

FCC - TEST REPORT

Report Number	:	60.790.21.081.01R01	Date of Issue	: <u>March 30, 2022</u>			
Model	: _	EOX REMOTE 500 (401	06)				
Product Type	: _	E-Bike Remote					
Applicant	:	ZEITBIKE LLC					
Address	: _	298 Dalton Street, Ventura, California 93003-1539, USA.					
Production Facility	: _	SIGMA-Elektro GmbH					
Address	:	Dr. Julius Leber Str.15	, Neustadt 67433,	Germany			
Test Result	:	nPositive	○Negative				
Total pages including Appendices	:	42					

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents2
2 Description of Equipment Under Test
3 Summary of Test Standards 4
4 Details about the Test Laboratory5
4.1 Test Equipment Site List6
4.2 Measurement System Uncertainty7
5 Summary of Test Results
6 General Remarks9
7 Test Setups
7.1 Radiated test setups Below 1GHz10
7.2 Radiated test setups Above 1GHz10
7.3 AC Power Line Conducted Emission test setups11
7.4 Conducted RF test setups11
8 Emission Test Results
8.1 Spurious Radiated Emission12
8.2 6dB & 99% Bandwidth16
8.3 Peak Output Power19
8.4 Spurious Emissions at Antenna Terminals22
8.5 100kHz Bandwidth of band edges28
8.6 Power Spectral Density
8.7 Antenna Requirement
9 Test setup procedure
10 Appendix A - General Product Information

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product: E-Bike Remote

Model no.: EOX REMOTE 500 (40106)

FCC ID: M5LR500S

Rating: 12 VDC

Frequency: Bluetooth 2402MHz-2480MHz (Tx and Rx)

Antenna gain: 5.54 dBi

Number of operated channel: 40

Modulation: GFSK

Auxiliary Equipment and Software Used during Test:

		0	
DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Computer	Lenovo	X220	0A72168
Battery (12V, 90Ah/10HR)			EMC-086

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
RF Test Mode Software	nRFgo	1.16	Provided by applicant

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition

Federal Communications Commission, PART 15 — Radio Frequency Devices, Subpart C —Intentional Radiators

All the test methods were according to KDB558074 D01 v05r02 DTS Measurement Guidance and ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests				
Test Item	Test Site			
FCC Part 15 Subpart C				
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	Site 1			
FCC Title 47 Part 15.207 Conduct Emission	N/A			
FCC Title 47 Part 15.247(a)(1) 6dB & 99% Bandwidth	Site 1			
FCC Title 47 Part 15.247(b) Peak Output Power	Site 1			
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	Site 1			
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	Site 1			
FCC Title 47 Part 15.247(e) Power Spectral Density	Site 1			
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	Site 1			

4.1 Test Equipment Site List

Radiated emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2022-6-29
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2022-6-22
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2022-7-7
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2022-8-4
Horn Antenna	Rohde & Schwarz	HF907	102294	2022-7-5
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2022-6-21
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2022-6-21
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2022-7-30
Attenuator	Agilent	8491A	MY39264334	2022-6-21
3m Semi-anechoic chamber	TDK	9X6X6		2022-10-28
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2022-6-29
LISN	Rohde & Schwarz	ENV4200	100249	2022-6-12
LISN	Rohde & Schwarz	ENV432	101318	2022-6-12
LISN	Rohde & Schwarz	ENV216	100326	2022-6-12
LISN	Rohde & Schwarz	ENV216	102472	2022-6-12
ISN	Rohde & Schwarz	ENY81	100177	2022-6-12
ISN	Rohde & Schwarz	ENY81-CA6	101664	2022-6-12
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2022-6-23
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2022-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2022-6-21
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2022-11-07

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Power Spectral Density – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2022-6-21
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2022-6-21

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty				
Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB			
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;			
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;			
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB			
Uncertainty for conducted power test	1.16dB			
Uncertainty for frequency test	0.6×10 ⁻⁷			

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

5 Summary of Test Results

Emission Tests						
FCC Part 15 Subpart C						
Test Condition	Pages	Те	st Resi	st Result		
		Pass	Fail	N/A		
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	12-15	\square				
FCC Title 47 Part 15.247(a)(2) 6dB & 99% Bandwidth	16-18					
FCC Title 47 Part 15.247(b) Peak Output Power	19-21	\square				
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	22-27	\square				
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	28-29	\boxtimes				
FCC Title 47 Part 15.247(e) Power Spectral Density	30-32	\square				
FCC Title 47 Part 15.207 Conduct Emission (1)				\boxtimes		
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	33	\square				

Remark:

(1) Test not applicable for Battery Operated device.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for **FCC ID: M5LR500S**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DTS grant.

The TX and RX range is 2402MHz-2480MHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were

n - Performed

O - Not Performed

- The Equipment Under Test

n - Fulfills the general approval requirements.

O - **Does not** fulfill the general approval requirements.

Sample Received Date: February 20, 2022

Testing Start Date:

February 23, 2022

Testing End Date:

March 29, 2022

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

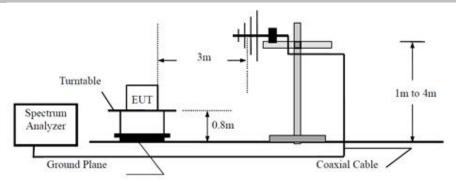
Reviewed by:

Prepared by:

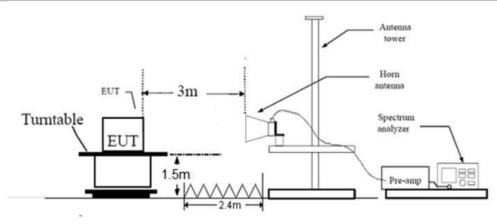
Tested by:

Eric LI EMC Project Manager

Hosea CHAN EMC Project Engineer

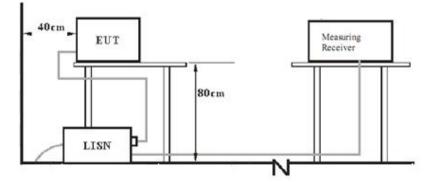

mise Lin

Louise Liu EMC Test Engineer

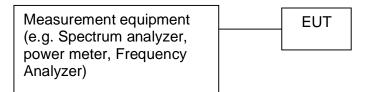


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

8 Emission Test Results

8.1 Spurious Radiated Emission

EUT: Op Condition:	EOX REMOTE 500 (40106) Operated, TX Mode	Test Result ⊠ Passed
•	(Highest channel is the worst case)	
Test Specification:	FCC15.205, 15.209 & 15.247(d)	Not Passed
Comment:	12 VDC	
Remark:	Below 1GHz	

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
122.203889	25.60	43.50	17.90	Peak	Н	16.33
224.000000	33.63	46.00	12.37	Peak	Н	18.82
352.578889	37.00	46.00	9.00	Peak	Н	22.27
594.162778	34.14	46.00	11.86	Peak	Н	27.52
810.418889	39.99	46.00	6.01	QP	Н	30.54
916.823244	37.47	46.00	8.53	QP	Н	31.86
45.735556	22.64	40.00	17.36	Peak	V	20.89
126.676667	20.56	43.50	22.94	Peak	V	15.97
224.000000	27.45	46.00	18.55	Peak	V	18.82
345.573333	32.04	46.00	13.96	Peak	V	22.40
592.007222	35.73	46.00	10.27	Peak	V	27.46
805.515000	39.14	46.00	6.86	Peak	V	30.33

Remark:

- 1. As the measured peak value not exceeded the Quasi-peak limit, Quasi-peak value no need to be measured.
- Result Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT: Op Condition: Test Specification:	EOX REMOT Operated, TX FCC15.205, 15	K Mode (24	02MHz)		Test Resul ⊠ Passed ☐ Not Pas	
Comment: Remark:	12 VDC 1GHz to 25G	iHz		_		
Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.

				20100101	Polarity	••••	
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)	
2391.000000	40.84	74.00	33.16	Peak	Н	-3.12	
2485.500000	40.18	74.00	33.82	Peak	Н	-2.76	
4312.500000	47.14	74.00	26.86	Peak	Н	1.60	
9859.000000	44.76	74.00	29.24	Peak	Н	11.80	
2390.000000	39.26	74.00	34.74	Peak	V	-3.12	
2483.500000	39.80	74.00	34.20	Peak	V	-2.76	
6469.000000	40.86	74.00	33.14	Peak	V	6.90	

Remark:

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

12235.500000

1911.500000

9871.000000

EUT: Op Condition: Test Specification:	EOX REMOTE 500 (40106) Operated, TX Mode (2440MHz) FCC15.205, 15.209 & 15.247(d)			Test Resu ⊠ Passeo <u></u> Not Pa	k	
Comment:	12 VDC					
Remark:	1GHz to 2	5GHz				
Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1988.500000	40.53	74.00	33.47	Peak	Н	-4.75
3172.500000	44.74	74.00	29.26	Peak	Н	-0.77
8277.000000	41.18	74.00	32.82	Peak	Н	8.41

74.00

74.00

74.00

28.76

33.21

28.83

Peak

Peak

Peak

н

V

V

12.00

-4.84

11.66

Remark: 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in

data table if the peak value complies with average limit.
Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

45.24

40.79

45.17

Spurious Radiated Emission

2483 500000

45 14

EUT: Op Condition: Test Specification:	Operated, T FCC15.205, 1	EOX REMOTE 500 (40106) Operated, TX Mode (2480MHz) FCC15.205, 15.209 & 15.247(d)			Test Resul ⊠ Passed <u></u> Not Pas	
Comment:	12 VDC					
Remark:	1GHz to 25	GHz				
Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2392.500000	38.42	74.00	35.58	Peak	Н	-3.12

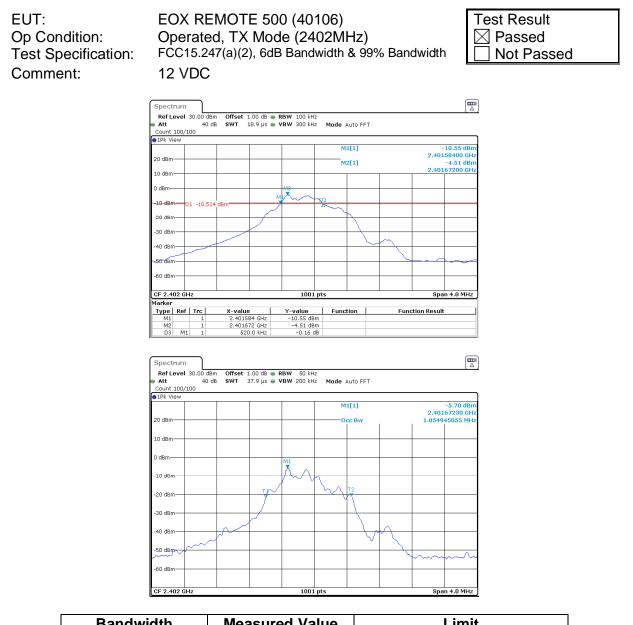
2100.000000	10.11	71.00	20.00	roun		2.70
9829.500000	44.37	74.00	29.63	Peak	Н	11.29
2391.000000	38.96	74.00	35.04	Peak	V	-3.12
2485.500000	38.54	74.00	35.46	Peak	V	-2.76
9827.500000	44.84	74.00	29.16	Peak	V	11.25

28.86

Peak

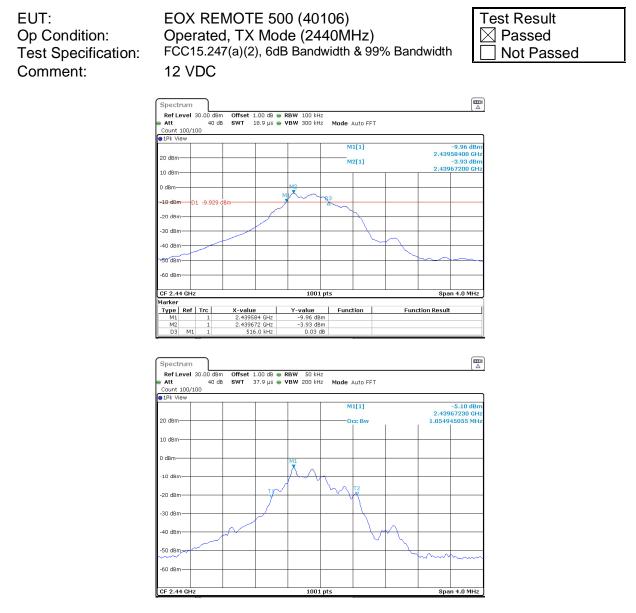
н

-276

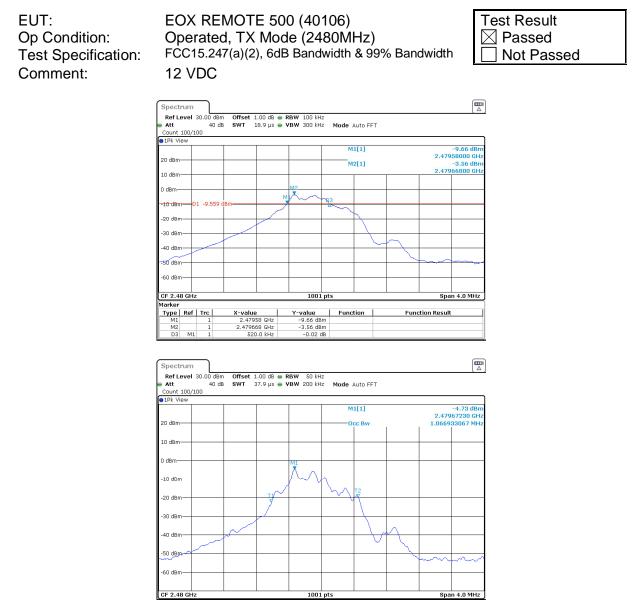

74 00

Remark:

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)


8.2 6dB & 99% Bandwidth

Bandwidth	Measured Value	Limit
6dB bandwidth	0.520 MHz	> 0.5MHz
99% OCB	1.055 MHz	NA


6dB & 99% Bandwidth

Bandwidth	Measured Value	Limit
6dB bandwidth	0.516 MHz	> 0.5 MHz
99% OCB	1.055 MHz	NA

6dB & 99% Bandwidth

Bandwidth	Measured Value	Limit
6dB bandwidth	0.520 MHz	> 0.5 MHz
99% OCB	1.067 MHz	NA

8.3 Peak Output Power

EUT: Op Condition: Test Specification: Comment:	EOX REMOTE 500 (40106)Test ResultOperated, TX Mode (2402MHz)□ PassedFCC15.247(b)□ Not Passed12 VDC
	Spectrum RefLevel 30.00 dBm Offset 1.00 dB RBW 2 MHz
	Att 40 dB SWT 8 ms VBW 5 MHz Mode Auto Sweep
	P1Pk View
	M1[1] -4.33 dBm 2.401913010 GHz
	20 dBm
	10 dBm
	0 dBm
	-10 dBm-
	-30 dBm
	-30 UBII-
	-40 d8m
	-50 dBm
	-60 dBm
	CF 2.402 GHz 8001 pts Span 6.0 MHz

Max. Conducted Output Power	Limit	EIRP	EIRP Limit
(dBm)	(dBm)	(dBm)	(dBm)
-4.33	< 30.00	1.21	< 36.00

Peak Output Power

EUT: Op Condition: Test Specification: Comment:	EOX REMOTE 500 (40106)Test ResultOperated, TX Mode (2440MHz)⊠ PassedFCC15.247(b)□ Not Passed12 VDC
	Spectrum Image: Comparison of the section
	Att 40 dB SWT 8 ms VBW 5 MHz Mode Auto Sweep Count 100/100
	IPk View
	M1[1] -3.76 dBm 2.439776530 GHz
	20 dBm-
	10 dBm-
	0 dBm
	10 dBm
	-30 d8m
	-40 d8m
	-50 d8m
	-60 dBm
	CF 2.44 GHz 8001 pts Span 6.0 MHz

Max. Conducted Output Power	Limit	EIRP	EIRP Limit
(dBm)	(dBm)	(dBm)	(dBm)
-3.76	< 30.00	1.78	< 36.00

10 dB

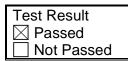
-30 dBm -40 dBm -50 dBm -60 dBm

CF 2.48 GH

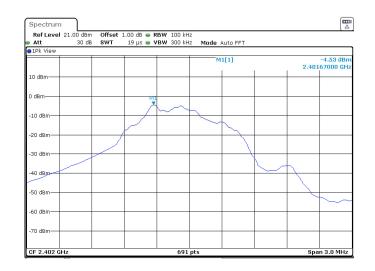
Peak Output Power

EUT: Op Condition: Test Specification: Comment:	EOX REMOTE 500 (40106)Test ResultOperated, TX Mode (2480MHz)⊠ PassedFCC15.247(b)□ Not Passed12 VDC
R A Co	Ctrum Image: Constraint of the constraint of
20 10 0 d	Am M1[1] -3.39 dBm Bm 2.479717290 GH2 am Imm Imm

Max. Conducted Output Power	Limit	EIRP	EIRP Limit
(dBm)	(dBm)	(dBm)	(dBm)
-3.39	< 30.00	2.15	< 36.00


8001 pts

Span 6.0 MHz



8.4 Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2402MHz) FCC2.1051 & 15.247(d) 12 VDC

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2402	2402	-4.53	-4.53		PASS
2402	30~1000		-67.78	<=-24.53	PASS
2402	1000~26500		-52.07	<=-24.53	PASS

Test Result

Spurious Emissions at Antenna Terminals

Spectrum

Count 10/10

0 dBm— -10 dBm -20 dBm

Ref Level 11.00 dBm Offset Att 20 dB SWT

D1 -24.530 dBm-

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2402MHz FCC2.1051 & 15.247(d) 12 VDC

> t 1.00 30.1

lode (2402MHz) 5.247(d)				[➢ Passed ☐ Not Passed
				Ē	0
RBW 100 k⊢ ∕BW 300 k⊢		Auto Sweep			1
	м	1[1]	1	67.78 dBm).6390 MHz	
					-
					-
					-

Start 30.0				3000					p 1.0 GHz
-00 ubili									
-80 dBm	ghasing togethe first total	united for the second	10-10-10-10-10-10-10-10-10-10-10-10-10-1	endersterfestereted.	empetration.	(Oppersonal) Station	nodene diggerije	an in fierran an an in	Miccipania (CDA
	साल्प्रे एकी सला					and the second second		pen hettertil	
-00 0011								M1	
-60 dBm									
-50 dBm									
-40 dBm									
10.10									
-30 dBm									

Ref Level 20	.00 dBm Offs	et 1.00 dB 👄	RBW 100 kHz					
Att	30 dB SW	r 255 ms 👄	VBW 300 kHz	Mode /	Auto Sweep			
Count 9/10 1Pk Max								
				М	1[1]			52.07 dB 05000 GH
LO dBm								
) dBm								
10 d6m								
20 d6m	04.500 do-							
30 d6m	-24.530 dBm							
40 d6m								
50 d6m	M1			. 1.4				
60 d6 million all	بالم المستعلمين سيسمى	الالاقتر سرائة الدائر		an Versteinigen (Partie) ander Ander Ander	All and an Andrews	Televity angust	and YAR (Ultra)	in the state
on the second second	and a second	need, territalikeede						and a state
70 dBm								



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2440MHz) FCC2.1051 & 15.247(d) 12 VDC

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2440	2440	-4.00	-4.00		PASS
2440	30~1000		-67.76	<=-24	PASS
2440	1000~26500		-51.72	<=-24	PASS

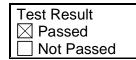
Test Result

 \boxtimes Passed

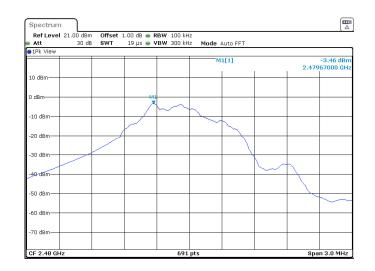
Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2440MHz) FCC2.1051 & 15.247(d) 12 VDC

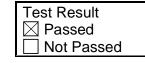

Spectrun	n								
Att Count 10/	1 11.00 dBm 20 dB 10		1.00 dB 👄 F 30.1 ms 👄 V			Auto Sweep			
●1Pk Max					м	1[1]			67.76 dBm 5.5170 MHz
0 dBm									
-10 dBm									
-20 dBm	D1 -24.000	dBm							
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm				M	r				
anger og state i trade	analisti (arabia) Analisti (arabia)	anda anana da anan	allandallandipi Alforitanonisi	na ann an tha ann an t	in the second	nina na hijinin Nina na hijinin	n in the second states of the	hears have been a second	ana kalendara pik
-80 dBm									
Start 30.0	MHz			3000	1 pts		•	Sto	p 1.0 GHz

Spectrum	ī								
	20.00 dBm			RBW 100 kH					
Att	30 dB	SWT	255 ms 👄 🕻	VBW 300 kH	z Mode /	Auto Sweep			
Count 9/10)								
⊖1Pk Max			1	1					
					M	1[1]			51.72 dBn 71100 GH;
10 dBm								17.5	/1100 Gri
0 dBm									
o ubili									
-10 dBm									
-10 asm									
-20 dBm									
	D1 -24.000	asm							
-30 dBm									
-40 dB <mark>m</mark>									
-50 dBm						M1			
		al assessment and		الأساقيمة راجب بالم	والمرادل والمرور	يداد وأدها سيانهما	a hall be and	والدواط فالعلى	يعاديان ورافتها استد
-60 d8	a statistica in pro-	and all substitutes	And the second second		يشاد مراديدي	المحر في المحاو	م المحالية المحالية		ana di Kumana
and a state of the state	yorthe distribution	Amatika	A CONTRACTOR OF A CONTRACTOR A			· · ·			
-70 dBm									
-70 abiii									
Start 1.0 G	iHz			3000	1 pts			Stop	26.5 GHz



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 12 VDC


Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2480	2480	-3.46	-3.46		PASS
2480	30~1000		-67.98	<=-23.46	PASS
2480	1000~26500		-52.82	<=-23.46	PASS

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 12 VDC

Att	el 11.00 dBm 20 dB		1.00 dB 👄 1 30.1 ms 👄 1			Auto Sweep			
Count 10, 1Pk Max	/10								
-					м	1[1]			67.98 de .1770 M
0 dBm									
-10 dBm—									
-20 dBm—	D1 -23.460	dBm							
-30 dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm—			M1						
	a platere tabler		. All shield have de					-	Handhard
Difficult by head	and an use (sealing	- Preservice and the	phenisthere	participation for	and the second second	-unip-ordeneous	angentegetree oorde	alle fightered	and a piritic sta
-80 dBm—			+						

Count 9/10								
1Pk Max				M	1[1]			52.82 dB
								15800 G
10 dBm								
) dBm								
10 dBm								
10 UBIII								
20 dBm								
	-23.460 dBm							
30 dBm								
40 dBm								
50 dBm			-		M1			
بلين ا	الاستأساط المريطي والمراجع	ومرجع والتعميد وال	أملطونة سرف اربطو	approximation of	an associated and	a falsi da ang	iste for the first states	بالبلاط بالباليا
60 dPm	A sure booking particular and	and the state of the	a produced a second	(Date of the second sec	and the second second	مير <u>مركون توج</u>	and the second	and particular
para di Mandrid								

8.5 100kHz Bandwidth of band edges

55.01 dB

EUT: Op Condition: Test Specification: Comment:	EOX REMOTE 500 (40106) Operated, TX Mode (2402MHz) FCC15.247(d), Conducted 12 VDC	Test Result Passed Not Passed
	Spectrum	
	Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz	
	Att 30 dB SWT 246.5 µs VBW 300 kHz Mode Auto FFT	
	Count 300/300	
	M1[1]	-4.53 dBm
	10 dBm M2[1]	2.401730 GHz -53.65 dBm
	0 dBm	2.400000/6Hz
	-10 dBm	
	-20 dBm	
	-30 dBm	
	-40 dBm	
	-50 dBm	
	-60 dBm	M3 M
	-70 dBm	Manufact.
	-76 0801	
	Start 2.3 GHz 691 pts	Stop 2.405 GHz
	Marker Type Ref Trc X-value Y-value Function Function	Result
	M1 1 2.40173 GHz -4.53 dBm	
	M2 1 2.4 GHz -53.65 dBm M3 1 2.39 GHz -62.96 dBm	
	M4 1 2.399826 GHz -55.01 dBm	
	Band edges Lin	nit
	Band edges Lin	1110

> 20dB

Test Result

⊠ Passed

Not Passed

100kHz Bandwidth of band edges

EUT:
Op Condition:
Test Specification:
Comment:

EOX REMOTE 500 (40106) Operated, TX Mode (2480MHz) FCC15.247(d), Conducted 12 VDC

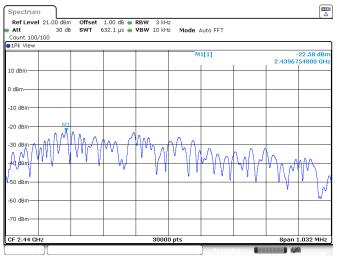
Att		20.00 di		RBW 100 kHz			
Count	200/2	30	dB SWT 1.1 ms	VBW 300 kHz	Mode Auto Sv	veep	
1Pk Vi		00					
					M1[1]		.49 dBn
10 dBm					and a second second		670 GH
					M2[1]		.16 dBn
0 dBm—	M	11				2.483	500 GH
		N					
-10 dBm		1					
-20 dBm		1					
20 001	D	1 -23.4	90 dBm				
-30 dBm	h	_					
	- 11	4					
-40 dBm	1-1						-
-50 dBm							
-50 001		M2	M4	мз			
-60 dBn	\sim		and the state of t		مبحب والمعاد والمحاصر ومراجع	and a start of the	
-70 dBr	1-						
Start 2	.47 G	Hz		691 pt:	5	Stop 2	.55 GHz
1arker						<u>_</u>	
Туре	Ref	Trc	X-value	Y-value	Function	Function Result	
M1		1	2.47967 GHz	-3.49 dBm			
M2 M3		1	2.4835 GHz 2.5 GHz	-57.16 dBm -59.60 dBm			
		1	2.5 GHZ	-59.00 dBm			

Band edges	Limit	
57.16 dB	> 20dB	

8.6 Power Spectral Density

EUT: Op Condition: Test Specification: Comment:	EOX REMOTE 500 (40106)Test ResultOperated, TX Mode (2402MHz)Image: PassedFCC15.247(e)Image: Not Passed12 VDCImage: Passed
	Spectrum a
	RefLevel 21.00 dBm Offset 1.00 dB 🖷 RBW 3 kHz
	Att 30 dB SWT 632.1 μs VBW 10 kHz Mode Auto FFT Count 100/100
	●1Pk View
	2.4016766470 GHz
	10 dBm
	0 dBm
	-10 d8m
	-20 dBm
	NS0 dBm
	-60 d8m
	-70 dBm-
	CF 2.402 GHz 30000 pts Span 1.04 MHz
	Measuring (1999)
	Date: 29 MAR 2022 18:39:54

PSD	Limit	
-23.05 dBm/3kHz	< 8 dBm/3kHz	


Test Result

 \boxtimes Passed

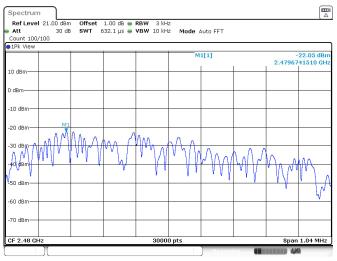
Not Passed

Power Spectral Density

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2440MHz) FCC15.247(e) 12 VDC

Date: 29.MAR.2022 18:41:48

PSD	Limit	
-22.58 dBm/3kHz	< 8 dBm/3kHz	


Test Result

 \boxtimes Passed

Not Passed

Power Spectral Density

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode (2480MHz) FCC15.247(e) 12 VDC

Date: 29.MAR.2022 18:43:30

PSD	Limit	
-22.05 dBm/3kHz	< 8 dBm/3kHz	

8.7 Antenna Requirement

EUT: Op Condition: Test Specification: Comment: EOX REMOTE 500 (40106) Operated, TX Mode FCC15.203 & 15.247(b) 12 VDC

Test Result	
🛛 Passed	
Not Passed	

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is an integrated antenna, and the maximum gain of this antenna is 5.54 dBi.

9 Test setup procedure

9.1 Spurious Radiated Emission

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz a) RBW = 1MHz.

b) VBW \setminus [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] $\ RBW / 2$. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
 If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209.

 Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
 30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dBµV	AV Limit dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

9.3 6dB & 99% Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

9.4 Peak Output Power

Test Method

- 1. Connect the spectrum analyzer to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
For e.i r.p:			
	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤4	≤36

9.5 Spurious Emissions at Antenna Terminals

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.6 100kHz Bandwidth of band edges

Test Method

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.7 Power Spectral Density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm/3KHz]

≤8

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: M5LR500S

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2402-2480MHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 5mm) (5mm is the worst case according to the KDB)

Step b)

- >> Numeric threshold (2402MHz), mW / 5mm * $\sqrt{2.402GHz} \le 3.0$ Numeric threshold (2402MHz) $\le 9.678mW$
- >> Numeric threshold (2440MHz), mW / 5mm * $\sqrt{2.440GHz} \le 3.0$ Numeric threshold (2440MHz) $\le 9.602mW$
- >> Numeric threshold (2480MHz), mW / 5mm * √2.480GHz ≤ 3.0 Numeric threshold (2480MHz) ≤ 9.525mW
- >> The power (measured + tune up tolerance) of EUT at 2402MHz is: -4.33dBm = 0.37mW The power (measured + tune up tolerance) of EUT at 2440MHz is: -3.76dBm = 0.42mW The power (measured + tune up tolerance) of EUT at 2480MHz is: -3.39dBm = 0.46mW

Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

Reviewed by:

Eric LI EMC Project Manager

Prepared by:

Hosea CHAN EMC Project Engineer