

Test Report

Client Information:

Applicant:	Sigma Elektro GmbH
Applicant add.:	DrJulius-Leber-Strabe 15, 67433 Neustadt an der Weinstrabe,
	Germany

EUT Information:

EUT Name:	heart rate and speed transmitter
Model No.:	R3
Brand Name:	Sigma
FCC ID	M5LR3STS

Prepared By:

Asia Institute Technology (Dongguan) Limited Add. : No.6 Binhe Road, Tianxin Village, Huangjiang, Dongguan, Guangdong, China. Date of Receipt: Jul. 12, 2010 Date of Test: Jul. 13-19, 2010 Date of Issue: Jul. 19, 2010 Test Result: Pass

Test procedure used: ANSI C63.4-2003

This device described above has been tested by Asia Institute Technology (Dongguan) Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. *This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Jim He

Reviewed by:

est director

Kovey Approved by:

Technical director

Asia Institute Technology (Dongguan) Limited No,6.Binhe Road, Tianxin Village, Huangjiang, Dongguan, Guangdong, China.

1 Contents

Page

CO	OVER PAGE	
1 (CONTENTS	2
1.1	1 COMPLIANCE WITH FCC PART 15 SUBPART C	
1.2	2 MEASUREMENT UNCERTAINTY	
2 -	TEST FACILITY	4
2.1	1 DEVIATION FROM STANDARD	4
2.2	2 ABNORMALITIES FROM STANDARD CONDITIONS	4
3 (GENERAL INFORMATION	5
3.1	1 GENERAL DESCRIPTION OF EUT	5
3.2	2 DESCRIPTION OF TEST CONDITIONS	
3.3	3 Peripheral List	7
4 I	EQUIPMENTS LIST FOR ALL TEST ITEMS	7
5 -	TEST RESULT	8
5.1	1 CONDUCTION EMISSIONS MEASUREMENT	
Ę	5.1.1 limit	
Ę	5.1.2 Test procedure	
Ę	5.1.3 Test result	
5.2	2 TIMING OF THE TRANSMITTER	9
5.3	3 RADIATED EMISSIONS MEASUREMENT	10
Ę	5.3.1 Limit	10
Ę	5.3.2 Test procedure	10
ł	5.3.3 Test Result	11
5.4	4 TEST SETUP PHOTOGRAPH	13
6	APPENDIX-Photographs of EUT Constructional Details	

1.1 Compliance with FCC Part 15 subpart C

Test	FCC rule part	Result
Timing of the transmitter (Duty cycle correction factor)	Section 15.31(c)	PASS
Radiated Emissions	Section 15.209	PASS
Conducted Emissions Limits	Section 15.107/15.207	N/A

1.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, The following measurements uncertainty Level have estimated based on ANSI C63.4:2003, the maximum value of the uncertainty as below

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	Radiated Emission Test	±3.57dB

2 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Asia Institute Technology (Dong guan) Limited have been registered by Federal Communications Commission (FCC) on Dec.07, 2006.

.Industry Canada(IC)-Registration No: IC6819A-1 & IC6819A-2

The 3m Semi-Anechoic Chamber and 3m/10m Open Area Test Site of Asia Institute Technology (Dongguan) Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Nov.07, 2006.

.VCCI- Registration No: R-2482 & C-2730

The 3m/10m Open Area Test Site and Shielding Room of Asia Institute Technology (Dongguan) Limited have been registered by Voluntary Control Council for Interference on Jan.24, 2007.

.TUV Rhineland

Asia Institute Technology (Dongguan) Limited has been assessed on Jan.16, 2007 that it can carry out EMC tests by order and under supervision of TUV Rhineland.

.ITS- Registration No: TMPSHA031

Asia Institute Technology (Dongguan) Limited has been assessed and included in Intertek Shanghai TMP Program regarding Laboratory facilities and test equipment on Nov.10, 2006.

2.1 Deviation from standard

None

2.2 Abnormalities from standard conditions

None

3 General Information

3.1 General Description of EUT

Manufacturer:	IDT Technology Limited		
Manufacturer Address:	Block C,9/F.,Kaiser Estate, Phase 1, 41 Man Yue Street, Hunghom, Kowloon		
EUT Name:	heart rate and speed transmitter		
Model No:	R3		
Operation frequency:	112kHz		
Channel Number:	1		
AntennaType:	Integrated antenna		
Brand Name:	Sigma		
Serial No:	N/A		
Power Supply Range:	DC 3V From battery		
Power Supply:	DC 3V From battery		
Power Cord:	N/A		
Signal Cable:	N/A		
Description of Channel:			
Channel No.	Frequency(kHz)		
1	112		

3.2 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

		-	- ·		
1. Block diagram of EUT configuration					
	EUT				

(2) E.U.T. test conditions:

15.31(e) :For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

.

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of fequencies in each band specified in the following table:

Frequency range over	Number of	Location in	
which device operates	frequencies	the range of operation	
1 MHz or less	1	Middle	
1 to 10 MHz	2	1 near top and 1 near bottom	
More then 10 MHz	2	1 near top, 1 near middle and	
	3	1 near bottom	

3.3 Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	N/A	N/A	N/A	N/A	N/A	N/A

4 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	ADVANTEST	R3182	150900201	2010.04.17	2011.04.16
2	EMI Measuring Receiver	Schaffner	SCR3501	235	2010.04.07	2011.04.06
3	Low Noise Pre Amplifier	Tsj	MLA-10K01-B01-27	1205323	2010.03.07	2010.09.06
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2010.04.08	2011.04.07
5	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2010.07.16	2011.07.15
7	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2010.03.07	2010.09.06
8	EMI Test Receiver	R&S	ESCI	100124	2009.12.28	2010.12.27
9	Loop Antenna 650	ARA	PLA-1030/B	1030	2010.03.20	2011.03.19

5 Test Result

5.1 Conduction Emissions Measurement

5.1.1 limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Note:Decreases with the logarithm of the frequency.

5.1.2 Test procedure

EUT was placed upon a wooden test table 0.8m above the horizontal metal reference plane and 0.4m from the vertical ground plane, and it was connected to an AMN. The closest distance between the boundary of the EUT and the surface of the AMN is 0.8m. All peripherals were connected to another AMN, and placed at a distance of 10cm from each other. A spectrum and receiver was connected to the RF output port of the AMN. Both average and quasi-peak value were detected.

5.1.3 Test result

Cause the EUT only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Measurements to demonstrate compliance with the conducted limits are not required for devices

5.2 Timing of the transmitter

Date: 19.JUL.2010 11:55:14

Limits: § 15.35 (c)

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

5.3 Radiated Emissions Measurement

5.3.1 Limit

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in 93 Section 15.209, whichever limit permits a higher field strength.

Eroqueney of Emission (MHT)	Field Streng	gth	Measurement Distance	
	μV/m	dBµV/m	(meters)	
0.009 – 0.490	2400 / F (kHz)		300	
0.490 – 1.705	24000 / F (kHz)		30	
1.705 – 30.0	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

5.3.2 Test procedure

EUT was placed upon a wooden test table which was placed on the turn table 0.8m above the horizontal metal ground plane, and operating in the mode as mentioned above. A receiving antenna was placed 3m away from the EUT. During testing, turn around the turn table and move the antenna from 1m to 4m to find the maximum field-strength reading. All peripherals were placed at a distance of 10cm between each other. Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

And according15.35(a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Interference (CISPR) of the International Electrotechnical Commission. As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, as long as the same bandwidths as indicated for CISPR quasi-peak measurements are employed.

5.3.3 Test Result

Test Data: 2010-7-15 Frenqucy Range: 9kHz to 30MHz RBW/VBW: 200Hz/200Hz Measurement Distance: 3 m Operating Environment: 25°C, 58% RH, 102 Kpa

Frequency	Correct	Reading	Measure	Margin	Limit	Detector Type
(kHz)	Factor	Level	Level	(dB)	(dBuV/m)	
	(dB)	(dBuV)	(dBuV/m)			
56.00	4.895	23.56	48.445	-48.445	113.00	QUASIPEAK
112.00	5.001	42.25	67.251	-39.749	107.00	QUASIPEAK
140.00	5.101	31.45	56.551	-48.449	105.00	QUASIPEAK
224.00	5.224	25.65	50.874	-50.126	101.00	QUASIPEAK
560.00	5.368	20.10	45.468	-7.532	53.00	QUASIPEAK
28000	8.224	15.24	23.464	-6.036	29.50	QUASIPEAK

Note: '*' means the worst case

Measurement Level = Reading Level + Factor

Factor=Ant Factor + Cable Loss

Test Data: 2010-7-15 Frenqucy Range: 30MHz to 1GHz RBW/VBW: 100KHz/300KHz for spectrum, RBW=120KHz for receiver Measurement Distance: 3 m Operating Environment: 25°C, 58% RH, 102 Kpa

(a) Antenna polarization: Horizontal

Frequency	Correct	Reading	Measure	Margin	Limit	Detector Type
(MHz)	Factor	Level	Level	(dB)	(dBuV/m)	
	(dB)	(dBuV)	(dBuV/m)			
53.280	13.980	2.454	16.434	-23.566	40.000	QUASIPEAK
137.670	15.730	3.117	18.847	-24.653	43.500	QUASIPEAK
395.690	19.750	1.540	21.290	-24.710	46.000	QUASIPEAK
589.690	24.530	1.259	25.789	-20.211	46.000	QUASIPEAK
892.330	29.550	1.829	31.379	-14.621	46.000	QUASIPEAK
935.980	30.130	3.994	34.124	-11.876	46.000	QUASIPEAK

(b) Antenna polarization: vertical

Frequency	Correct	Reading	Measure	Margin	Limit	Detector Type
(MHz)	Factor	Level	Level	(dB)	(dBuV/m)	
	(dB)	(dBuV)	(dBuV/m)			
44.550	14.110	4.656	18.766	-21.234	40.000	QUASIPEAK
135.730	15.570	4.842	20.412	-23.088	43.500	QUASIPEAK
143.490	16.140	4.272	20.412	-23.088	43.500	QUASIPEAK
169.680	16.220	3.637	19.857	-23.643	43.500	QUASIPEAK
192.960	13.960	6.452	20.412	-23.088	43.500	QUASIPEAK
305.480	17.270	5.722	22.992	-23.008	46.000	QUASIPEAK

Note: '*' means the worst case

Measurement Level = Reading Level + Factor Factor=Ant Factor + Cable Loss

Report No.: F-R1007002 Page 13 of 13 Rev:None

5.4 Test Setup photograph

Asia Institute Technology (Dongguan) Limited No,6.Binhe Road, Tianxin Village, Huangjiang, Dongguan, Guangdong, China.