

EMC Technologies (NZ) Ltd PO Box 68-307 Newton, Auckland 1145 Phone 09 360 0862 Fax 09 360 0861 E-Mail Address: aucklab@ihug.co.nz Web Site: www.emctech.com.au

TEST REPORT

Gallagher T11 MiFare Proximity Card Reader

tested to

47 Code of Federal Regulations

Part 15 - Radio Frequency Devices

Subpart C – Intentional Radiators

Section 15.225 Operation within the band 13.110 -14.010 MHz

for

Gallagher Group Ltd

This Test Report is issued with the authority of:

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 1 of 22

Andrew Cutler- General Manager

Table of Contents

1.	STATEMENT OF COMPLIANCE	3
2.	RESULTS SUMMARY	3
3.	INTRODUCTION	4
4.	CLIENT INFORMATION	4
5.	DESCRIPTION OF TEST SAMPLE	4
6.	SETUPS AND PROCEDURES	5
7.	TEST EQUIPMENT USED	16
8.	ACCREDITATIONS	16
9.	PHOTOGRAPHS	17

1. STATEMENT OF COMPLIANCE

The **Gallagher T11 MiFare Proximity Card Reader** complies with FCC Part 15 Subpart C Section 15.225 as an Intentional Radiator when the methods as described in ANSI C63.4 - 2003 are applied.

2. RESULTS SUMMARY

The results from testing are summarised in the following table:

Clause	Parameter	Result	
15.201	Equipment authorisation	Certification required.	
	requirement		
15.203	Antenna requirement	Complies. Antenna internal to the device.	
15.204	External PA and antenna	Not applicable. No external devices.	
	modifications		
15.205	Restricted bands of operation	Complies. Device transmits on 13.560 MHz with an occupied bandwidth of 442.3 kHz.	
15.207	Conducted limits	Complies.	
15.209	Radiated emission limits - Spurious emissions <30 MHz	Complies with a 33.6 dB margin at 27.120 MHz	
15.209	Radiated emission limits – Spurious emissions >30 MHz	Complies with a 8.2 dB margin at 40.680 MHz (Vertical).	
15.225	Radiated emission limits - Fundamental	Complies with a 46.8 dB margin at 13.560 MHz.	
15.225	Frequency stability	Complies	

3. INTRODUCTION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification.

The client selected the test sample.

This report relates only to the sample tested.

This report replaces report 120711.1b of 13th November 2012 to further update the photographs and IDs.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

4. CLIENT INFORMATION

Company Name Gallagher Group Ltd

Address Kahikatea Drive

City Hamilton

Country New Zealand

Contact Mr Brian Rose

5. DESCRIPTION OF TEST SAMPLE

Brand Name Gallagher

Model Number T11

Product MiFare Proximity Card Reader

Manufacturer Gallagher Group Ltd

Country of Origin New Zealand

Serial Number 1228107061 + 1226307279

FCC ID M5VC30042X

IC ID 7369A-C30022X

6. SETUPS AND PROCEDURES

Standard

The sample was tested in accordance with 47 CFR Part 15 Subpart C.

Methods and Procedures

The measurement methods and procedures as described in ANSI C63.4 - 2003 were used.

Section 15.201: Equipment authorisation requirement

Certification as detailed in Subpart J of Part 2 is required for this device.

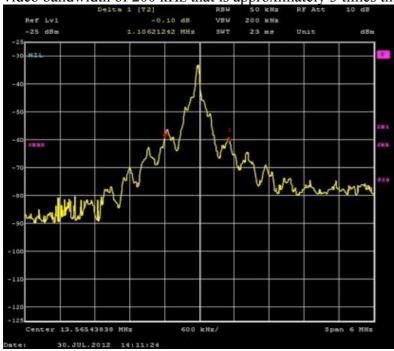
Section 15.203: Antenna requirement

This device has an internal antenna for a 13.560 MHz transmitter.

Result: Complies.

Section 15.204: External radio frequency power amplifiers and antenna modifications

It is not possible to attach an external power amplifier to this transmitter.


Result: Complies.

Section 15.205: Restricted bands of operation

The transmitter transmits on 13.560 MHz.

This device would therefore fall into the band 13.110 - 14.010 MHz that is covered by Section 15.225.

The plot below shows that the device has an occupied bandwidth of 1.106 MHz when measured using a resolution bandwidth of 50 kHz (1% of the 6 MHz span) and with a video bandwidth of 200 kHz that is approximately 3 times the resolution bandwidth.

The 99% power bandwidth was then measured using a resolution bandwidth of 10 kHz which is 1% of the occupied bandwidth of 1.106 MHz with measurements being made at the -23 dB points which give a bandwidth of 442.5 kHz

Result: Complies.

Section 15.207: Conducted emissions testing

Conducted Emissions testing was carried out over the frequency range of 150 kHz to 30 MHz which was carried out at the laboratory's MacKelvie Street premises in a 2.4 m x 2.4 m screened room

Testing was carried out using a representative AC power supply system that was powered at 120 Vac 60 Hz which supplied 12 Vdc to a GBUS URI device which in turn powered the Card Reader also at 12 Vdc.

The device operates on 13.560 MHz.

Testing was carried out with the 13.560 MHz transmitter operating with the standard antenna attached and with this antenna removed and replaced with a dummy load.

The device is deemed to comply providing it complies when the test is carried out with a dummy load attached and the overall emission signature for the product remains similar with no additional emissions being detected.

This is the case with this device.

The device was placed on top of the emissions table, which is 1 m x 1.5 m, 80 cm above the screened room floor which acts as the horizontal ground plane.

In addition the device was positioned 40 cm away from the screened room wall which acts as the vertical ground plane.

The artificial mains network was bonded to the screened room floor.

At all times the device was kept more than 80 cm from the artificial mains network.

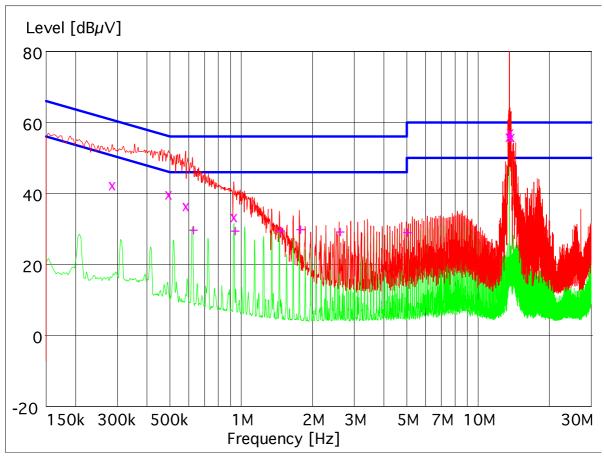
The Class B limits have been applied.

The supplied plot is combined plot showing the worst case quasi peak and average results of both the phase and neutral lines to the representative AC power supply.

Quasi peak and average detectors have been used with resolution bandwidths of 9 kHz.

Measurement uncertainty with a confidence interval of 95% is:

- AC Mains port


 $(0.15-30 \text{ MHz}) \pm 2.8 \text{ dB}$

Conducted Emissions – AC Input Power Port

Setup:

Device test transmitting continuously on $13.560~\mathrm{MHz}$ when powered at $120~\mathrm{Vac}~60~\mathrm{Hz}$ with the antenna connected

Final Quasi-Peak Measurements

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.285000	43.00	60.7	17.7	N	
0.492000	40.40	56.0	15.8	L1	
0.582000	37.20	56.0	18.8	L1	
0.930000	34.10	56.0	21.9	N	
13.484000	56.70	60.0	3.3	N	
13.560500	83.30	60.0	-23.3	N	
13.637000	57.90	60.0	2.1	N	
13.772000	56.60	60.0	3.4	N	

Final Average Measurements

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.621000	30.60	46.0	15.4	N	
0.933000	30.40	46.0	15.6	N	
1.449000	30.50	46.0	15.5	N	
1.758000	30.80	46.0	15.2	N	
2.585000	30.10	46.0	15.9	N	
4.965500	30.00	46.0	16.0	N	
13.560500	81.80	50.0	-31.8	N	81.5

Conducted Emissions – AC Input Power Port

Setup:

Device test transmitting continuously on 13.560 MHz when powered at 120 Vac 60 Hz with the antenna disconnected and replaced with a resistive dummy.

	-	Peak	Average	Quasi Peak X	Average +
Level [dB μ V]					
80					
60 m					
and the same of th					
40 x	* Mary Mary Mary Mary Mary Mary Mary Mary				
	+ + ×+ M+4				
20		They do		Addition to the second	
0		(The at the state of the state	Jili Jili Jaran Alamanan	Alle halle for the species of the same	
-20 150k 300k 5	00k 1M	2M 3M	1 5M	7M 10M	30M

Final Quasi-Peak Measurements

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.186000	47.90	64.2	16.3	L1	
0.366000	43.70	58.6	14.9	N	
0.600000	40.90	56.0	15.1	L1	
1.077000	31.20	56.0	24.8	L1	

Frequency [Hz]

Final Average Measurements

Tillal Average Measurement	ıs				
Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Phase	Rechecks dBµV
0.516000	31.10	46.0	14.9	N	
0.828000	31.20	46.0	14.8	N	
1.137000	30.10	46.0	15.9	N	
1.446000	32.30	46.0	13.7	N	
2.792000	30.60	46.0	15.4	N	
2.999000	30.10	46.0	15.9	N	
3.206000	30.30	46.0	15.7	N	
3.930500	30.60	46.0	15.4	N	

Section 15.209: Radiated emission limits, general requirements

Radiated emissions testing was carried out over the frequency range of 13 MHz to 1000 MHz as the highest frequency in use is less than 108 MHz.

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand. This site conforms to the requirements of CISPR 16 and ANSI C63.4 - 2003.

Testing was carried out when the device was powered at 12 Vdc from a GBUS URI device which was in turn powered at 12 Vdc from a 120 Vac 60 Hz to 12 Vdc representative AC power supply.

The GBUS URI and representative AC power supply were placed 5 metres directly behind the device under test (in the coffin).

Testing was carried out with the device being placed in the centre of the test table standing vertically upright using a test jig that was supplied by the client.

The device was transmitting continuously on 13.560 MHz.

Throughout the test correct operations were confirmed by placing a suitable card in front of the device which gave an audible beep.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height, where appropriate, with an automated antenna tower.

Below 30 MHz a magnetic loop is used with the centre of the loop being 1 metre above the ground with measurements being made using a quasi peak detector.

Above 30 MHz the emission is measured in both vertical and horizontal antenna polarisations, where appropriate, using a quasi peak detector.

The emission level was determined in field strength by taking the following into consideration:

Level $(dB\mu V/m)$ = Receiver Reading $(dB\mu V)$ + Antenna Factor (dB) + Coax Loss (dB)

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 1000 \text{ MHz}) \pm 4.1 \text{ dB}$

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209: Below 30 MHz spurious emission measurements

Frequency	Level	Limit	Margin
MHz	dBµV/m	dBµV/m	dB
27.120	15.0	48.6	

Testing was carried out when the device was transmitting continuously.

Magnetic loop measurements were attempted at a distance of 10 metres.

A receiver with a quasi peak detector with a 9 kHz bandwidth was used between 490 kHz – 30.0 MHz.

The 30 metre limit between 1.705 MHz – 30 MHz has been scaled by a factor of 40 dB per decade, as per section 15.31 (f) (2).

The limit at 27.120 MHz when measured at 30 metres is 30 uV/m or 29.54 dBuV/m.

Therefore the scaled limit at 10 metres will be 48.6 dBuV/m.

The spurious emission observed does not exceed the level of the fundament emission.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209: Spurious Emissions (above 30 MHz)

Measurements between 30 –1000 MHz have been made at a distance of 3 metres.

A receiver with a quasi peak detector with a 120 kHz bandwidth was used between 30 - 1000 MHz.

The limits as described in Section 15.209 have been applied.

Frequency	Vertical	Horizontal	Limit	Margin	Result	Antenna
MHz	dBμV/m	dBμV/m	dBμV/m	dB		
40.620	31.2		40.0	8.8	Pass	Vertical
40.680	31.8		40.0	8.2	Pass	Vertical
135.600	18.9		43.5	24.6	Pass	Vertical
149.160	26.7	25.3	43.5	16.8	Pass	Vertical
189.840	22.3		43.5	21.2	Pass	Vertical
203.400	21.0		43.5	22.5	Pass	Vertical
244.080	24.1	27.5	43.5	16.0	Pass	Horizontal

All other emissions observed had a margin to the limit that exceeded 20 dB when measurements were attempted over the range of 30 - 1000 MHz using both vertical and horizontal polarisations.

Result: Complies.

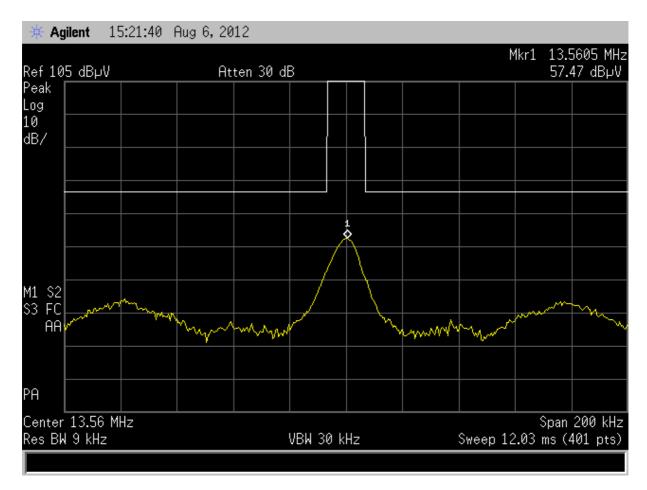
Measurement uncertainty with a confidence interval of 95% is:

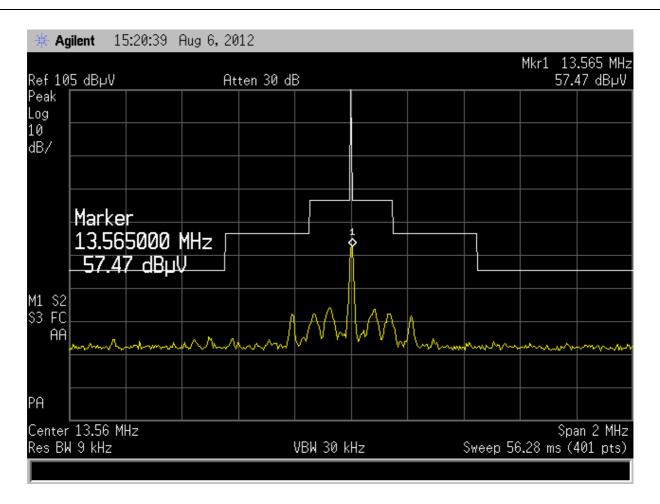
- Free radiation tests $(30 \text{ MHz} - 1000 \text{ MHz}) \pm 4.1 \text{ dB}$

Section 15.225: Fundamental emission:

Measurements were made using a magnetic loop antenna and a receiver with a quasi peak detector using a 9 kHz bandwidth

Measurements were made at a distance of 10 metres with the limit being determined by using the extrapolation factor of 40 dB per decade limit, as detailed in section 15.31 f (2).


The limit at 30 m at 13.560 MHz is 15,848 uV/m or 84.0 dBuV/m.


Applying the extrapolation factor of 40 dB/ per decade, the limit is 103.1 dBuV/m.

Testing was carried out when the device was transmitting continuously when the 120 Vac supply to the device was varied by +/- 15%.

Frequency MHz	Level dBuV/m	Distance metres	Limit dBuV/m	Voltage Vac	Margin dB
13.560	56.3	10.0	103.1	102.0	46.8
13.560	56.3	10.0	103.1	120.0	46.8
13.560	56.3	10.0	103.1	138.0	46.8

A representative spectrum analyser plot shows that the carrier and modulation peaks within +/- 100 kHz of the carrier and within +/- 1 MHz of the carrier.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(100 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.225: Frequency tolerance:

The frequency tolerance of the carrier is required to be \pm 0.01% of operating frequency when the temperature is varied between -20 degrees and \pm 50 degrees.

The device operates nominally on 13.560 MHz which gives a frequency tolerance of +/- 1,356 Hz

Temperature	Frequency	Difference
	MHz	Hz
-20.0	13.559 557	-443.0
-10.0	13.559 575	-425.0
0.0	13.559 573	-427.0
10.0	13.559 563	-437.0
20.0	13.559 563	-437.0
30.0	13.559 551	-449.0
40.0	13.559 547	-453.0
50.0	13.559 547	-453.0

Variation of the 120 Vac 60 Hz supply to the AC power supply did not vary the 12 Vdc supply to the GBUS URI or the device under test.

As a worst case scenario the 12 Vdc supply to the device was varied between 85% and 115% of the supply voltage at +20 degrees.

Voltage	Frequency	Difference
Vdc	MHz	Hz
10.2	13.559 563	-437.0
12.0	13.559 563	-437.0
13.8	13.559 563	-437.0

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Frequency tolerance \pm 50 Hz

7. TEST EQUIPMENT USED

Instrument	Manufacturer	Model	Serial No	Asset Ref	Cal Due
Aerial Controller	EMCO	1090	9112-1062	RFS 3710	Not applicable
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708	Not applicable
Turntable	EMCO	1080-1-2.1	9109-1578	RFS 3709	Not applicable
AC Power Source	APT	7008	4170003	-	Not applicable
Receiver	R & S	ESHS 10	828404/005	3728	21 Nov 2012
Mains Network	R & S	ESH2-Z5	881362/032	3628	21 Aug 2012
Receiver	R & S	ESIB-40	100171	R-27-1	21 Oct 2012
Spectrum Analyser	Hewlett Packard	E7405A	US39150142	3771	20 April 2013
Loop Antenna	EMCO	6502	9003-2485	3798	7 Feb 2013
VHF Balun	Schwarzbeck	VHA 9103	-	RFS 3603	7 Feb 2013
Biconical Antenna	Schwarzbeck	BBA 9106	-	RFS 3612	7 Feb 2013
Log Periodic	Schwarzbeck	VUSLP 9111	9111-228	3785	7 Feb 2013

8. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies Ltd registration with the Federal Communications Commission as a listed facility, registration number: 90838, which was updated on February 15th, 2011.

All testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025, 2005.

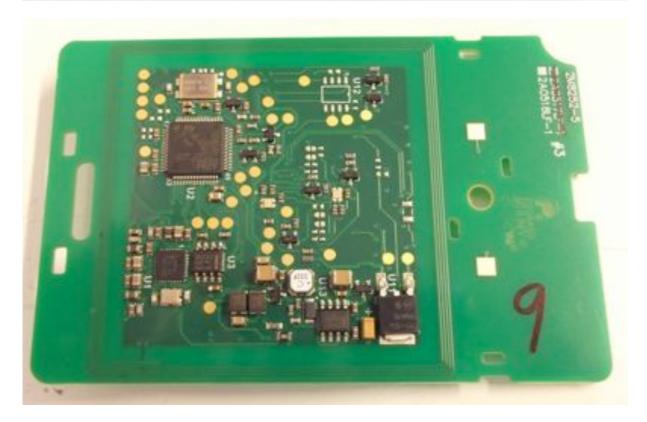
All measurement equipment has been calibrated in accordance with the terms of the EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025, 2005

International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.

9. PHOTOGRAPHS

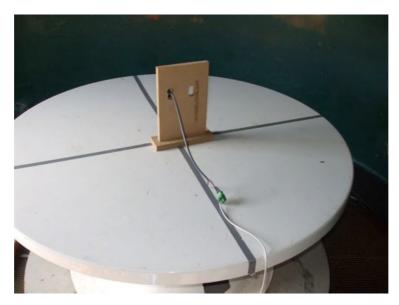
Page 17 of 22

External photos

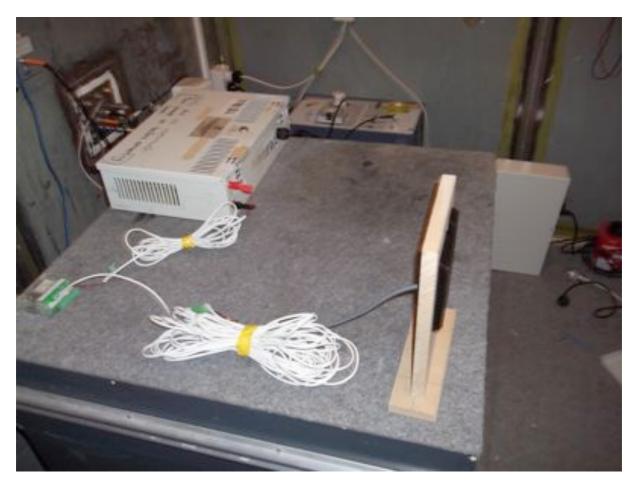


Test Report No 120711.1c 23rd November 2012
This report may not be reproduced except in full.

Internal Photos



Radiated emissions test set up


Page 20 of 22

Test Report No 120711.1c

This report may not be reproduced except in full.

Conducted emissions test set up

Ancillary equipment – GBUS URI and the representative AC power supply

