	16.776	0.000		11.501	30
39.507		15.684	-21.733	13.771	0.000		7.722	30
203.990	22.869		-21.190	8.900	0.000	10.579		30
264.014	20.700	19.046	-18.458	13.999	0.000	16.241	14.587	37
418.005	54.007	54.008	-17.894	16.300	0.000	52.413	52.414	
836.010	25.582	25.294	-16.625	21.800	0.000	30.757	30.469	

Sample Calculation: Receiver reading dB(uV) plus cable correction factor (dB) plus antenna factor dB(/m) plus attentuation (dB) equals Radiated Interference Field Strength dB(uV/m).

TABLE 2: QUASIPEAK EMISSIONS AT 3m

Receiver	eceiver Receiver		Cable			Rad. Interference 15.231(e)		
Meas.	Reading		Corr.	Antenna		Field Strength_		QPK
Freq.	Vert.	Horiz.	Factor	Factor	Atten.	Vert.	Horiz.	Limit
MHz	dB(uV)	dB(uV)	dB	dB(/m)	dB	dB(uV/m)	dB(uV/m)	dB(uV/m)
418.005	48.026	54.496	-19.216	16.400	20.194	65.404	71.874	
836.010	24.232	24.232	-17.622	22.000	20.150	48.760	48.760	

Sample Calculation: Receiver reading dB(uV) plus cable correction factor (dB) plus antenna factor dB(/m) plus attentuation (dB) equals Radiated Interference Field Strength dB(uV/m).

SIGNED DATE May 2, 2011___

John R. Barnes, PRESIDENT dBi Corp.

11dBi007 Page 22 of 37

Radiated Emissions Data 30-4,180MHz (cont.)

TABLE 3: PEAK EMISSIONS AT 3m

Receiver Receiver		Cable			Rad. Inter	rference 1	5.231(e)	
Meas.	leas. Reading		Corr.	Antenna		Field Stre	PK+	
Freq.	Vert.	Horiz.	Factor	Factor	Atten.	Vert.	Horiz.	Limit
MHz	dB(uV)	dB(uV)	dB	dB(/m)	dB	dB(uV/m)	dB(uV/m)	dB(uV/m)
418.005	53.246	59.616	-19.216	16.400	20.194	70.624	76.994	92.33
836.010	30.572	31.212	-17.622	22.000	20.150	55.100	55.740	72.33
1254.0	44.030	43.638	-27.728	25.092	0.000	41.394	41.002	72.33
1672.0	52.505	41.505	-26.416	26.890	0.000	52.979	41.979	72.33
2090.0	39.176	34.931	-25.847	28.462	0.000	41.791	37.546	72.33
2508.0	42.033	36.674	-25.398	29.214	0.000	45.849	40.490	72.33
2926.0	48.686	42.154	-24.914	29.967	0.000	53.739	47.207	72.33
3344.0	35.291	32.438	-24.262	31.063	0.000	42.092	39.239	72.33
3762.0	28.140	30.005	-23.783	32.234	0.000	36.591	38.456	72.33
4180.1	27.632	28.673	-23.306	33.026	0.000	37.352	38.393	72.33

Sample Calculation: Receiver reading dB(uV) plus cable correction factor (dB) plus antenna factor dB(/m) plus attentuation (dB) equals Radiated Interference Field Strength dB(uV/m).

TABLE 4: MEASURED AVERAGE EMISSIONS AT 3m

Receiver Receiver		Cable			Rad. Inter	rference 1	5.231(e)	
Reading		Corr.	Antenna		Field Stre	ength	AVE	
Vert.	Horiz.	Factor	Factor	Atten.	Vert.	Horiz.	Limit	
dB(uV)	dB(uV)	dB	dB(/m)	dB	dB(uV/m)	dB(uV/m)	dB(uV/m)	
32.806	38.806	-19.216	16.400	20.194	50.184	56.184	72.33	
17.612	17.612	-17.622	22.000	20.150	42.140	42.140	52.33	
25.549	25.657	-27.728	25.092	0.000	22.913	23.021	52.33	
31.374	23.908	-26.416	26.890	0.000	31.848	24.382	52.33	
20.932	19.241	-25.847	28.462	0.000	23.547	21.856	52.33	
22.542	20.026	-25.398	29.214	0.000	26.358	23.842	52.33	
27.455	22.505	-24.914	29.967	0.000	32.508	27.558	52.33	
14.287	15.302	-23.783	32.234	0.000	22.738	23.753	52.33	
14.235	14.789	-23.306	33.026	0.000	23.955	24.509	52.33	
	Reading Vert. dB(uV) 32.806 17.612 25.549 31.374 20.932 22.542 27.455 14.287	dB(uV)dB(uV)32.80638.80617.61217.61225.54925.65731.37423.90820.93219.24122.54220.02627.45522.50514.28715.302	ReadingCorr.Vert.Horiz.FactordB(uV)dBdB32.80638.806-19.21617.61217.612-17.62225.54925.657-27.72831.37423.908-26.41620.93219.241-25.84722.54220.026-25.39827.45522.505-24.91414.28715.302-23.783	ReadingCorr.AntennaVert.Horiz.FactorFactordB(uV)dBdB(/m)32.80638.806-19.21616.40017.61217.612-17.62222.00025.54925.657-27.72825.09231.37423.908-26.41626.89020.93219.241-25.84728.46222.54220.026-25.39829.21427.45522.505-24.91429.96714.28715.302-23.78332.234	ReadingCorr.AntennaVert.Horiz.FactorFactorAtten.dB(uV)dBdB(/m)dB32.80638.806-19.21616.40020.19417.61217.612-17.62222.00020.15025.54925.657-27.72825.0920.00031.37423.908-26.41626.8900.00020.93219.241-25.84728.4620.00022.54220.026-25.39829.2140.00027.45522.505-24.91429.9670.00014.28715.302-23.78332.2340.000	Reading Corr. Antenna Field Street Vert. Horiz. Factor Factor Atten. Vert. dB(uV) dB dB(m) dB dB(uV/m) dB(uV/m) <td>Reading Factor Pactor Antenna Atten. Field Strength Vert. Horiz. Factor Pactor Atten. Vert. Horiz. dB(uV) dB dB(/m) dB dB(uV/m) dB(uV/m) 32.806 38.806 -19.216 16.400 20.194 50.184 56.184 17.612 17.612 -17.622 22.000 20.150 42.140 42.140 25.549 25.657 -27.728 25.092 0.000 22.913 23.021 31.374 23.908 -26.416 26.890 0.000 31.848 24.382 20.932 19.241 -25.847 28.462 0.000 23.547 21.856 22.542 20.026 -25.398 29.214 0.000 26.358 23.842 27.455 22.505 -24.914 29.967 0.000 32.508 27.558 14.287 15.302 -23.783 32.234 0.000 22.738 23.753</td>	Reading Factor Pactor Antenna Atten. Field Strength Vert. Horiz. Factor Pactor Atten. Vert. Horiz. dB(uV) dB dB(/m) dB dB(uV/m) dB(uV/m) 32.806 38.806 -19.216 16.400 20.194 50.184 56.184 17.612 17.612 -17.622 22.000 20.150 42.140 42.140 25.549 25.657 -27.728 25.092 0.000 22.913 23.021 31.374 23.908 -26.416 26.890 0.000 31.848 24.382 20.932 19.241 -25.847 28.462 0.000 23.547 21.856 22.542 20.026 -25.398 29.214 0.000 26.358 23.842 27.455 22.505 -24.914 29.967 0.000 32.508 27.558 14.287 15.302 -23.783 32.234 0.000 22.738 23.753	

Sample Calculation: Receiver reading dB(uV) plus cable correction factor (dB) plus antenna factor dB(/m) plus attentuation (dB) equals Radiated Interference Field Strength dB(uV/m).

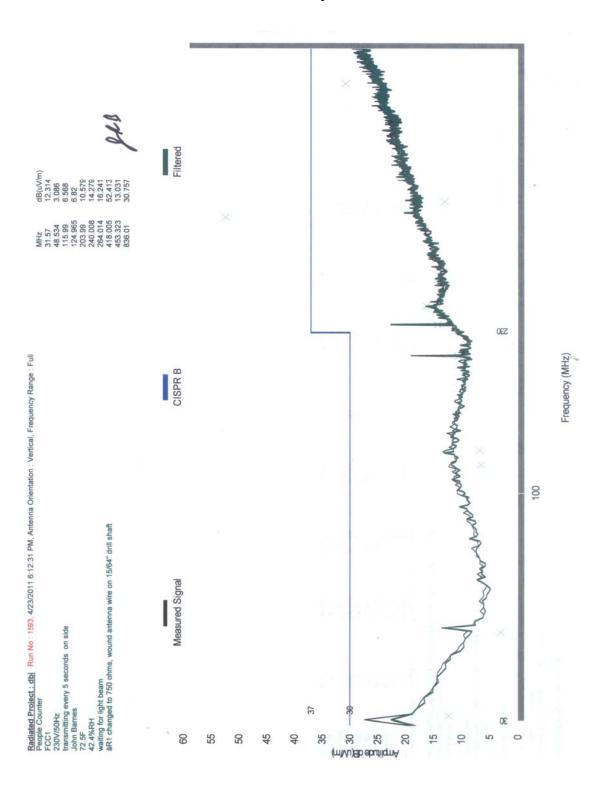
SIGNED_____**DATE** May 2, 2011___

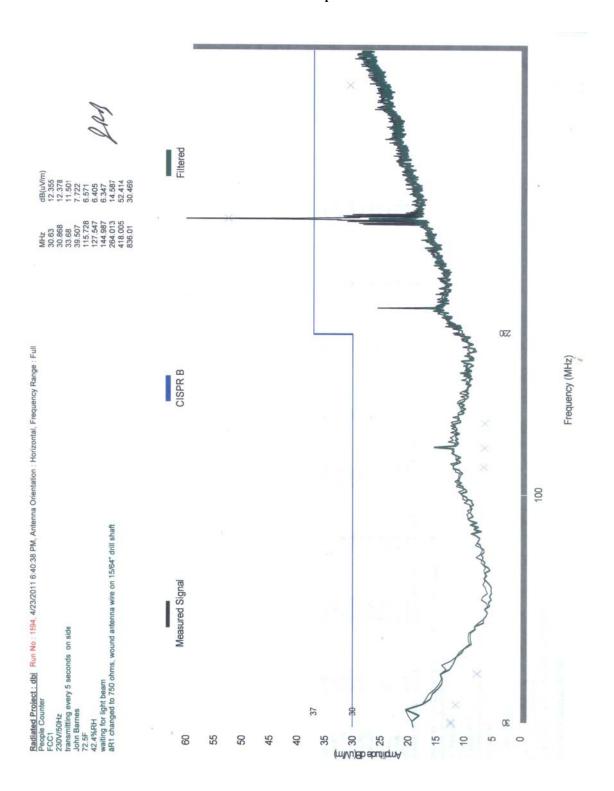
John R. Barnes, PRESIDENT dBi Corp.

11dBi007 Page 23 of 37

Radiated Emissions Data 30-4,180MHz (cont.)

TABLE 5: CALCULATED AVERAGE EMISSIONS AT 3m


Receiver	Receiver		Cable			Duty-cyc.	Rad. Inter	fer	
15.231(e)									
Meas.	Reading		Corr.	Antenna		Corr.	Field Stre	ngth	AVE
Freq.	Vert.	Horiz.	Factor	Factor	Atten.	Factor	Vert.	Horiz.	Limit
MHz	$\underline{ dB(uV)}$	dB(uV)	dB	dB(/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB(uV/m)
418.0	53.246	59.616	-19.216	16.400	20.194	-19.527	51.097	57.467	72.33
836.0	30.572	31.212	-17.622	22.000	20.150	-19.527	35.573	36.213	52.33
1254.0	44.030	43.638	-27.728	25.092	0.000	-19.527	21.867	21.475	52.33
1672.0	52.505	41.505	-26.416	26.890	0.000	-19.527	33.452	22.452	52.33
2090.0	39.176	34.931	-25.847	28.462	0.000	-19.527	22.264	18.019	52.33
2508.0	42.033	36.674	-25.398	29.214	0.000	-19.527	26.322	20.963	52.33
2926.0	48.686	42.154	-24.914	29.967	0.000	-19.527	34.212	27.680	52.33
3344.0	35.291	32.438	-24.262	31.063	0.000	-19.527	22.565	19.712	52.33
3762.0	28.140	30.005	-23.783	32.234	0.000	-19.527	17.064	18.929	52.33
4180.1	27.632	28.673	-23.306	33.026	0.000	-19.527	17.825	18.866	52.33


Sample Calculation: Receiver reading dB(uV) plus cable correction factor (dB) plus antenna factor dB(/m) plus attentuation (dB) plus duty-cycle correction factor equals Radiated Interference Field Strength dB(uV/m).

Signed ______ Date __May 2, 2011___

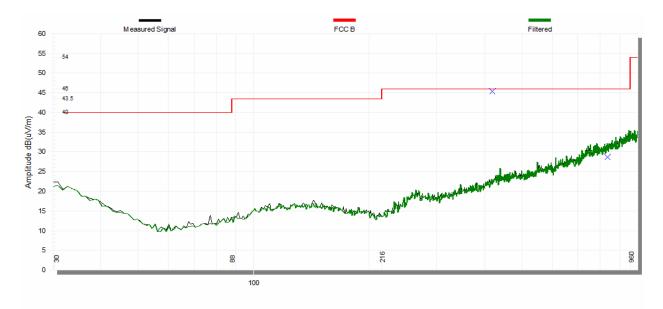
John R. Barnes, PRESIDENT dBi Corporation

11dBi007 Page 24 of 37

Radiated Project: dbi, Run No: 425, 4/23/2011 4:54:50 PM

Vertical, Frequency Range: Full

Product Name: People Counter, S/N: FCC2


EUT Line Voltage: 230V/50Hz

Mode: transmitting every 5 seconds, on side

Tested by: John Barnes, Temperature: 73.9F, Humidity: 61.7% RH

Test Setup: waiting for light beam

Additional information: changed R1 to 750 ohms, wound antenna wire on 15/64" drill shaft

Frequency Polarity Cable Antenna QP Limit Margin Max Max (MHz) Loss Factor Amplitude (dB(uV/m)(dB) Height Angle (dB) (dB(uV/m)(meters) (dB(1/m))(Deg)) V3 45.358 0 418.005 -19.216 16.4 46 .64 1.8 836.01 V3 -17.622 22 28.67 46 17.33 1.2 140

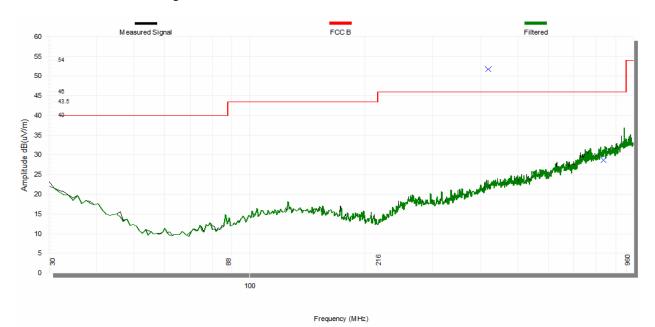
Frequency (MHz)

11dBi007 Page 27 of 37

Radiated Project: dbi, Run No: 426, 4/23/2011 5:05:01 PM

Horizontal, Frequency Range: Full

Product Name: People Counter, S/N: FCC2


EUT Line Voltage: 230V/50Hz

Mode: transmitting every 5 seconds, on side

Tested by: John Barnes, Temperature: 73.9F, Humidity: 61.7% RH

Test Setup: waiting for light beam

Additional information: changed R1 to 750 ohms, wound antenna wire on 15/64" drill shaft

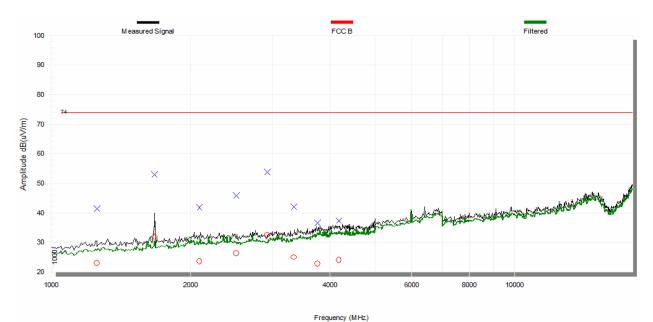
Frequency Polarity Cable Antenna QP Limit Margin Max Max (MHz) Loss Factor Amplitude (dB(uV/m)(dB) Height Angle (dB) (dB(uV/m)(meters) (dB(1/m))(Deg)) 51.685 418.005 H3 -19.216 16.4 46 -5.69 1 101 Н3 -17.622 836.01 22 28.642 46 17.36 1.9 359

11dBi007 Page 28 of 37

Radiated Project: dbi, Run No: 422, 4/23/2011 12:07:42 AM

Vertical, Frequency Range: Full

Product Name: People Counter, S/N: FCC1


EUT Line Voltage: 230V/50Hz

Mode: transmitting every 5 seconds, on side

Tested by: John Barnes, Temperature: 73.9F, Humidity: 61.7% RH

Test Setup: waiting for light beam

Additional information: changed R1 to 750 ohms

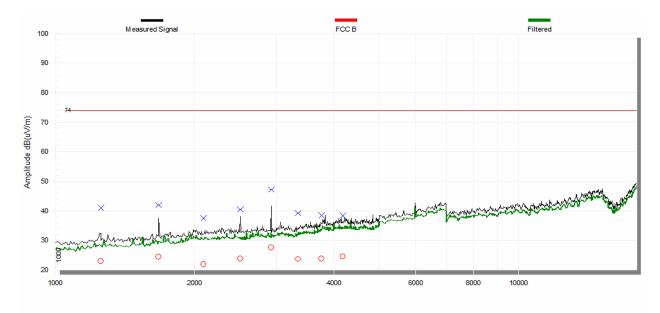
Average Polarity Cable Antenna Peak Peak Peak Max Max Frequency Average (MHz) Loss Factor Amplitude Limit Margin Height Angle Amplitude Margin (dB(1/m)) (dB(uV/m) (dB) (dB(uV/m)(dB(uV/m)(dB) (dB) (meters) (Deg) 1254 V3 -27.728 25.092 41.394 74 32.61 1 149 22.913 31.09 1672 V3 -26.416 26.89 52.979 74 21.02 147 31.848 22.15 1 2090 V3 -25.847 28.462 41.791 74 32.21 1 281 23.547 30.45 2508 V3 -25.398 29.214 45.849 74 28.15 324 26.358 27.64 1 2926 V3 -24.914 29.967 53.739 74 20.26 1 200 32.508 21.49 3344 V3 74 357 24.92 29.08 -24.262 31.063 42.092 31.91 1 3762 V3 -23.783 32.234 36.591 74 37.41 1 353 22.738 31.26 V3 33.026 74 222 4180.1 -23.306 37.352 36.65 1 23.955 30.04

11dBi007 Page 29 of 37

Radiated Project: dbi, Run No: 423, 4/23/2011 12:27:24 AM

Horizontal, Frequency Range: Full

Product Name: People Counter, S/N: FCC1


EUT Line Voltage: 230V/50Hz

Mode: transmitting every 5 seconds, on side

Tested by: John Barnes, Temperature: 73.9F, Humidity: 61.7% RH

Test Setup: waiting for light beam

Additional information: changed R1 to 750 ohms

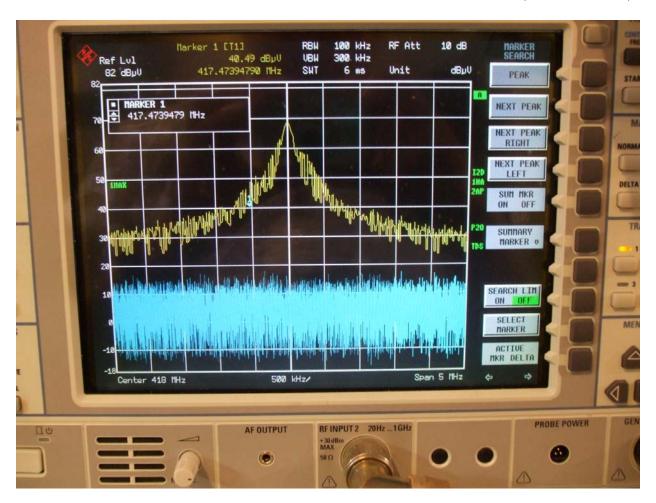
•	. oquo.io,	(

Frequency	Polarity	Cable	Antenna	Peak	Peak	Peak	Max	Max	Average	Average
(MHz)		Loss	Factor	Amplitude	Limit	Margin	Height	Angle	Amplitude	Margin
		(dB)	(dB(1/m))	(dB(uV/m)	(dB(uV/m)	(dB)	(meters)	(Deg)	(dB(uV/m)	(dB)
)))	
1254	Н3	-27.728	25.092	41.002	74	33	1	319	23.021	30.98
1672	Н3	-26.416	26.89	41.979	74	32.02	1	316	24.382	29.62
2090	Н3	-25.847	28.462	37.546	74	36.45	1	208	21.856	32.14
2508	Н3	-25.398	29.214	40.49	74	33.51	1	175	23.842	30.16
2926	Н3	-24.914	29.967	47.207	74	26.79	1	169	27.558	26.44
3344	H3	-24.262	31.063	39.239	74	34.76	1	204	23.694	30.31
3762	Н3	-23.783	32.234	38.456	74	35.54	1	214	23.753	30.25
4180.1	Н3	-23.306	33.026	38.393	74	35.61	1	47	24.509	29.49

11dBi007 Page 30 of 37

Transmitted Bandwidth Data

Appliance/Product: Trafsys 418MHz People Counter


Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Serial Number: FCC1

PROCEDURE: Test Performed Per ANSI 63.4 – 2003 and RSS-Gen Issue 3 (December 2010).

Modifications to the Equipment Under Test: Changed R1 to 750 ohms.

Test Results: The 20dB transmitted bandwidth of the BA/WFP-S and BA/WFP-B is 982kHz (417.473MHz to 418.455MHz), within the 1045kHz (0.25% of 418MHz) maximum bandwidth permitted by FCC Part 15 Section 15.231(c). In the photo, each horizontal division is 500kHz, and each vertical division is 10dB. The RBW bandwidth was 100kHz, and the VBW bandwidth was 300kHz, with a sweep time of 6ms.

11dBi007 Page 31 of 37

8	Un R.	Bane			
Signed			Date	_May 2, 2011	
John R. I	Barnes, PRE	SIDENT dBi Co	rporation	•	

Conducted Emissions 150 kHz-30 MHz (Internal Battery)

Conducted Emission Standards:

FCC 47 CFR Part 15-2008 section 15.231(e), using ANSI C63.4-2003 RSS-210 Issue 8 (December 2010) section A1.1.5, using RSS-Gen Issue 3 (December 2010)

ICES-003:2004 Class B, using CAN/CSA-CEI/IEC CISPR 22:02

Appliance/Product: Trafsys 418MHz People Counter

Model/Type Number: PSPCM

FCC ID: M5ZPSPCM

Rating: 3.6VDC (lithium batteries)

Serial Number: FCC1

Host and Other Peripherals: None

Name of Test: Powerline Conducted Interference

Test Procedure: ANSI C63.4-2003

Test Location: All welded 18 ft x 18 ft shielded enclosure, Lexmark test facility, located in

Lexington, Kentucky

Test Instrumentation: See attached sheets

Note: Tests performed at 15-35°C, any relative humidity, and any atmospheric pressure. Before starting any approval tests, we do a Total Cal of the receiver, then do a Conducted Checkout of the LISN, 150kHz highpass filter, 10dB attenuator, and cables. The expanded uncertainty (k=2 for 95% probability) is +/-2.76dB on AC power; and +/-2.85dB on input/output cables.

The equipment-under-test (EUT) and auxiliary equipment (AE) are set up in the shielded room according to the test plan and the test procedure(s). The EUT plugs into the main line-impedance stabilization network (LISN). AE plugs into multi-outlet strips attached to separate LISN's. Long input/output cables are serpentined to keep them >40cm from the floor.

If standard cables are available for an EUT's input/output port(s), we prefer to use them. If cables are custom-made for each installation of an EUT, we use cables that are at least 1m long. At least one port of each type on the EUT is connected to AE with a cable—except that we do not put cables on ports that are used only for manufacturing or servicing. If the EUT has multiple ports of a certain type, we add cables (that may go to AE, terminate in dummy loads, or be left unterminated) until adding a cable makes less than a 2dB increase in the emissions. The additional cables needed may be determined by testing this EUT, or by prior experience with these same input/output ports on previous products. If an EUT has several ports with identical functions that are mutually-exclusive—only one of them *can* be used in a particular installation of the EUT—we try to run the test with all of the cables attached, but only the noisiest port providing data to the EUT. If this

11dBi007 Page 33 of 37

configuration puts us over the limits, we experiment with one port at a time cabled to AE and providing data, with the other ports left unconnected. Then we make the official measurements with the noisiest port that will typically be used by users.

We set up the EUT, AE, input/output cables, and line cords/power cables in the configuration and typical operating mode that we think will maximize emissions. This may require some experimenting to determine for sure, but is usually the configuration/operating mode that has as many subsystems of the EUT active simultaneously as possible, at their highest resolution, and operating at maximum speed.

We run initial scans on phase and neutral. We quasipeak and average measure the 3-5 frequencies whose Conducted Emissions appear to be highest with respect to the test limits.

At any time during the approval testing, if a measurement is above or close to a limit, we try to determine the cause of the problem, and fix it. Fixes to the EUT will be documented in the test notes and test report. If a piece of AE is the source of the noise, we may try a replacement (such as another hub/router, or using a crossover cable in place of a hub), or move the AE outside of the chamber. If AE is the source of the noise, and we can't resolve the problem any other way, we will measure these frequencies with the AE turned on and again with it turned off. We then note in the test notes, test plots, and test report that the excessive emissions are due to ______ piece of AE.

We examine the initial plots to see which frequency on phase/neutral has the minimum margin versus the test limits. If the minimum margin is >6dB, we treate the cables as already being maximized, and perform the official tests. Otherwise we return to the AC line and frequency with the highest emissions. We take a baseline reading before we touch anything. Then we move cables and line cords, trying to increase the emissions at this frequency, until any further changes have no effect, or reduce the emissions. This becomes our maximized cable configuration for the official tests, which will be photographed and included in the test report.

We now perform the official Conducted Emissions measurements. For each AC line (phase, neutral) we choose at least 10 frequencies that look "interesting". At each of these frequencies we do a narrowband scan to find the frequency with the least margin against the test limits. We quasipeak and average measure these specific frequencies on phase and neutral. These become our official measurements. We repeat this process for all AC input voltages/frequencies of interest.

When the test standards require Conducted Emissions measurements on an input/output cable, such as a phone line or Ethernet port, we connect this cable to an impedance stabilization network (ISN) if one is available. If we don't have a suitable ISN, we run this cable through a current probe and a voltage probe, and maybe through a bunch of ferrite cores, before connecting it to the AE (see CISPR 22/EN 55022 Appendix C). The EUT still plugs into the main LISN. We make one set of measurements per cable, with all other cables in the configuration that maximized AC Conducted Emissions.

11dBi007 Page 34 of 37

In the tables below, "Cable Correction Factor dB" covers everything in the standard signal chain between the LISN/ISN/current clamp, and the EMI receiver. This includes a high-pass filter, a 10dB pad, and the coaxial cable to the EMI receiver.

When calibrating the chamber, we use a vector network analyzer (VNA) to measure the total power loss/gain from the connector going to the LISN/ISN/cable clamp to the connector going to the EMI receiver(s). This power loss/gain is our Cable Correction Factor.

Modifications to the Equipment Under Test: None

Test Results: This unit gets power from internal batteries, and has no connection to AC power lines. Therefore it meets the Class B conducted interference requirements of FCC Part 15 and ICES-003 without testing.

SIGNED

___**DATE** ___May 2, 2011___

John R. Barnes, PRESIDENT dBi Corp.

the R. Bann

TESTING AND MEASURING EQUIPMENT USED AT LEXMARK

Radiated Interference and Bandwidth Measurements 30-4,180MHz:

ARA DRG-118/A, S/N 1090

Horn Antenna, 1GHz to 18GHz #0388 (Cal date: 10/15/09, Cal due date: 10/15/11)

Schaffner-Chase CBL6111C, S/N 2459

BI-Log Antenna 30 to 1000 MHz #0509 (Cal date: 5/12/10, Cal due date: 5/12/12)

Schaffner-Chase CBL6111C, S/N 2580

Bi-Log Antenna 30 to 1000 MHz #0517 (Cal date: 5/12/10, Cal due date: 5/12/12)

Rohde & Schwarz ESI40, S/N 839283/008

EMI Test Receiver #0543 (Cal date: 11/17/09, Cal due date: 11/17/11)

Rohde & Schwarz ESI7, S/N 100009

EMI Test Receiver #0549 (Cal date: 4/9/09, Cal due date: 4/9/11)

Rohde & Schwarz ESIB7, S/N 100093

EMI Test Receiver #0632 (Cal date: 10/13/09, Cal due date: 10/13/11)

Rohde & Schwarz ESIB40, S/N 100148

EMI Test Receiver #0700 (Cal date: 6/24/10, Cal due date: 6/24/12)

Calibration: The measuring equipment used at Lexmark is calibrated according to the instruction manual once a day. Once a week the accuracy of the test system is checked. This includes the test equipment, associated cables, and antennas. This is accomplished with a calibrated radiating source for the radiated measurements, and a synthesized signal generator for the conducted measurements.

11dBi007 Page 36 of 37

RADIATED-EMISSIONS & BANDWIDTH TEST CONFIGURATION PEOPLE COUNTER

10m AND 5m SEMIANECHOIC CHAMBER
LEXMARK INTERNATIONAL, LEXINGTON KY.