

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4 : 2003

TEST REPORT

For

Wireless LAN Module

Model : XN-623

Trade Name : ZCOM

Issued for

Z-Com, Inc.

7F-2, No. 9. Prosperity RD.I Science-Based Industrial Park Hsinchu, 300 Taiwan

Issued by

Compliance Certification Services Inc. Hsinchu Lab. NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C TEL: +886-3-5921698

FAX: +886-3-5921108

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

 FCC ID
 : M4Y-XN623V01

 Report No.
 : 90223301-RP1

 Page
 2 of 167

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	04/15/2009	Initial Issue	All Page 167	Jason Chang

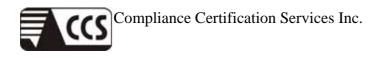
 FCC ID
 : M4Y-XN623V01

 Report No.
 : 90223301-RP1

 Page
 3 of 167

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	
2. EUT DESCRIPTION	
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	
4. TEST METHODOLOGY	
5. FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	
6.1 MEASURING INSTRUMENT CALIBRATION	
6.2 MEASUREMENT UNCERTAINTY	
7. SETUP OF EQUIPMENT UNDER TEST	
8. APPLICABLE LIMITS AND TEST RESULTS	
8.1 6dB BANDWIDTH	
8.2 99% BANDWIDTH	
8.3 MAXIMUM PEAK OUTPUT POWER	
8.4 MAXIMUM PERMISSIBLE EXPOSURE	
8.5 AVERAGE POWER	
8.6 POWER SPECTRAL DENSITY	
8.7 CONDUCTED SPURIOUS EMISSION	
8.8 RADIATED EMISSIONS	
8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	
8.8.4 RESTRICTED BAND EDGES	
8.9 POWERLINE CONDUCTED EMISSIONS	
APPENDIX SETUP PHOTOS	

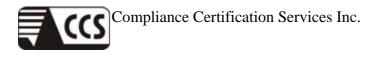

1. TEST REPORT CERTIFICATION

Applicant	: Z-Com, Inc.
Address	: 7F-2, No. 9. Prosperity RD.I Science-Based Industrial Park
	Hsinchu, 300 Taiwan
Equipment Under Test	: Wireless LAN Module
Model	: XN-623
Trade Name	: ZCOM
Tested Date	: February 23 ~ March 16, 2009 ; April 09 ~ 15, 2009

APPLICABLE STANDARD				
STANDARD	TEST RESULT			
FCC Part 15 Subpart C AND ANSI C63.4:2003	No non-compliance noted			

Approved by:	Reviewed by:
Jason Charg.	海股份方深 AL
Jason Chang Team Leader of Hsinchu Laboratory Compliance Certification Services Inc.	弊用章 Aladi Fan Team/Leader of Hsinchu Laboratory Compliance Certification Services Inc.

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.


2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Wireless LAN Module	
Model Number	XN-623	
Trade Name	ZCOM	
	IEEE 802.11b/g ,802.11n HT20 (DTS Band):2412MHz~2462MHz	
Frequency Range	IEEE 802.11n HT40 (DTS Band):2422MHz~2452MHz	
	IEEE 802.11b : 26.63dBm	
	IEEE 802.11g : 21.51dBm	
Transmit Power	IEEE 802.11n HT20 : 19.72dBm	
	IEEE 802.11n HT40 : 19.19dBm	
Channel Spacing	IEEE 802.11b/g ,802.11n HT20/HT40: 5MHz	
Channel Number	IEEE 802.11b/g ,802.11n HT20:11 Channels	
Channel Number	IEEE 802.11n HT40 :7 Channels	
	IEEE 802.11b:11, 5.5, 2, 1Mbps	
	IEEE 802.11g : 54, 48 ,36, 24, 18, 12, 11, 9, 6Mbps	
Transmit Data Rate	IEEE 802.11n HT20 : 130, 117 ,104, 78, 65, 58.5, 52, 39, 26, 19.5, 13, 6.5 Mbps	
	IEEE 802.11n HT40 : 270, 243 ,216, 162, 135, 121.5, 108, 81, 54, 40.5, 27, 13.5Mbps	
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)	
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)	
Frequency Selection	by software / firmware	
Antenna Type	Dipole Antenna, Antenna Gain : 2.04dBi.	
	Connector type : SMA connector	
RF Cable	(1) Model : 57-002-525218B	
(For Antenna)	(2) Model : 57-002-525225B	
	(3) Model : 57-002-525192B	
Power Source	3.3VDC (From Notebook PC ,Powered From Host Device)	

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: M4Y-XN623V01 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n MIMO transceiver in Mini-PCI module form factor. It has two transmitter chains and two receive chains (2×2 configurations). The 2×2 configuration is implemented with two outside chains (Chain 0, 2).

The RF chipset is manufactured by Atheros Communications Inc.

The EUT had been tested under operating condition.

There are four test mode have been tested as following :

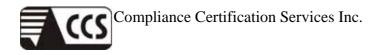
Test Mode
1. Dipole Antenna (Connector type : SMA connector)
2. Dipole Antenna + RF Cable (Model : 57-002-525218B)
3. Dipole Antenna + RF Cable (Model : 57-002-525225B) (worst case)
4. Dipole Antenna + RF Cable (Model : 57-002-525192B)

IEEE 802.11b mode : 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode : 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode : 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode : 13.5Mbps data rate (worst case) were chosen for full testing.


IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

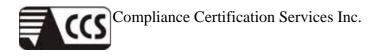
There are three channels have been tested as following :

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b mode : 1Mbps data rate (worst case) were chosen for full testing. IEEE 802.11g mode : 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode : 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.


There are three channels have been tested as following :

Channel	Frequency (MHz)	
Low	2422	
Middle	2437	
High	2452	

IEEE 802.11n HT40 mode : 13.5Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2437 MHz.

FCC ID : M4Y-XN623V01 Report No. : 90223301-RP1 Page <u>8</u> of <u>167</u>

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Rm.258, Bldg.17, NO.195, Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4:2003 and CISPR Publication 22.

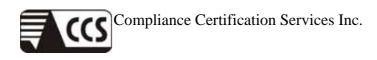
5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."


5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324H-I for OATS -6.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002
Canada	Industry Canada	RSS-GEN Issue 2	Canada IC 4417-1, IC-4417-2

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document

CISPR 16-4.

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	HP	nx6130	CNU543274R	DoC
2	Printer	HP	C6431D	CN19T6S011	DoC
3	Mouse	KINYO	KM-770	0804	DoC
4	Modem	ZyXEL	Omni 56K	S1Z4107729	1880MN156K
5	Notebook PC	DELL	PP11L (Latitude D610)	CN-0C4708-48643-625-5565	DoC
6	Wireless Access Point	D-Link	DWL-7100AP	DQ6114B00002	KA22003040018-1

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. Set up all computers like the setup diagram.
- 2. The "Atheros Radio Test <ART> Devilib Revision 0.7 BUILD #30 ART_11n" software was used for testing.

The EUT driver software installed in the host support equipment during testing was Atheros AR5002, ANWI Diagnostic Kernel Drive.

(1) **TX Mode:**

- ⇒ Tx Antenna: ANT_A, [TX99]
- ⇒ **Tx Data Rate:1Mbps long** (IEEE 802.11b mode , chain 0/2 TX)

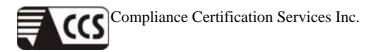
6Mbps (IEEE 802.11g mode , chain 0/2 TX)

6.5Mbps (IEEE 802.11n HT20 mode ,chain 0/2 TX)

- **13.5Mbps** (IEEE 802.11n HT40 mode, chain 0/2 TX)
- ⇒ Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = **19**

IEEE 802.11b Channel Middle (2437MHz) = 22


IEEE 802.11b Channel High (2462MHz) = **18.5**

Target Power: IEEE 802.11g Channel Low (2412MHz) = **12**

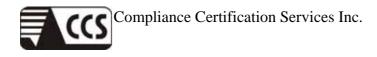
IEEE 802.11g Channel Middle (2437MHz) = 15

IEEE 802.11g Channel High (2462MHz) = 12

Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = **10.5**

FCC ID : M4Y-XN623V01 Report No. : 90223301-RP1 Page <u>12</u> of <u>167</u>

IEEE 802.11n HT20 Channel Middle (2437MHz) = **13.5** IEEE 802.11n HT20 Channel High (2462MHz) = **10.5 Target Power:** IEEE 802.11n HT40 Channel Low (2422MHz) = **9** IEEE 802.11n HT40 Channel Middle (2437MHz) = **12** IEEE 802.11n HT40 Channel High (2452MHz) = **9**


(2) **RX Mode**:

Continuous RF <R>eceive mode (ANT_A)

- 3. All of the function are under run.
- 4. Start test.

For Normal operating :

- 1. Set up all computers like the setup diagram.
- 2. Notebook PC (5) ping 192.168.0.10 -t to Notebook PC(1).
- 3. Notebook PC (1) ping 192.168.0.20 -t to Notebook PC(5).
- 4. Notebook PC (1) (5) ping 192.168.0.50 -t to AP.
- 5. All of the function are under run.
- 6. Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6dB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/21/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted

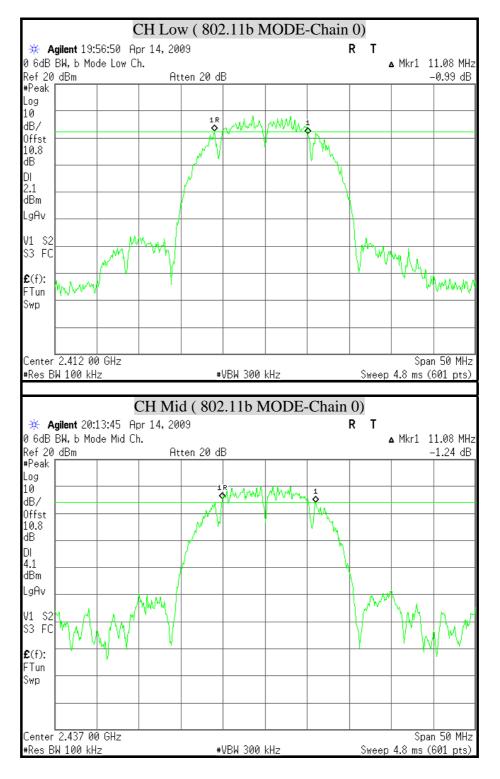
IEEE 802.11b MODE (Two TX)

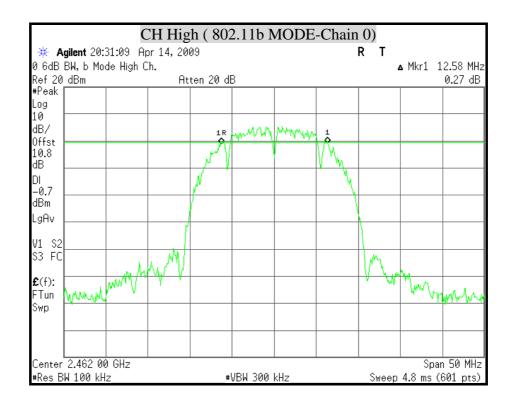
Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(kHz)	
Low	2412	11080	12080	500	PASS
Middle	2437	11080	11170	500	PASS
High	2462	12580	12170	500	PASS

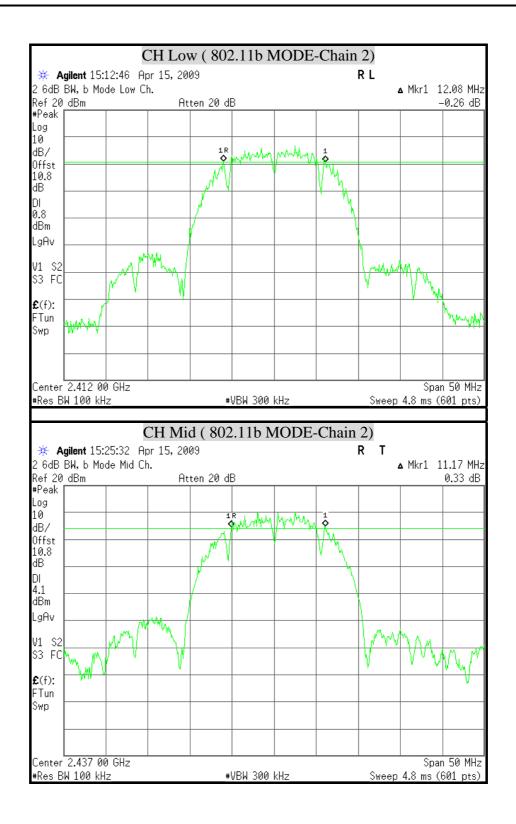
IEEE 802.11g MODE (Two TX)

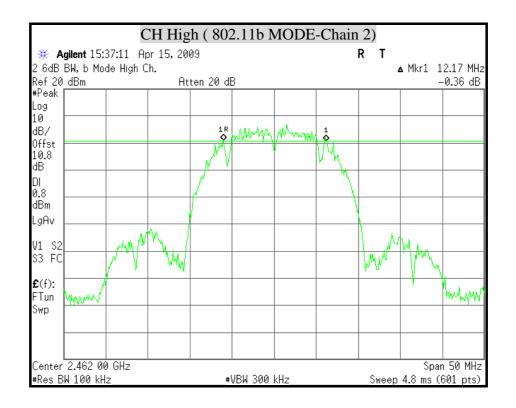
Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(kHz)	
Low	2412	16580	16420	500	PASS
Middle	2437	16670	16580	500	PASS
High	2462	16500	16670	500	PASS

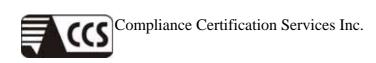
IEEE 802.11n HT20 mode (Two TX)

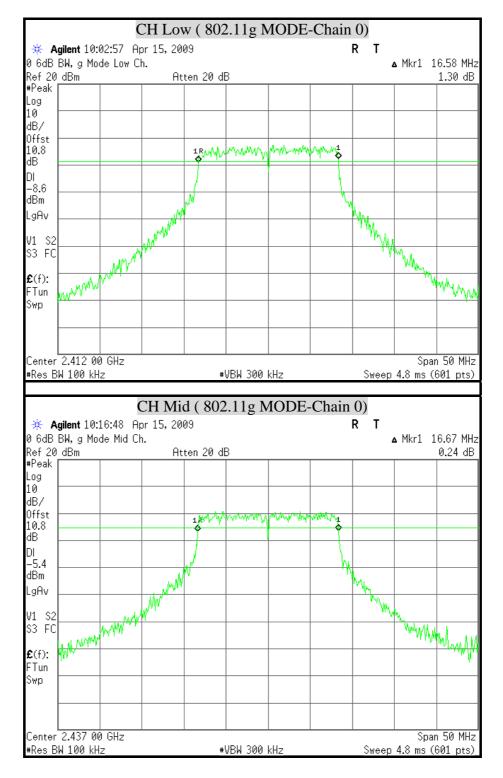

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(kHz)	
Low	2412	17830	17670	500	PASS
Middle	2437	17670	17750	500	PASS
High	2462	17750	17830	500	PASS

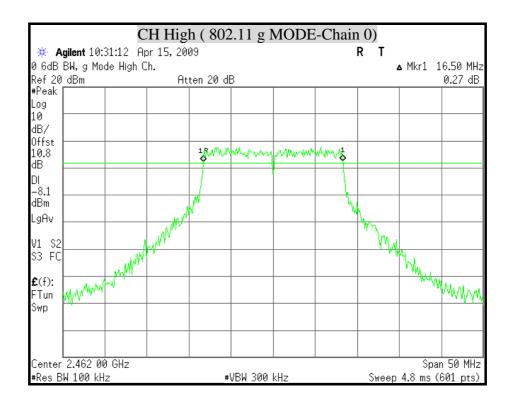

IEEE 802.11n HT40 mode (Two TX)

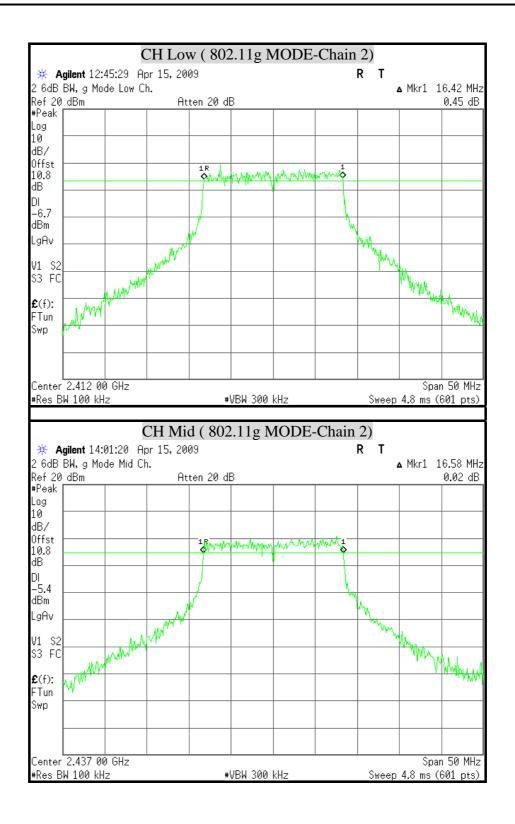

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(kHz)	
Low	2422	36330	36500	500	PASS
Middle	2437	36330	36420	500	PASS
High	2452	36420	36330	500	PASS

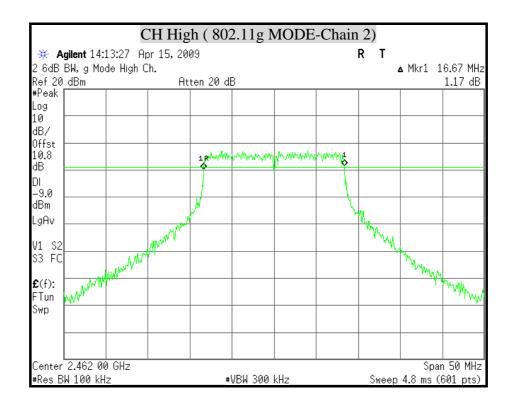


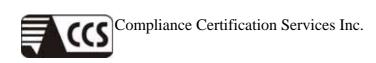

6dB BANDWIDTH (802.11b MODE)

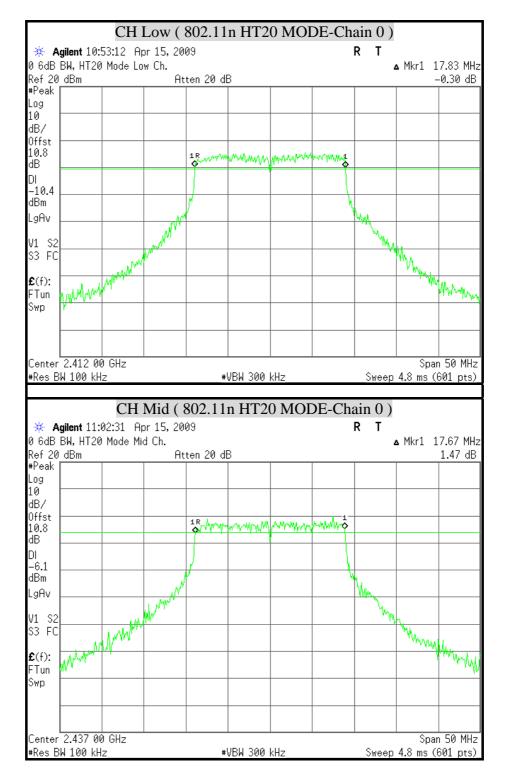


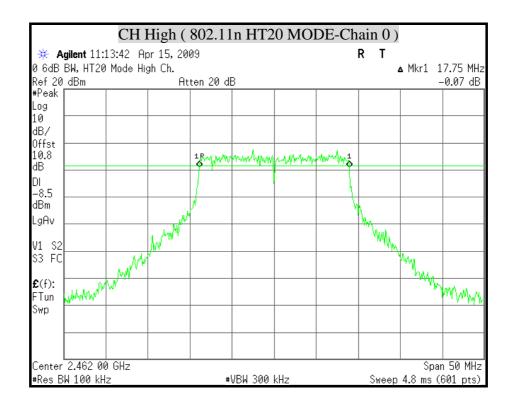


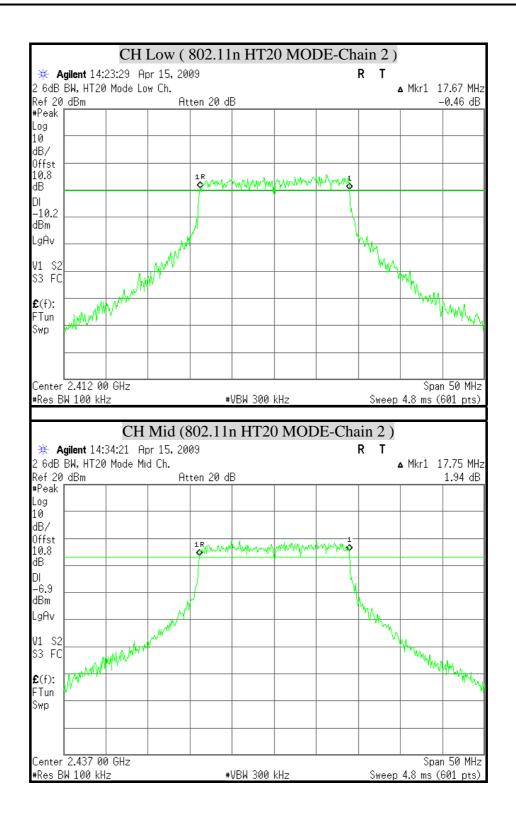


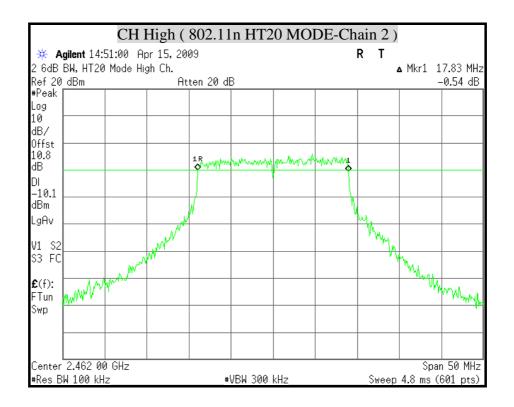


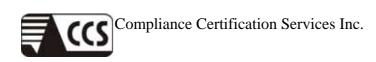

6dB BANDWIDTH (802.11g MODE)

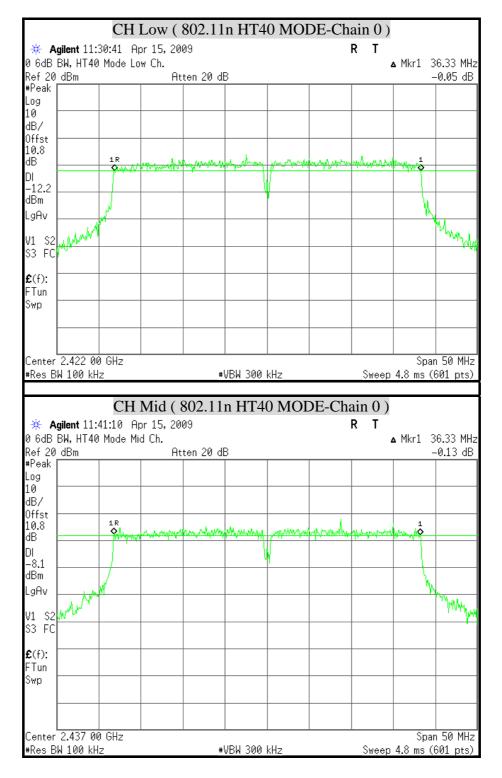


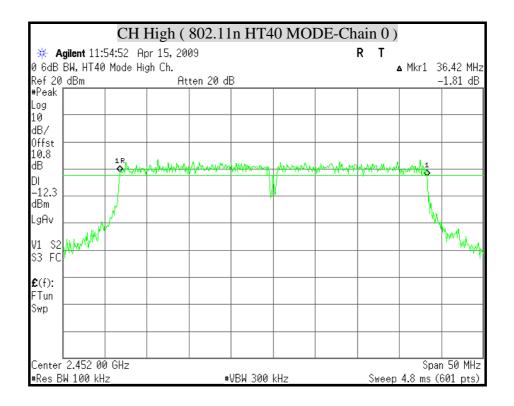


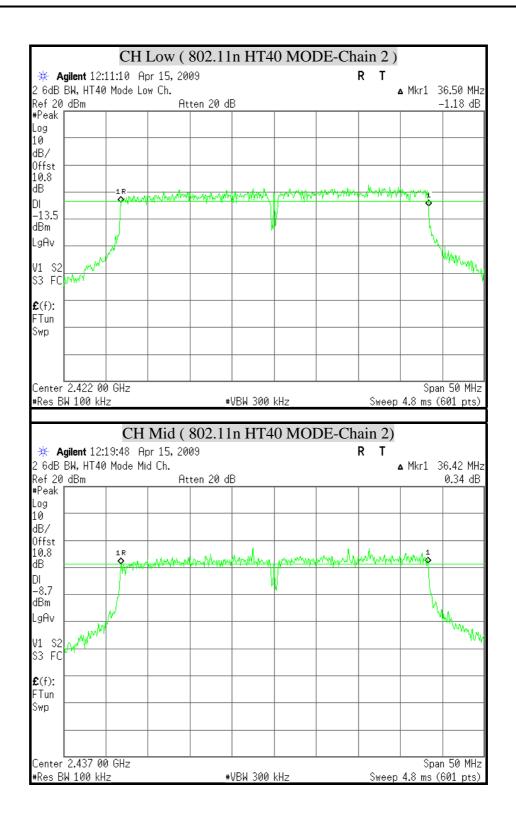


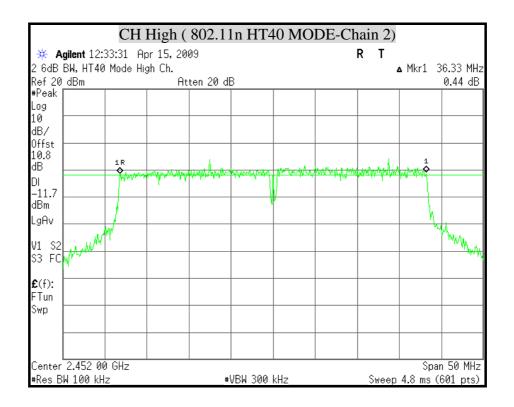


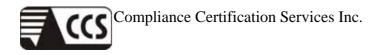

6dB BANDWIDTH (802.11n HT20 MODE)










6dB BANDWIDTH (802.11n HT40 MODE)

8.2 99% **BANDWIDTH**

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/21/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows :

Span : The minimum span to fully display the emission and approximately 20dB below peak level.

- RBW : The set to 1% to 3% of the approximate emission width.
- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The 99% BW is the bandwidth between the right and left markers.

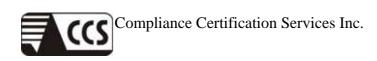
TEST RESULTS

No non-compliance noted

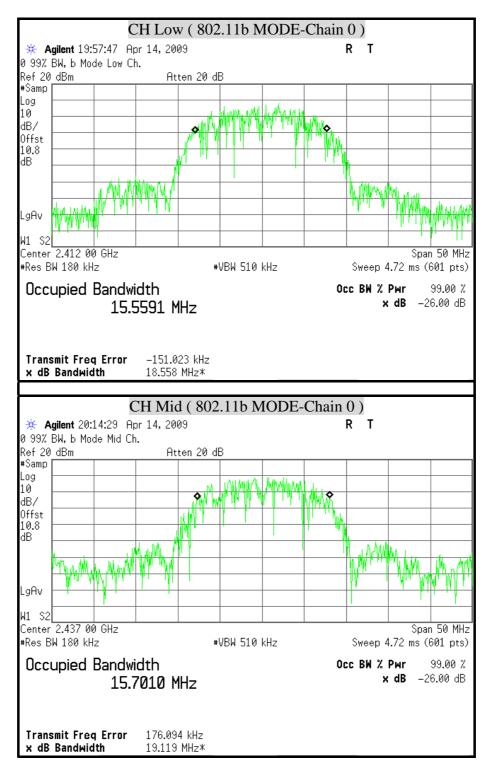
IEEE 802.11b MODE (Two TX)

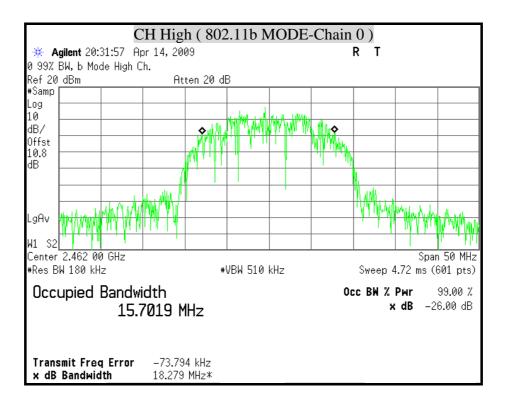
Channel	Channel Frequency (MHz)	99% Occupied power bandwi (MHz)	
	(14112)	Chain 0	Chain 2
Low	2412.00	15.55	15.88
Middle	2437.00	15.70	15.78
High	2462.00	15.70	15.77

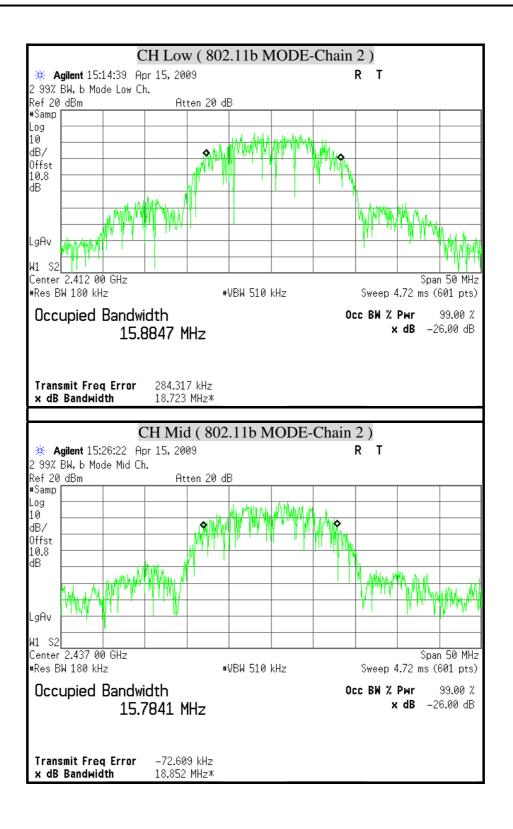
IEEE 802.11g MODE (Two TX)

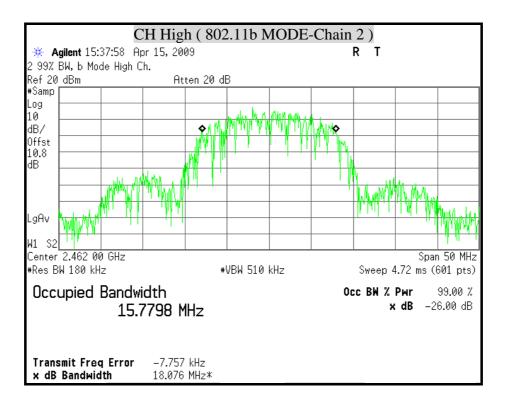

Channel	Channel Frequency (MHz)	99% Occupied power bandwidt (MHz)	
	(11112)	Chain 0	Chain 2
Low	2412.00	16.53	16.43
Middle	2437.00	16.53	16.42
High	2462.00	16.49	16.51

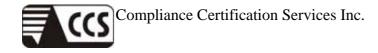
IEEE 802.11n HT20 mode (Two TX)

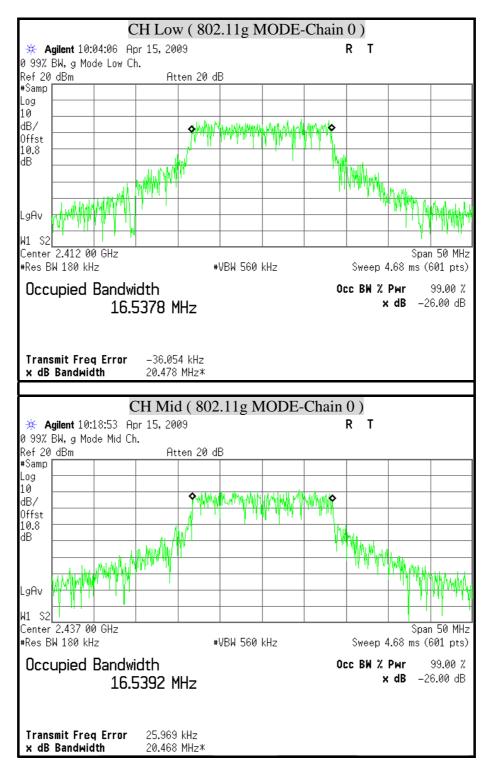

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)	
	(IVIIIZ)	Chain 0	Chain 2
Low	2412.00	17.70	17.65
Middle	2437.00	17.73	17.71
High	2462.00	17.66	17.68

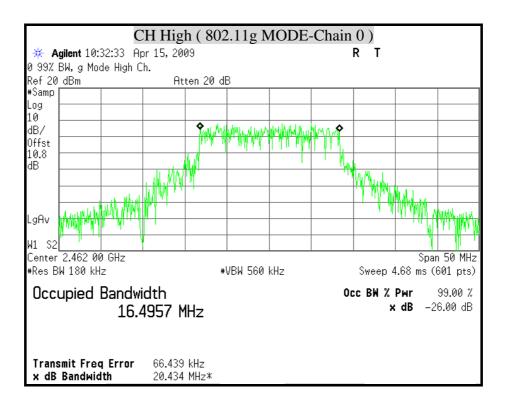

IEEE 802.11n HT40 mode (Two TX)

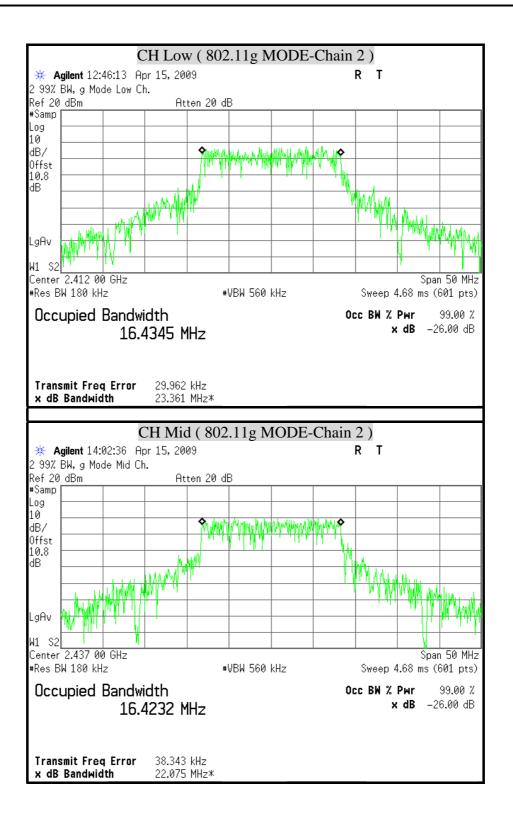

Channel	Channel Frequency (MHz)		oower bandwidth Hz)
	(11112)	Chain 0	Chain 2
Low	2422.00	36.16	36.11
Middle	2437.00	36.10	36.17
High	2452.00	36.24	36.15

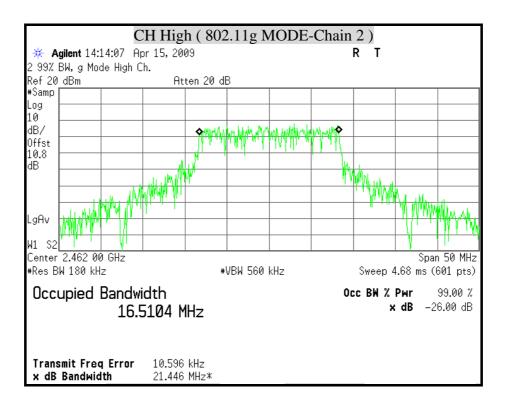


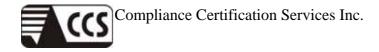

99% BANDWIDTH (802.11b MODE)

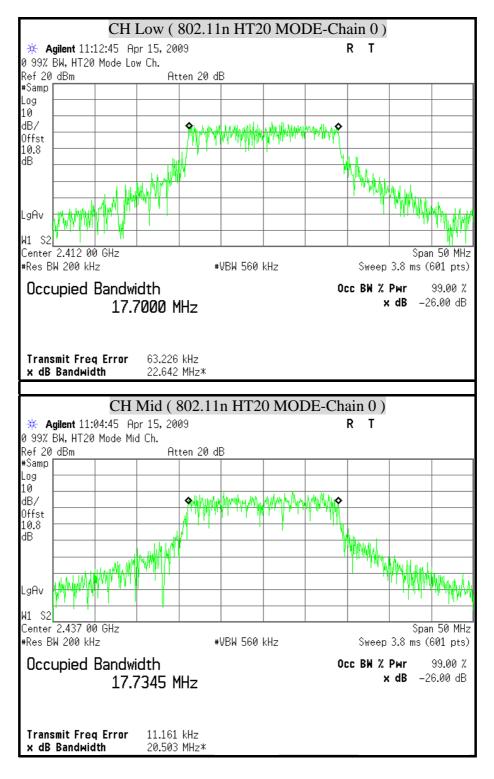


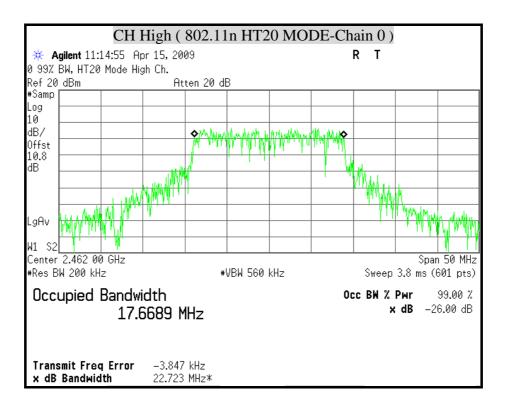


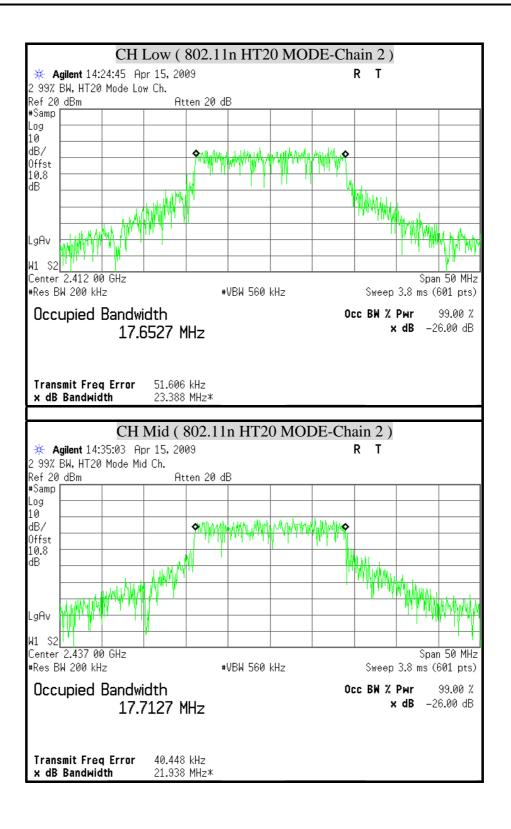


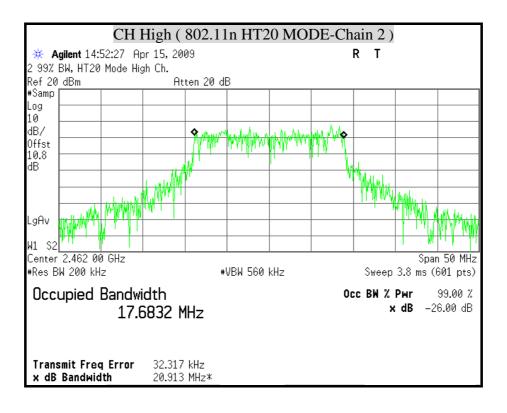


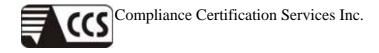

99% BANDWIDTH (802.11g MODE)

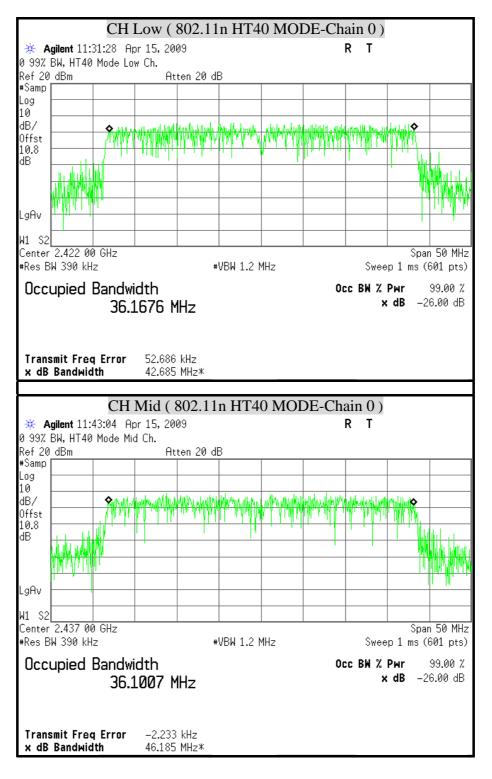


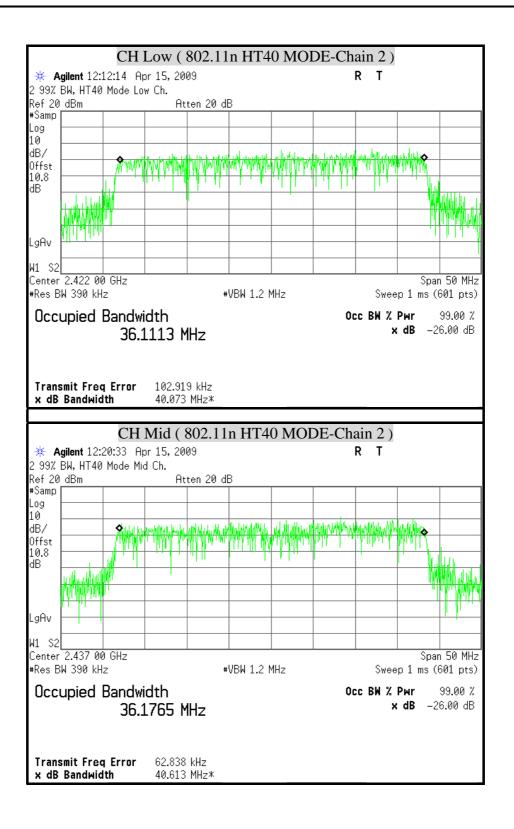


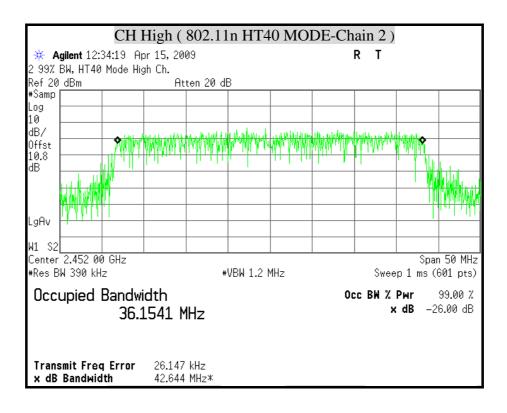


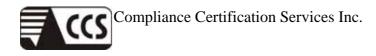



99% BANDWIDTH (802.11n HT20 MODE)






99% BANDWIDTH (802.11n HT40 MODE)



8.3 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.


§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/21/2009

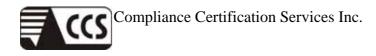
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows :

Span: 1.5 times channel integration bandwidth.


RBW: 1MHz

VBW: 3MHz

Detector : Peak

Sweep : Single trace

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The peak output power is the channel power integrated over 99% bandwidth.

TEST RESULTS

No non-compliance noted

Total peak power calculation formula: $10 \log (10^{\circ} (Chain 0 Power / 10) + 10^{\circ} (Chain 2 Power / 10)).$

The maximum antenna gain is 2.04 dBi, therefore the limit is 30 dBm. In the legacy mode, the effective antenna gain is $2.04 + 10 \times \text{Log}(2) = 5.05 \text{ dBi}$.

Channel	Channel Frequency	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(dBm)	(dBm)	
Low	2412	20.87	20.39	23.65	30	PASS
Middle	2437	23.86	23.36	26.63	30	PASS
High	2462	20.21	20.33	23.28	30	PASS

IEEE 802.11b MODE (Two TX)

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.8dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(dBm)	(dBm)	
Low	2412	16.00	15.28	18.67	30	PASS
Middle	2437	18.70	18.28	21.51	30	PASS
High	2462	15.99	15.35	18.69	30	PASS

IEEE 802.11g MODE (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.8dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(dBm)	(dBm)	
Low	2412	14.20	13.80	17.01	30	PASS
Middle	2437	16.80	16.62	19.72	30	PASS
High	2462	14.55	13.74	17.17	30	PASS

IEEE 802.11n HT20 mode (Two TX)

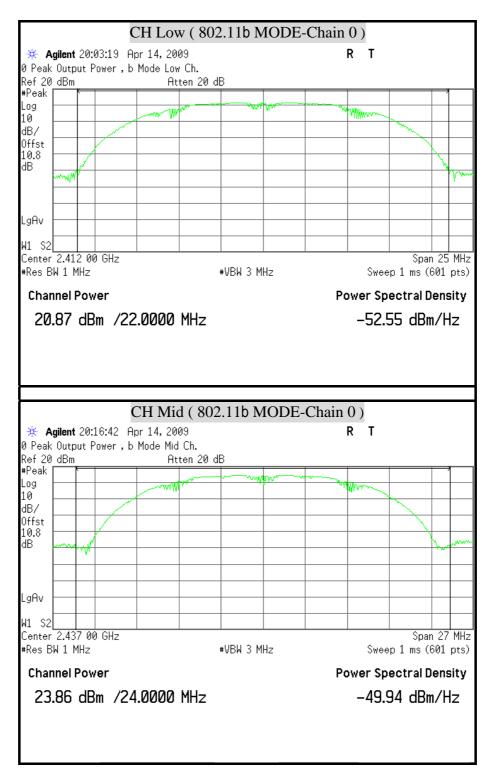
Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

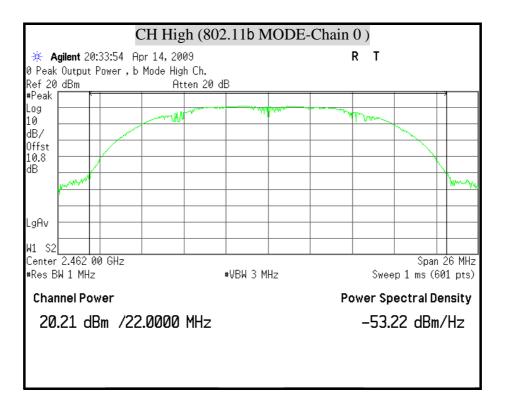
2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

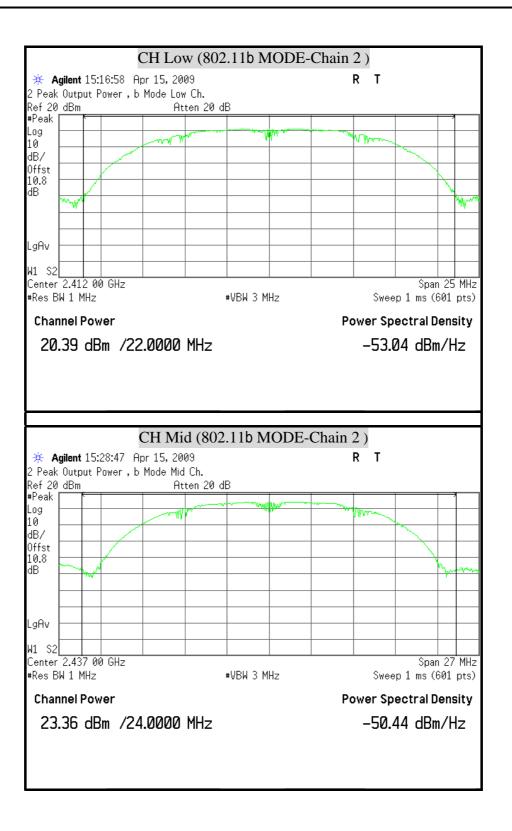
IEEE 802.11n HT40 mode (TwoTX)

Channel	Channel Frequency	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 2	(dBm)	(dBm)	
Low	2422	13.69	12.78	16.70	30	PASS
Middle	2437	16.18	16.17	19.19	30	PASS
High	2452	13.99	12.65	17.00	30	PASS

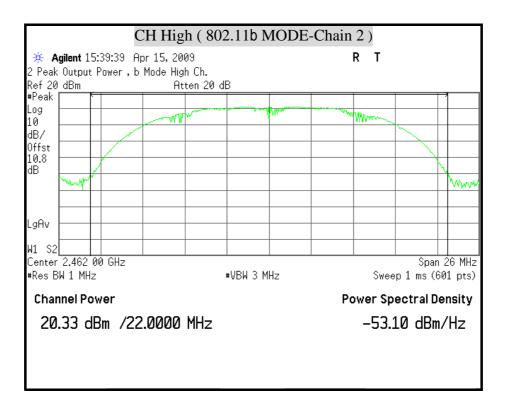

Remark:

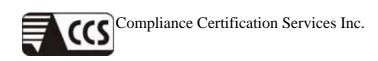
1. At finial test to get the worst-case emission at 13.5Mbps.

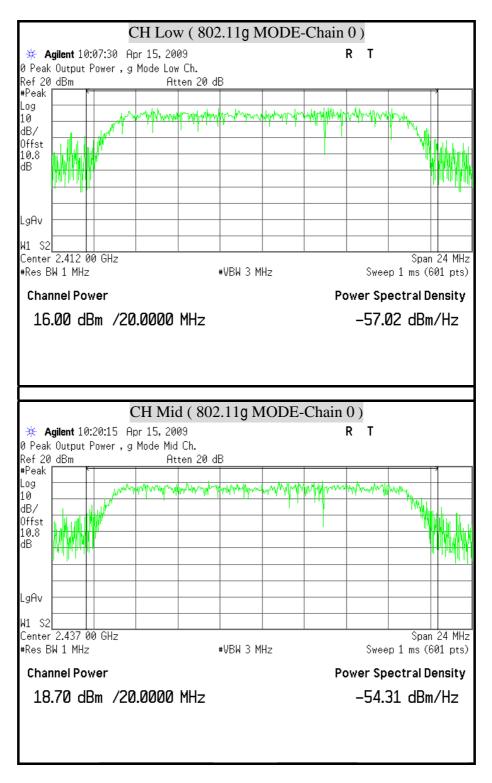

2. The cable assembly insertion loss of 10.8dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

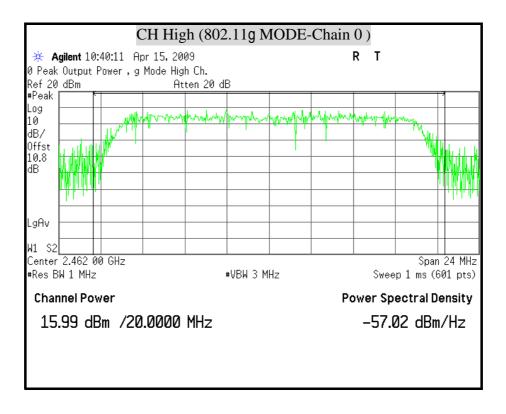


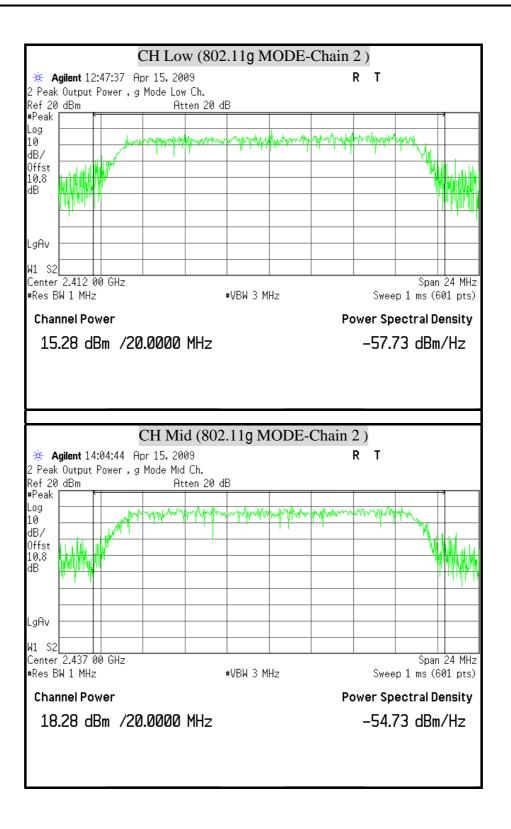
MAXIMUM PEAK OUTPUT POWER (802.11b MODE)



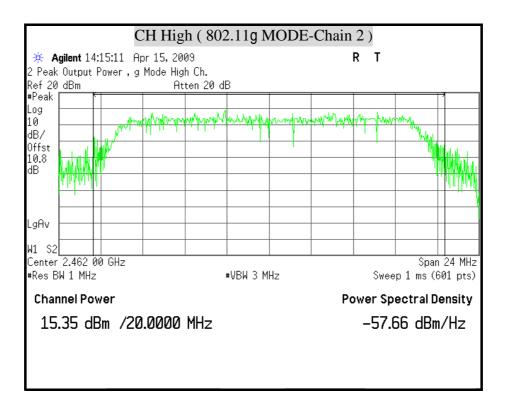


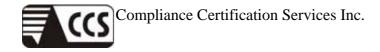


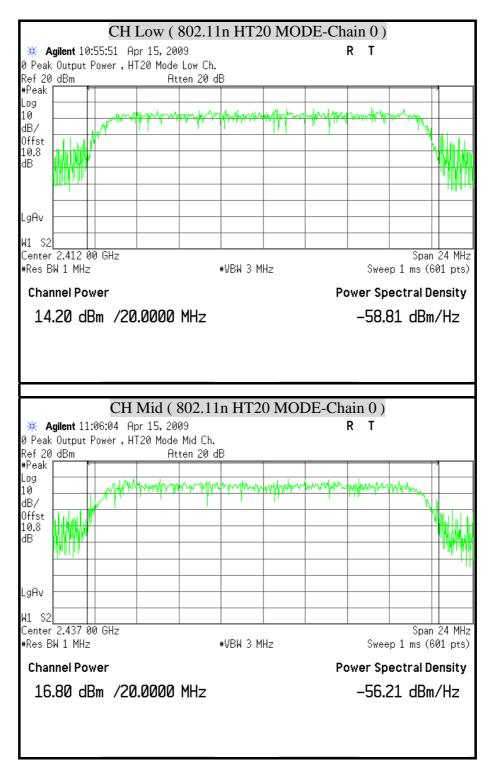


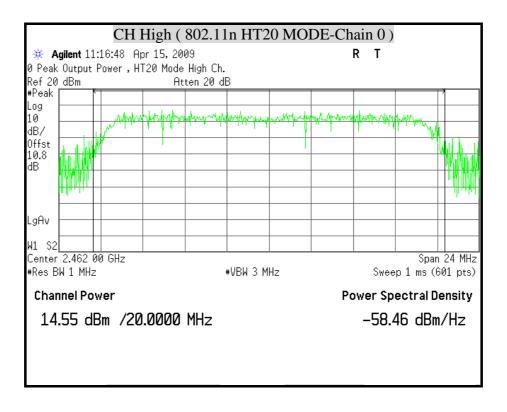


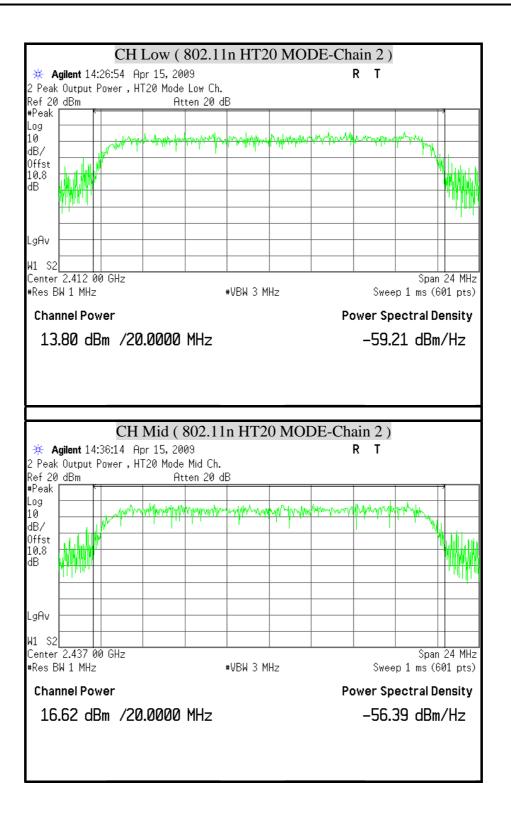
MAXIMUM PEAK OUTPUT POWER (802.11g MODE)

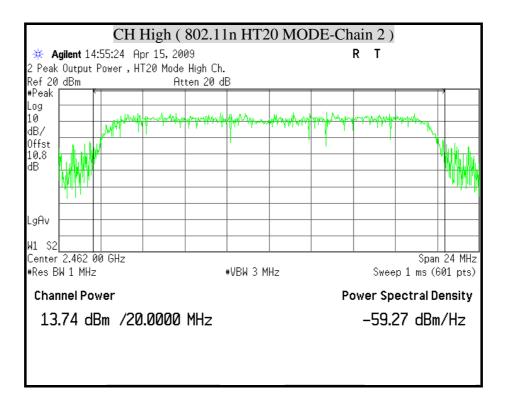


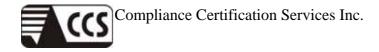


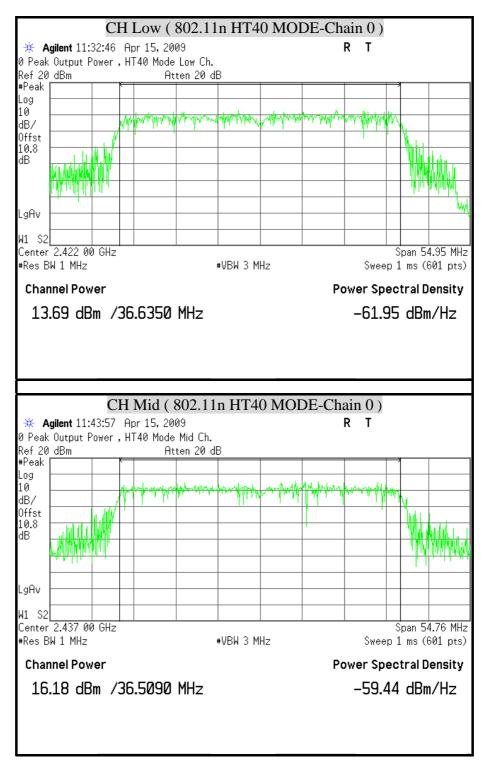


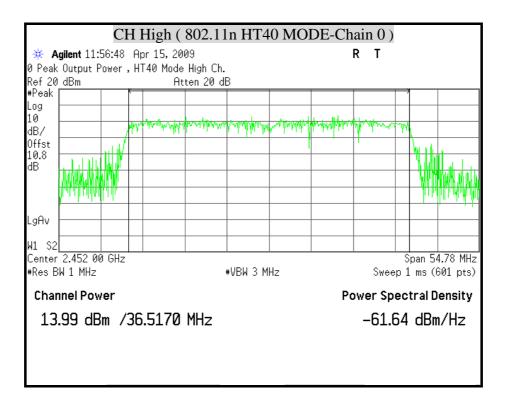


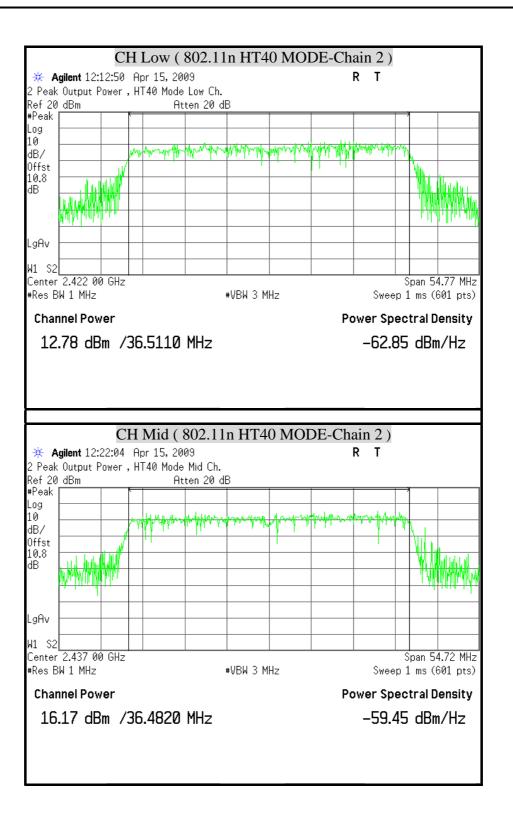


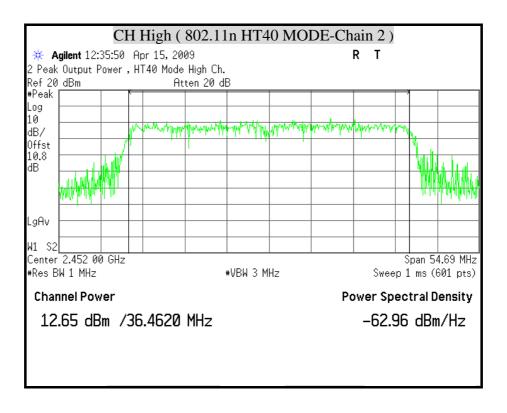

MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)

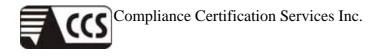












8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time			
(A) Limits for Occupational / Control Exposures							
300-1,500			F/300	6			
1,500-100,000			5	6			
	(B) Limits for General Population / Uncontrol Exposures						
300-1,500			F/1500	6			
1,500-100,000			1	30			

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

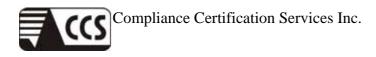
Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields


$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

$$P = Power in mW$$

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

LIMIT


Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted

Mode	Minimum separation distance (cm)	Output Power (dBm)	Numeric antenna gain (dB)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	20.0	26.63	1.60	1.00	0.146460
IEEE 802.11g	20.0	21.51	1.60	1.00	0.045053
IEEE 802.11n HT20	20.0	19.72	1.60	1.00	0.029835
IEEE 802.11n HT40	20.0	19.19	1.60	1.00	0.026407

Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.5 AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/21/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyer.

TEST RESULTS

No non-compliance noted

IEEE 802.11b MODE (Two TX)

Channel	Channel Frequency	Average Power (dBm)		Average Power
	(MHz)			(dBm)
Low	2412	18.13	17.73	20.94
Middle	2437	21.09	20.72	23.92
High	2462	17.56	17.79	20.69

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	Average Power (dBm)		Average Power
	(MHz)	Chain 0	Chain 2	(dBm)
Low	2412	12.35	11.78	15.08
Middle	2437	15.05	14.66	17.87
High	2462	12.25	12.03	15.15

IEEE 802.11g MODE (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

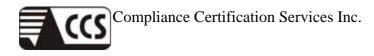
Channel	Channel Frequency	Average Power (dBm)Chain 0Chain 2		Average Power
	(MHz)			(dBm)
Low	2412	10.36	10.28	13.56
Middle	2437	13.28	13.20	16.25
High	2462	10.82	10.01	13.44

IEEE 802.11n HT20 MODE (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


IEEE 802.11n HT40 MODE (Two TX)

Channel	Channel Frequency	Average Power (dBm)		Average Power
	(MHz)	Chain 0	Chain 2	(dBm)
Low	2422	10.12	9.13	12.66
Middle	2437	12.78	12.42	15.61
High	2452	10.36	9.16	12.81

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : M4Y-XN623V01 Report No. : 90223301-RP1 Page <u>73</u> of <u>167</u>

8.6 POWER SPECTRAL DENSITY

LIMIT

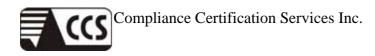
§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/21/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP



TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and $VBW \ge RBW$, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

No non-compliance noted

Total power spectral density calculation formula: 10 log (10[^] (Chain 0 PPSD / 10) + 10[^] (Chain 2 PPSD / 10)).

IEEE 802.11b MODE (Two TX)

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm) Chain 0 Chain 2		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail
	(11111)			``´´	(ubm)	
Low	2412	-5.88	-5.55	-2.70	8	PASS
Middle	2437	-1.72	-3.23	0.60	8	PASS
High	2462	-5.37	-5.07	-2.21	8	PASS

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.8dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	1.60	8	PASS
Middle	2437	5.12	8	PASS
High	2462	-0.73	8	PASS

IEEE 802.11b Combined mode (Two TX)

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 14.2dB (including 10 dB pad and 4.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)		PPSD Total (dBm)	Maxmum Limit	Pass / Fail
		Chain 0	Chain 2	()	(dBm)	
Low	2412	-12.35	-11.37	-8.82	8	PASS
Middle	2437	-10.10	-9.12	-6.57	8	PASS
High	2462	-12.27	-10.00	-7.98	8	PASS

IEEE 802.11g MODE (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.8dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-2.65	8	PASS
Middle	2437	-2.56	8	PASS
High	2462	-4.77	8	PASS

IEEE 802.11g Combined mode (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 14.2dB (including 10 dB pad and 4.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail
	()	Chain 0	Chain 2		(ubiii)	
Low	2412	-11.52	-11.08	-8.28	8	PASS
Middle	2437	-11.50	-10.16	-7.77	8	PASS
High	2462	-14.03	-13.37	-10.68	8	PASS

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-5.18	8	PASS
Middle	2437	-5.03	8	PASS
High	2462	-8.12	8	PASS

IEEE 802.11n HT20 Combined mode (Two TX)

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 14.2 dB (including 10 dB pad and 4.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 Combined MODE (Two TX)

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail
	(11111)	Chain 0	Chain 2	· · ·	(uDIII)	
Low	2422	-16.70	-11.36	-10.25	8	PASS
Middle	2437	-14.50	-9.14	-8.03	8	PASS
High	2452	-13.21	-12.79	-9.98	8	PASS

Remark:

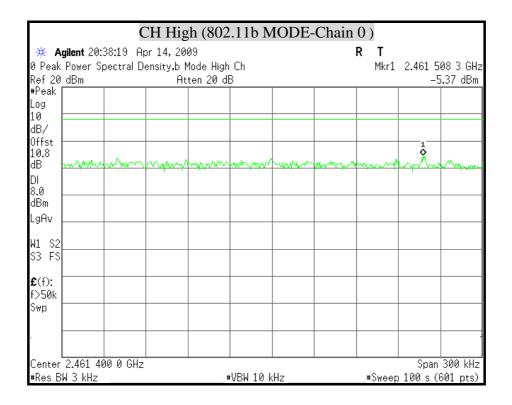
1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 10.8 dB (including 10 dB pad and 0.8 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

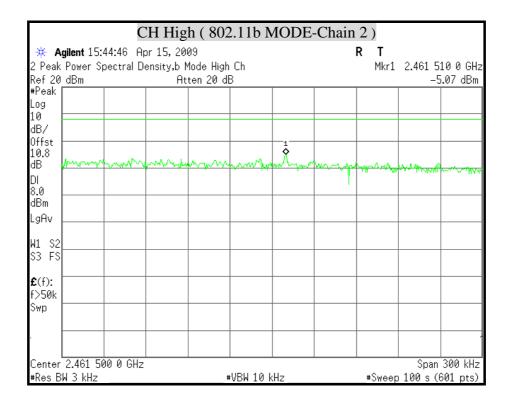
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2422	-9.65	8	PASS
Middle	2437	-6.63	8	PASS
High	2452	-7.76	8	PASS

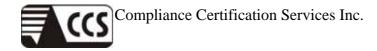
IEEE 802.11n HT40 Combined mode (Two TX)

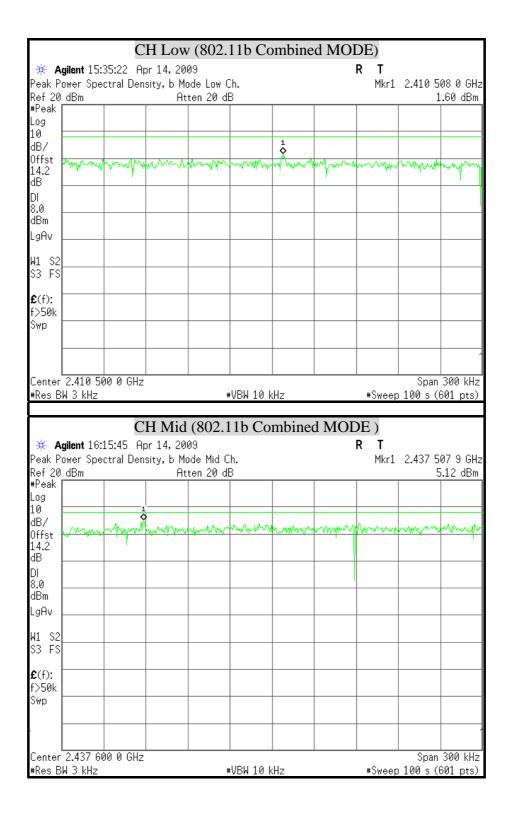
Remark:

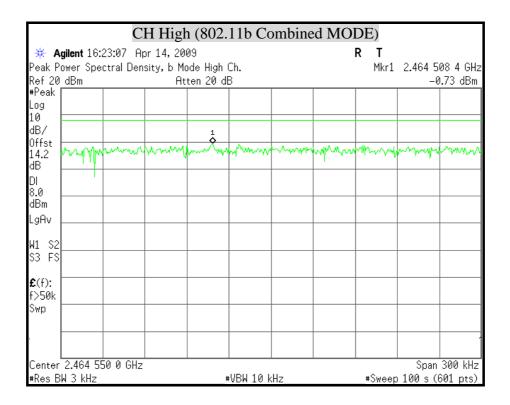

1. At finial test to get the worst-case emission at 13.5Mbps.

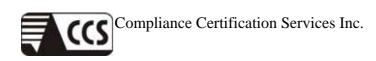
2. The cable assembly insertion loss of 14.2 dB (including 10 dB pad and 4.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

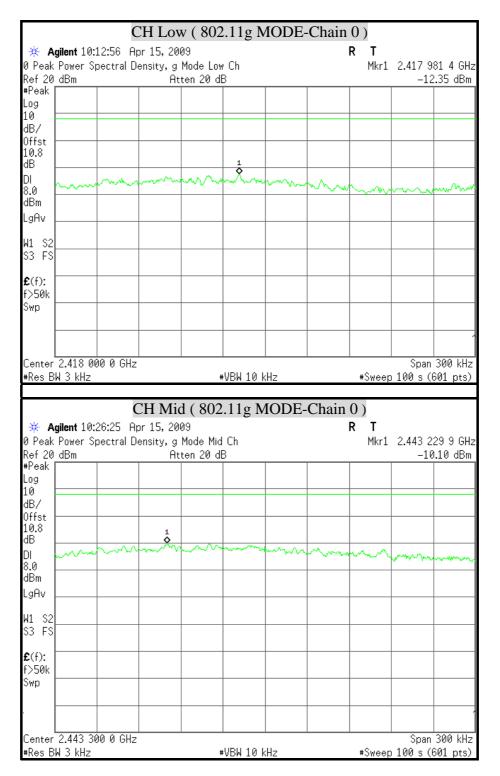

POWER SPECTRAL DENSITY(IEEE 802.11b MODE)

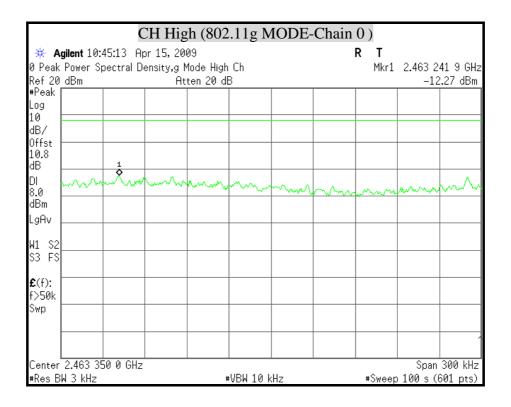

				2.110 N	NODE-	-Chain			
	:09:04 Ap			~			RT		~ ~
	pectral D						Mkr1	2.415 0	
dBm		Ht	ten 20 di	R R				-,	5.88
									-
					1				-
					Åm				
how	portentin	mm	www.y	mmmm	man	mound	human	Marray	wite
									-
									\vdash
	1								-
									+
									\vdash
									\square
2.415 0	00 0 GHz							Span	30
I3 kHz			+	*VBW 10 W	<hz< th=""><th></th><th>#Sweer</th><th>)100 s (</th><th>601</th></hz<>		#Sweer)100 s (601
			`			Chain	0)		0.01
	:21 : 21 Ap	or 14, 20	09	2.11b N			0) r t		
Power S		or 14, 20 ensity, b	09 Mode Mid	2. 11b M I Ch			0) r t	2.437 7	'85
	:21 : 21 Ap	or 14, 20 ensity, b	09	2. 11b M I Ch			0) r t	2.437 7	'85
Power S	:21 : 21 Ap	or 14, 20 ensity, b	09 Mode Mid	2. 11b M I Ch			0) r t	2.437 7	'85
Power S	:21 : 21 Ap	or 14, 20 ensity, b	09 Mode Mid	2. 11b M I Ch			0) r t	2.437 7	'85
Power S	:21 : 21 Ap	or 14, 20 ensity, b	09 Mode Mid	2. 11b M I Ch			0) r t	2.437 7	'85
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2. 11b M I Ch	IODE-		0) r t	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7	'85 L.72
Power S dBm	21:21 A; pectral D	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B	IODE-		0) R T Mkr1	2.437 7 1	85
Power S Bm	:21 : 21 Ap	or 14, 20 ensity, b At	09 Mode Mid ten 20 dl	2.11b M I Ch B			0) R T Mkr1	2.437 7	30

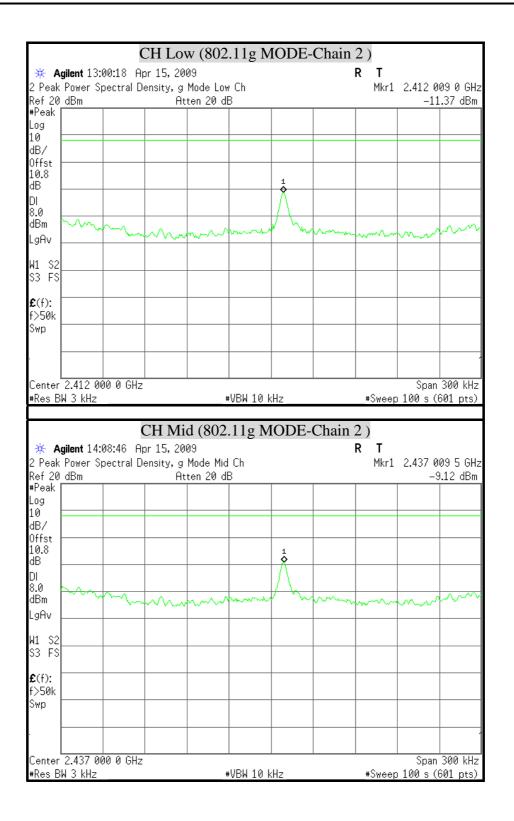

E

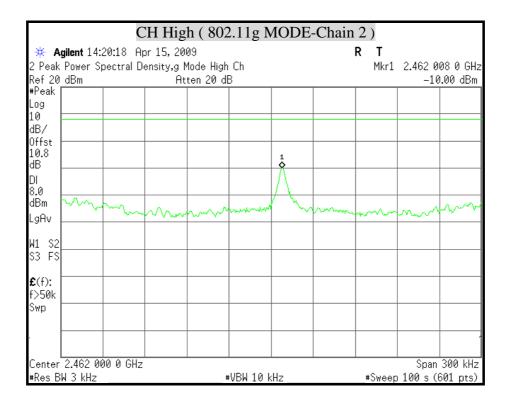

		(CH Lov	w (802	.11b N	IODE-	Chain	2)				
* A	Agilent 15:	21:56 Ap	or 15, 20	09				R	т			
	k Power S	pectral D							Mkr1		787 9	
Ref 20 #Peak			At	ten 20 di	B						<u>-5.55 c</u>	dBm
#геак Log												
10											_	
dB/												
Offst 10.8												
dB	many	ymmys,	monologue	morrow	mouther	M WWW	margant	h	Mayor	non	nym	-
DI 8.0	1 '										- '	
dBm												
LgAv												
W1 S2 S3 FS								-				-
55 15	Ί											
£ (f):												
f>50k Swp												
Juh												
	<u> </u>											
	r <mark>2.413 8</mark> 3W 3 kHz	00 0 GHz			•VBW 10				~		an 300 (601 p	
	3W 3 KHZ				ŧИВЫ ГИ И						три г	1157
#Res D					· VDA 10 1	112			Sweet	100 3	(001 p	,,_
*Nes D			сн Мі				Chain			100 3	(001 p	,,_
				d (802			Chain	2)	_	100 3	(001 p	
∦ A	Agilent 15:	34:20 Ap	or 15, 20	d (802 ⁰⁹	.11b M				т			
₩ A 2 Peak Ref 20	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 ⁰⁹	.11b M			2)	т	2.438	007 3 -3.23 c	GHz
¥¥ ▲ 2 Peak Ref 20 #Peak	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid	.11b M			2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid	.11b M			2)	т	2.438	007 3	GHz
¥¥ A 2 Peak Ref 20 #Peak Log	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M			2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
* A 2 Peak Ref 20 #Peak Log 10 dB/	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M	IODE-		2)	т	2.438	007 3	GHz
★ ▲ 2 Peak Ref 20 #Peak Log 10 dB/ 0Ffst 10.8 dB	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
¥ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
¥ A 2 Peak Ref 20 #Peak Log dB∕ dB∕ dB/ dB dB DI 8.0 dBm	Agilent 15: < Power S) dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
Image: Weight of the second secon	Agilent 15: < Power S dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1	Agilent 15:	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
Image: Weight of the second secon	Agilent 15:	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv S3 \$3 FS £(f): ************************************	Agilent 15: Agilent 15: dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv S3 \$1 \$2,8 \$2 \$2 \$3 \$5 \$4 \$5	Agilent 15: Agilent 15: dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv S3 \$3 FS £(f): ************************************	Agilent 15: Agilent 15: dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv S3 \$1 \$2,8 \$2 \$2 \$3 \$5 \$4 \$5	Agilent 15: Agilent 15: dBm	34:20 Ap	or 15, 20 ensity, b	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
₩ A 2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv S3 \$\$X\$ F\$ \$\$X\$ \$\$X\$	Agilent 15: < Power S) dBm	34:20 Ar pectral D	or 15, 20 ensity, b At	d (802 09 Mode Mid ten 20 d	.11b M I Ch B	IODE-		2)	т	2.438	007 3	GHz
<pre></pre>	Agilent 15: Agilent 15: dBm	34:20 Ar pectral D	or 15, 20 ensity, b At	d (802 09 Mode Mid ten 20 d	.11b M I Ch B			2) R	Т Мkr1	2.438	007 3	GHZ ∭ ∰ GHZ ∭ ∰ ∭ ∭ ∭ ∰ ∭ ∭ ∭ ∭ ∭ ∭ ∰ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭ ∭

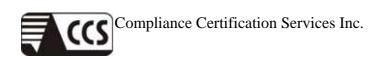


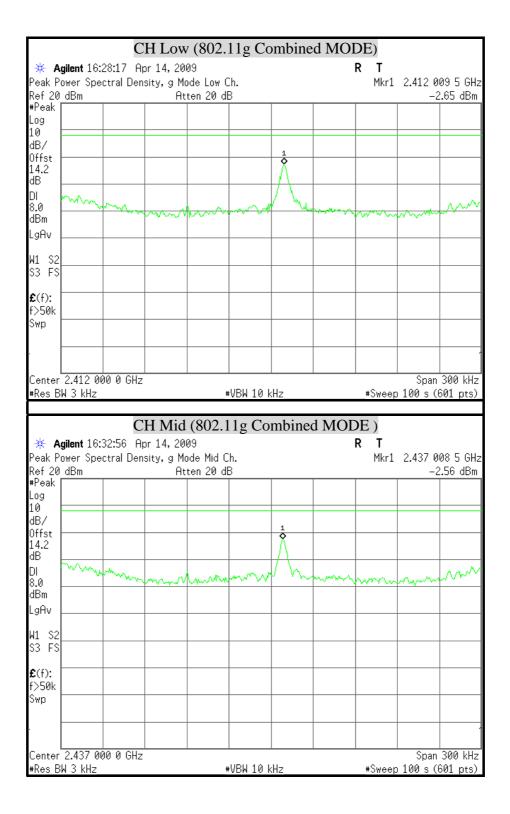

POWER SPECTRAL DENSITY(802.11b Combined MODE)

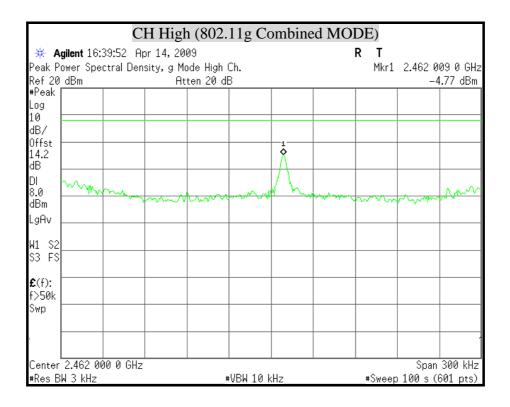




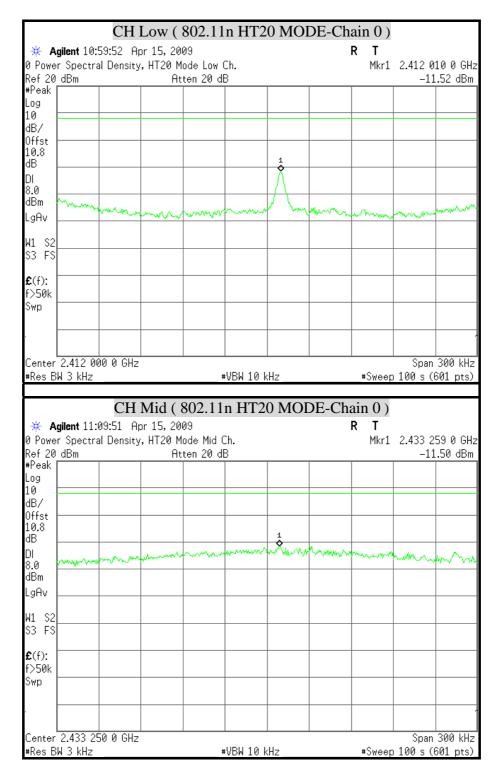


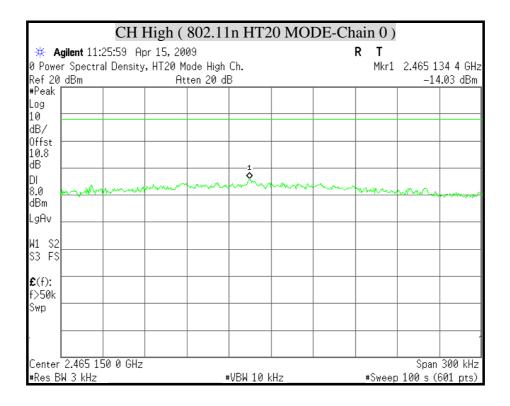

POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

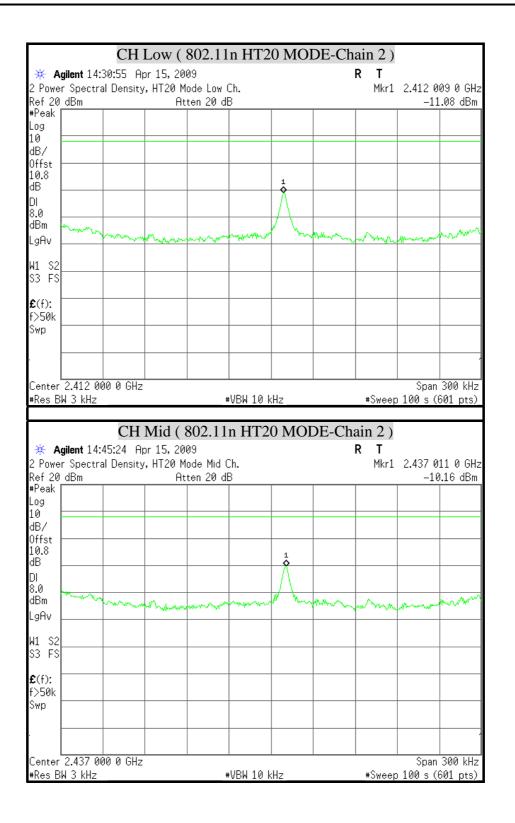


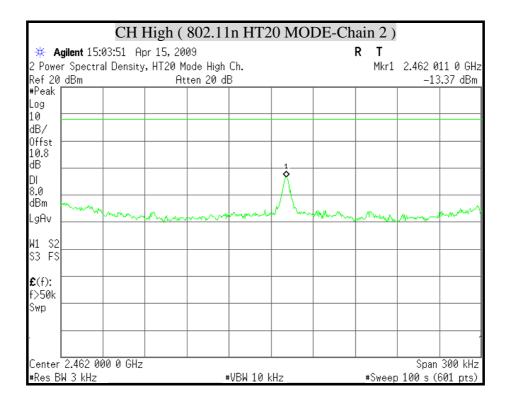




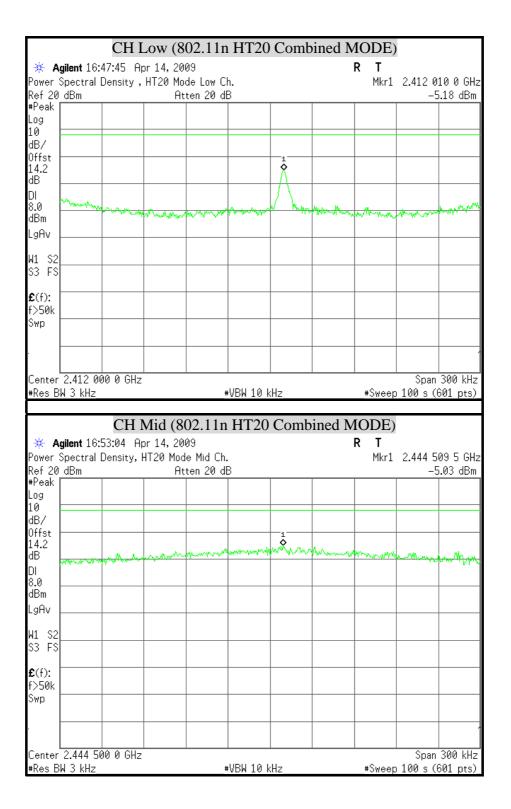

POWER SPECTRAL DENSITY(802.11g Combined MODE)

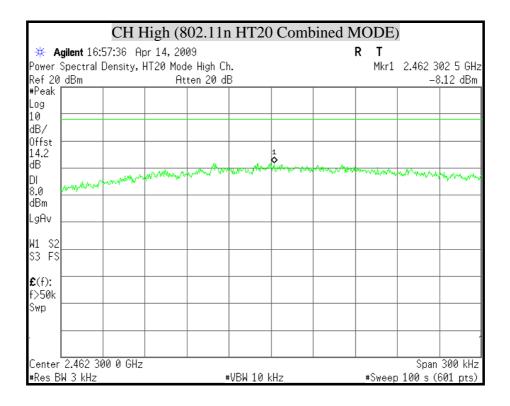




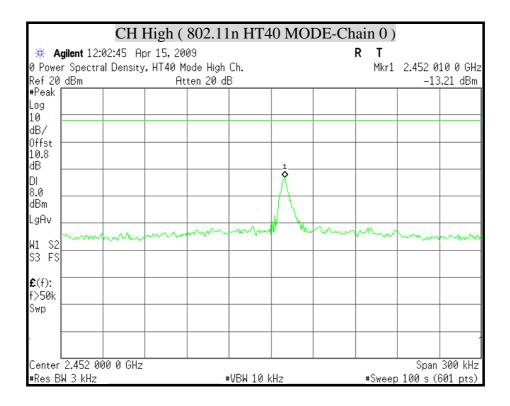


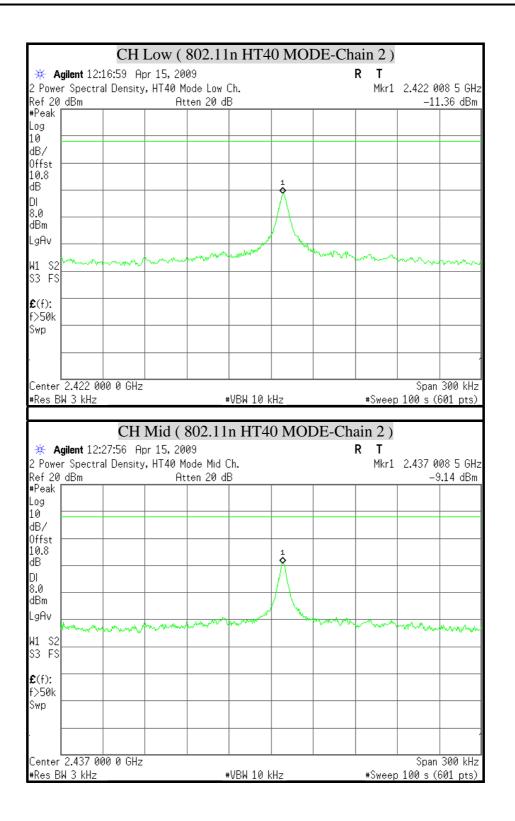
POWER SPECTRAL DENSITY (802.11n HT20 MODE)

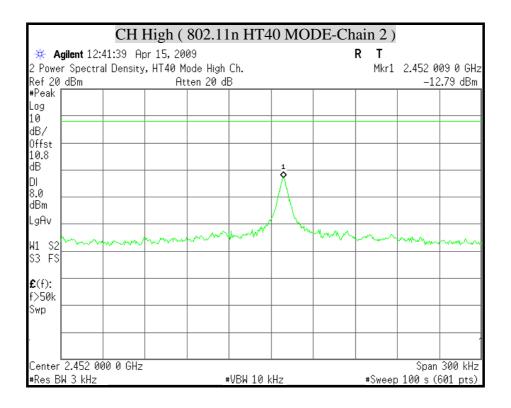




POWER SPECTRAL DENSITY(802.11n HT20 Combined MODE)

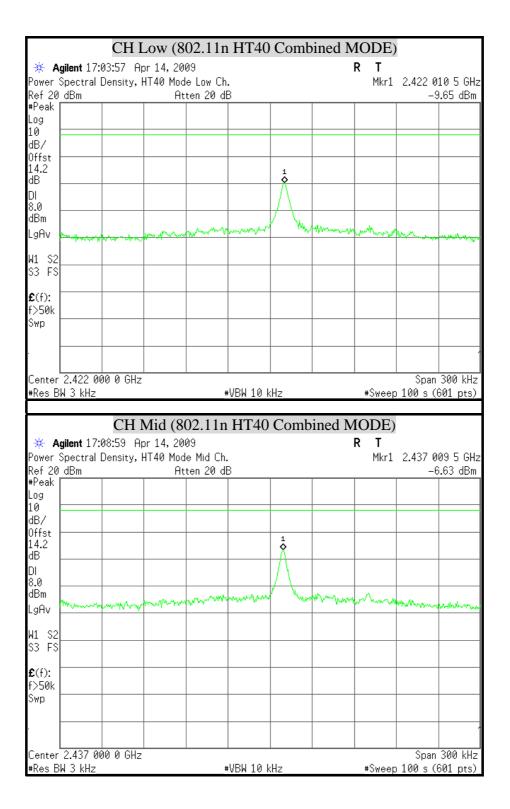


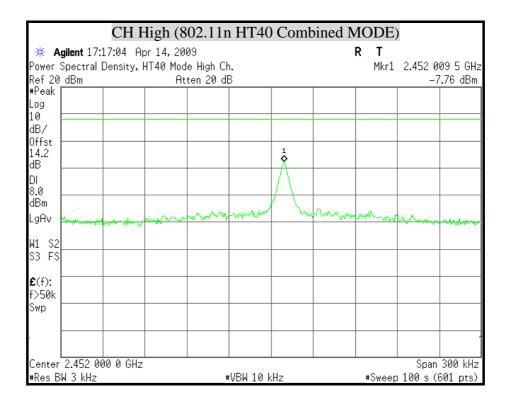


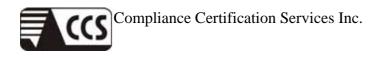


POWER SPECTRAL DENSITY (802.11n HT40 MODE)

1		CH	Low (802.11	n HT4	0 MOI	DE-Cha	ain 0)		
₩ А	gilent 11:	36 : 55 Ap	or 15, 20	09			I	RТ		
									1 2.433 509 0 GHz	
Ref 20	dBm		At	ten 20 d	B				-16	6.70 dBm
#Peak Log										
10										
dB/										
Offst	<u> </u>									
10.8 dB										
DI						1				
8.0						8		man	h	
dBm	mm	man	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	pri ville	1 ° ° ° ° ° 1	~ ~ *		Current Current
LgAv										
W1 S2										
S3 FS										
£ (f):										
f>50k Swp										
0110										
Center	2.433 50	00 0 GHz							Span	300 kHz
#Res B	3W 3 kHz			+	ŧVBW 10 k	KHz		_#Sweep) 100 s (601 pts)_
		СП	Mid()	QA2 11	n UTA		DE Ch	(0)		
<u>ж</u> А	ailent 11:				n HT4	0 MOI	DE-Cha			
	gilent 11: er Spectra	48:01 Ap	or 15, 20	09		0 MOI		RТ	2.435 7	59 5 GHz
	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09	Ch.	0 MOI		RТ		59 5 GHz 1.50 dBm
0 Powe Ref 20 #Peak	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.	0 MOI		RТ		
0 Powe Ref 20 #Peak Log	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.	0 MOI		RТ		
0 Powe Ref 20 #Peak Log 10	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log 10 dB/ Offst 10.8	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.	0 MOI		RТ		
0 Powe Ref 20 #Peak Log 10 dB/ Offst 10.8 dB	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ dB/ 0ffst 10.8 dB	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log 10 dB/ Offst 10.8 dB	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ dB/ 0ffst 10.8 dB DI 8.0	er Spectra	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ Offst 10.8 dB DI 8.0 dBm LgAv W1 S2	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ 0ffst 10.8 dB dB dB dBm LgAv	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	dBm	48:01 Ap	or 15, 20 , HT40 M	09 ode Mid (Ch.			RТ		
0 Powe Ref 20 #Peak Log dB/ 0ffst 10.8 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp	dBm	48:01 Ap	or 15, 20 -, HT40 M At	09 ode Mid (Ch.			RТ	-14	



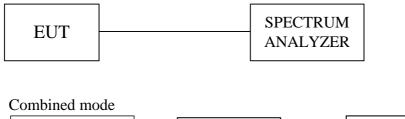




POWER SPECTRAL DENSITY(802.11n HT40 Combined MODE)

8.7 CONDUCTED SPURIOUS EMISSION

LIMITS


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

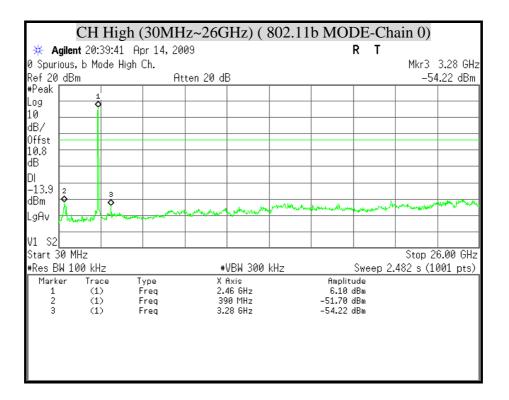
TEST PROCEDURE

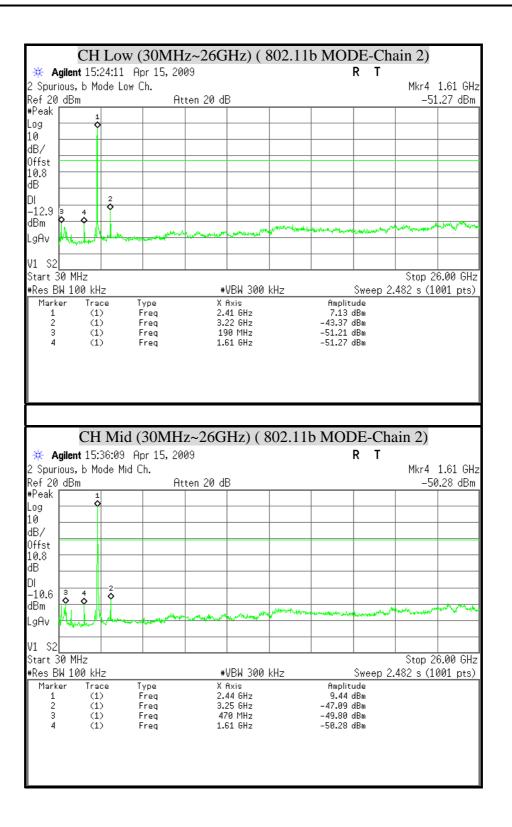
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

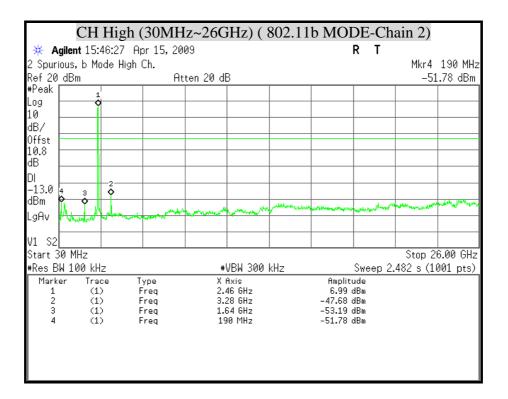
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

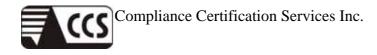
TEST SETUP

TEST RESULTS

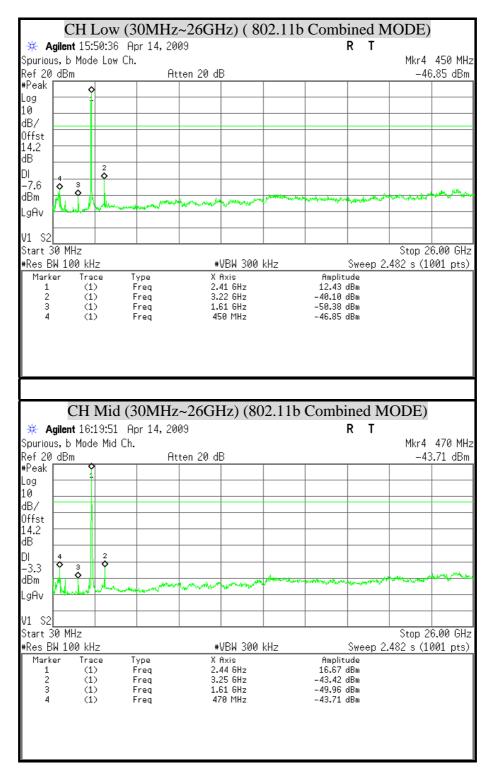

No non-compliance noted

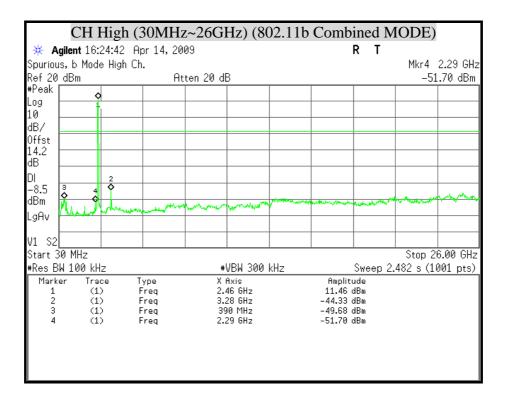


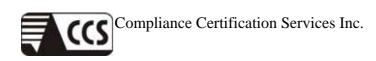

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


CH Low (30MHz~26GHz) (802.11b MODE-Chain 0) 🔆 Agilent 20:10:51 Apr 14, 2009 R Т Mkr4 1.61 GHz 0 Spurious, b Mode Low Ch. Ref 20 dBm Atten 20 dB -58.90 dBm #Peak 1 Log 10 dB/ Offst 10.8 dB DL -12.9 ō dBm Ŷ LgAv V1 S2 Stop 26.00 GHz Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Marker X Axis Amplitude Trace Түре (1) Freq 2.41 GHz 7.10 dBm 1 2 3 (1) (1) 3.22 GHz 390 MHz -48.15 dBm -53.73 dBm Freq Freq 4 (1)Freq 1.61 GHz -58.90 dBm CH Mid (30MHz~26GHz) (802.11b MODE-Chain 0) 🔆 Agilent 20:23:46 Apr 14, 2009 R Т 0 Spurious, b Mode Mid Ch. Mkr3 3.25 GHz Ref 20 dBm -53.61 dBm Atten 20 dB #Peak 1 ō Log 10 dB/ Offst 10.8 dB DI -10.0 2 dBm Č Ŷ LgAv V1 S2 Start 30 MHz Stop 26.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Amplitude 10.00 dBm Type Freq X Axis 2.44 GHz Marker Trace (1) 1 2 (1) Freq 470 MHz 3.25 GHz -50.38 dBm (1) (1) -53.61 dBm 3 Freq 4 1.61 GHz -58.06 dBm Freq

(**IEEE 802.11b MODE**)

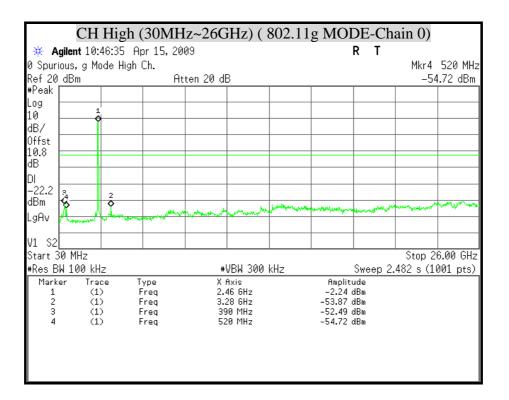


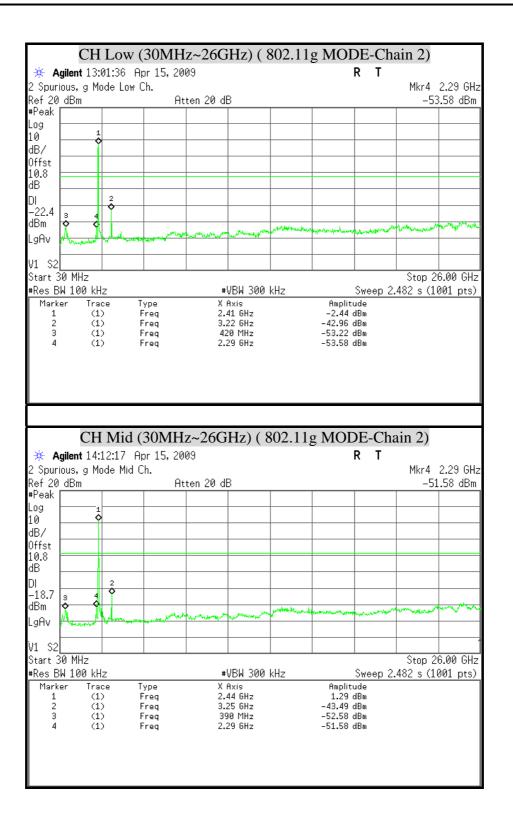


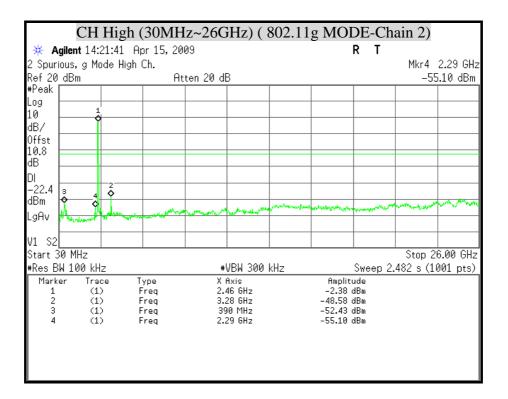


OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

(IEEE 802.11b Combined MODE)

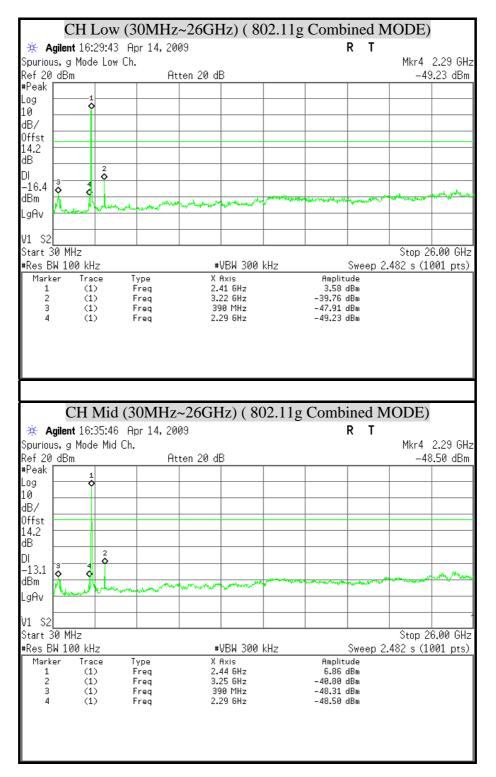


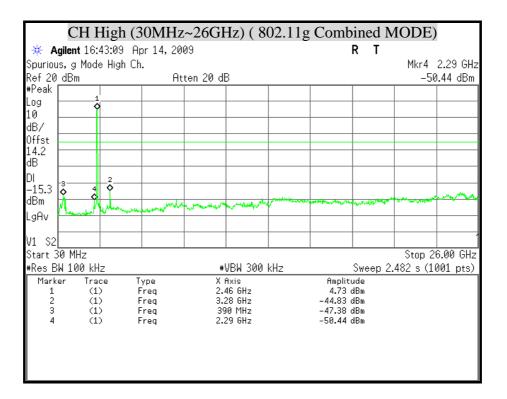




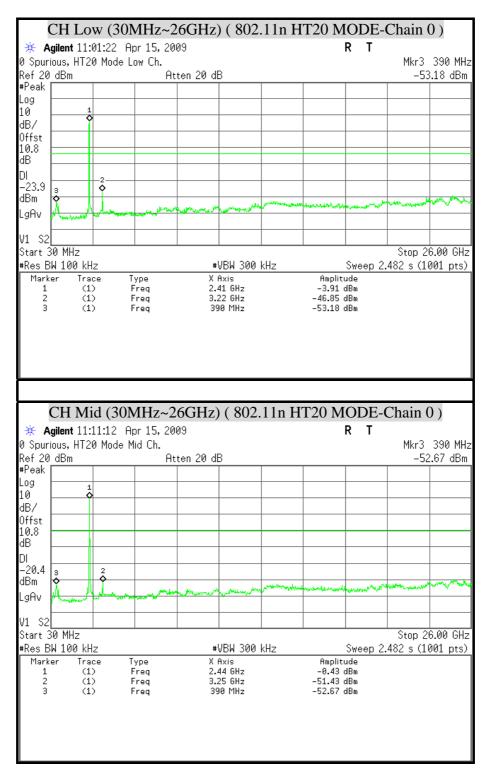

CH Low (30MHz~26GHz) (802.11g MODE-Chain 0) 🔆 Agilent 10:14:38 Apr 15, 2009 R Т 0 Spurious, g Mode Low Ch. Mkr4 520 MHz Atten 20 dB Ref 20 dBm -53.79 dBm #Peak Log 1 10 dB/ Offst 10.8 dB DI -23.3 dBm Q õ LgAv V1 S2 Start 30 MHz Stop 26.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Marker Trace X Axis Amplitude Туре 2.41 GHz 3.22 GHz (1) (1) -2.32 dBm -48.59 dBm 1 2 Freq Frea 3 (1)Freq 390 MHz -52.42 dBm 4 (1)Freq 520 MHz -53.79 dBm CH Mid (30MHz~26GHz) (802.11g MODE-Chain 0) 🔆 Agilent 10:29:38 Apr 15, 2009 R T 0 Spurious, g Mode Mid Ch. Mkr4 520 MHz Ref 20 dBm Atten 20 dB -53.38 dBm #Peak Log ò 10 dB/ Offst 10.8 dB DL -18.3 $\frac{2}{c}$ 2 dBm LgAv V1 S2 Stop 26.00 GHz Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Type X Axis Amplitude Marker Trace (1) Freq 2.44 GHz 1.69 dBm 1 -51.06 dBm 2 (1) (1) Freq 3.25 GHz 3 390 MHz -51.97 dBm Frea 4 (1)Freq 520 MHz -53.38 dBm

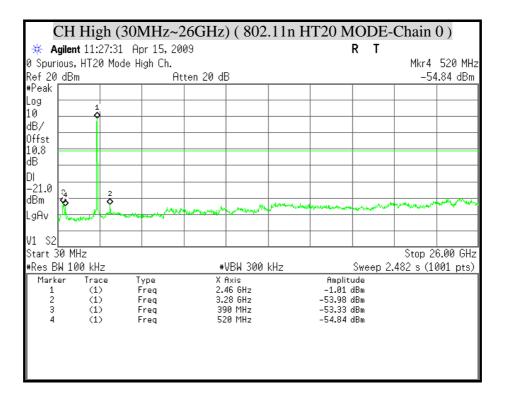
(IEEE 802.11g MODE)

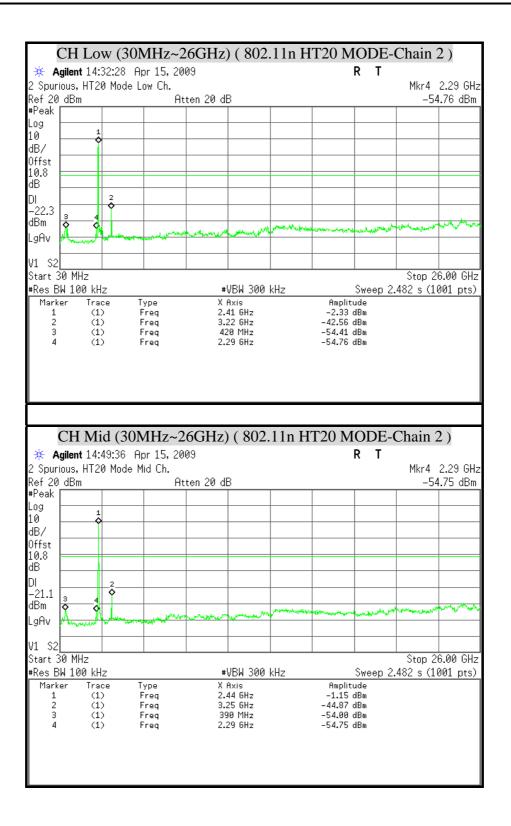


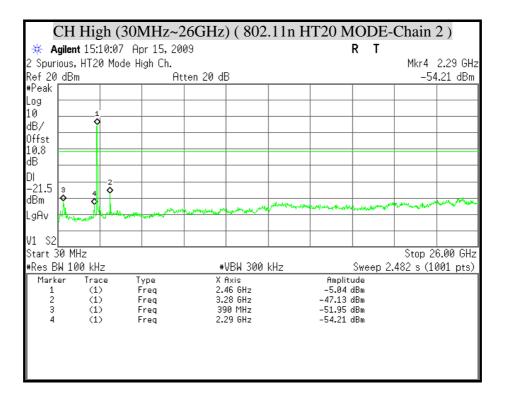




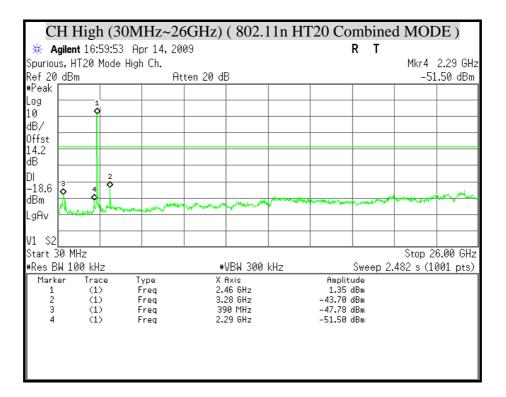

(IEEE 802.11g Combined MODE)



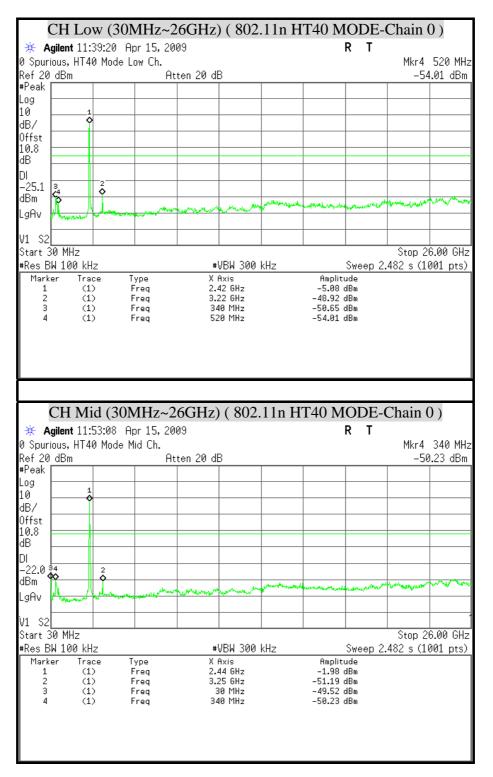


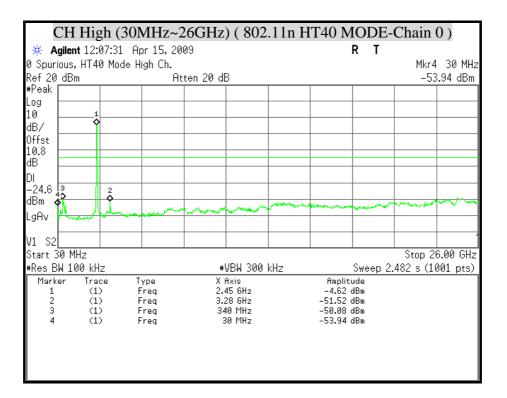


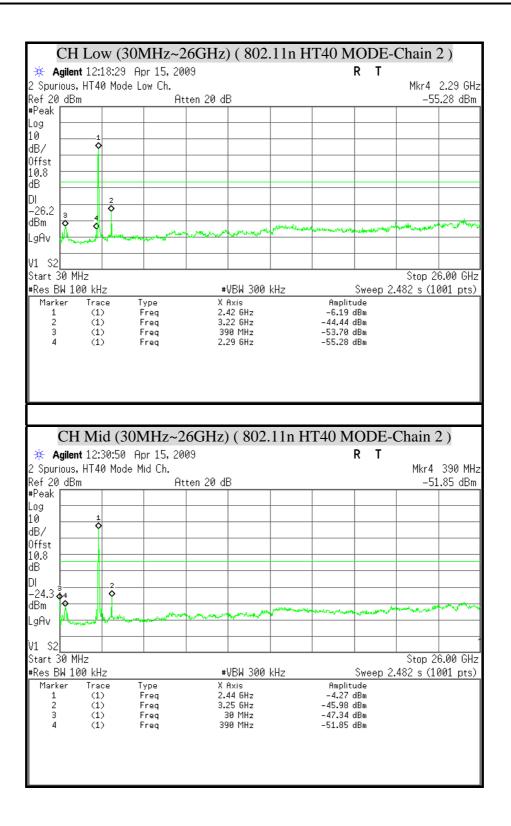
(IEEE 802.11n HT20 MODE)

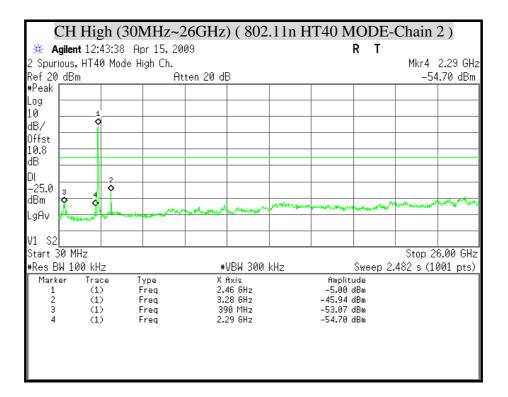




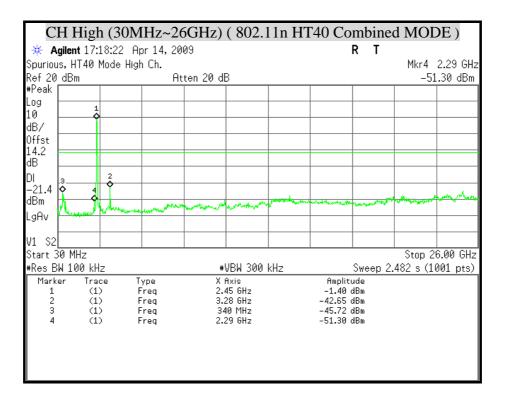

(IEEE 802.11n HT20 Combined MODE)

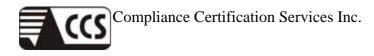

C	CHL	ow	(30N	1Hz~2	26GHz)	(802.1	ln H	Г20 Со	mbined	1 MOE	DE)
* A	Agilent	16:4	9:51 A	lpr 14, 3	2009				RТ		
		20 M	ode Lov								2.29 GHz
Ref 20					Atten 20	dB				-51	.67 dBm
#Peak Log		1									
10 10		Ŷ									
dB/											
Offst											
14.2											
dB			2	-							
DI -13.9	-3 \$		^								
dBm	¥—	-4					and the second	warder of the second	and a superior and a superior	and a set of the second	way Mark
LgAv	Charles .	~**	A water a second	Jan Strateger	All a drawn	Providence of the second se	-				
_											
V1 S2											
	30 MHz								~ ^		6.00 GHz
#Res E Mark	3W 100	∣ kHz Trace		Түре		#VBW 300 (Axis	кНг	Amplitu		482 s (10	עט pts)
l nark		(1)		rype Freq		. Hxis 2.41 GHz		6.13 c			
2		(1)		Freq		3.22 GHz		-38.80 (
3		(1) (1)		Freq Freq		390 MHz 2.29 GHz		-46.94 c -51.67 c			
	י נו א י	હિત	(301)	[Ц _{7.} ./) (CH2)	(802 1	1n H'	Г20 С ол	nhinad		
			,			(802.1	1n H7			I MOD	PE)
₩ А	Agilent	16:5	4:39 A	lpr 14, 3		(802.1	1n H7		mbinec R T		
💥 A Spuriou	\gilent us, HT2	16:5	,]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
₩ А	A gilent us, HT2 dBm	16:5	4:39 A]pr 14,∶ d Ch.			1n H7			Mkr4	
* A Spuriou Ref 20	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H			Mkr4	2.29 GHz
₩ A Spuriou Ref 20 #Peak Log 10	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
₩ A Spuriou Ref 20 #Peak Log 10 dB/	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
₩ A Spuriou Ref 20 #Peak Log 10 dB/ Offst	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
₩ A Spuriou Ref 20 #Peak Log 10 dB/	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
₩ A Spuriou Ref 20 #Peak Log dB/ 0ffst 14.2 dB	A gilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
✤ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2	Agilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009		1n H7			Mkr4	2.29 GHz
★ A Spuriou Ref 20 #Peak Log dB/ 0ffst 14.2 dB DI	Agilent us, HT2 dBm	16:5 20 M	4:39 A]pr 14,∶ d Ch.	2009 Atten 20				R T	Mkr4	2.29 GHz
★ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -15.4	Agilent us, HT2 dBm	16:5 20 M	4:39 A	Hpr 14, ;	2009 Atten 20	dB			R T	Mkr4 _50	2.29 GHz
★ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -15.4 dBm LgAv	Agilent us, HT2) dBm 	16:5 20 M	4:39 A	Hpr 14, ;	2009 Atten 20	dB			R T	Mkr4 _50	2.29 GHz
★ A Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 S2	Agilent us, HT2 dBm dBm -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	16:5- 20 M	4:39 A	Hpr 14, ;	2009 Atten 20	dB			R T	Mkr4 -50	2.29 GHz .53 dBm
★ A Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 S2 Start 3	Agilent us, HT2 dBm dBm -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	16:5- 20 M	4:39 A ode Mic	Hpr 14, ;	2009 Atten 20	dB				Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -15.4 dBm LgAv V1 V1 S2 start 1 S	Agilent us, HT2 dBm dBm 30 MH2 30 MH2 30 MH2	16:5- 20 M	4:39 A ode Mic	Apr 14, 3	2009 Atten 20	dB			R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -15.4 dBm LgAv V1 Start \$colored{colo	Agilent us, HT2 dBm dBm 	16:5: 20 M	4:39 Fi ode Mic	Apr 14, 3 I Ch.	2009 Atten 20	dB		Amplitu 4.62 c	R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 \$Xtart\$ #Res Mark 1 2	Agilent us, HT2 dBm dBm 30 dBm 30 MH2 30 MH2 30 MH2 ker	16:5: 20 M	4:39 Fi ode Mic	Apr 14, 3 I Ch.	2009 Atten 20	dB 		Amplitu 4.62 o -41.95 o	R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -15.4 dBm LgAv V1 Start \$colored{colo	Agilent us, HT2 dBm 30 dBm 30 MH2 30 MH2 30 MH2 30 MH2	16:5: 20 M	4:39 A ode Mic	Apr 14, 3 I Ch.	2009 Atten 20	dB		Amplitu 4.62 c	R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 S2 *Res E Mark 1 2 3 3	Agilent us, HT2 dBm 30 dBm 30 MH2 30 MH2 30 MH2 30 MH2	16:5 20 M	4:39 A ode Mic	Type Freq Freq Freq Freq	2009 Atten 20	#VBW 300 (Axis 		Amplitu 4.62 c -41.95 c	R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 S2 *Res E Mark 1 2 3 3	Agilent us, HT2 dBm 30 dBm 30 MH2 30 MH2 30 MH2 30 MH2	16:5 20 M	4:39 A ode Mic	Type Freq Freq Freq Freq	2009 Atten 20	#VBW 300 (Axis 		Amplitu 4.62 c -41.95 c	R T	Mkr4 -50	2.29 GHz .53 dBm
₩ A Spuriou Spuriou Ref 20 #Peak Log 10 dB/ Offst 14.2 dB DI -15.4 dBm LgAv V1 S2 *Res E Mark 1 2 3 3	Agilent us, HT2 dBm 30 dBm 30 MH2 30 MH2 30 MH2 30 MH2	16:5 20 M	4:39 A ode Mic	Type Freq Freq Freq Freq	2009 Atten 20	#VBW 300 (Axis 		Amplitu 4.62 c -41.95 c	R T	Mkr4 -50	2.29 GHz .53 dBm





(IEEE 802.11n HT40 MODE)





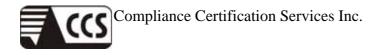
(IEEE 802.11n HT40 Combined MODE)

C	CH Low (30MHz~26GHz) (802.11n HT40 Combined MODE)											
₩ 4	Agilent	17:0	95:34	Apr 14	, 200	09				RТ		
Spurio	us, Hl	140 M	1ode Li	ow Ch.							Mkr4	2.29 GHz
Ref 20	∂dBm				At	ten 20 c	IB				-51	.70 dBm
#Peak												
Log		1										
10	\vdash	<u> </u>		_								
dB/												
Offst 14.2												
dB												
DI			2									
-20.9	-3 ♦	4	^									
dBm	Т <u> </u>	-4	+		ومراجب		4 miles M	James Maria	++++++++++++++++++++++++++++++++++++++	and the second second	Carlo Marking State	agentra /the apple
LgAv	1 Land	and 1	and the second second	- marine		www.www	And a second	[
-0												
V1 S2	2											
Start 3												6.00 GHz
#Res E	<u>3W 10</u>	<u>0 kH</u>	Z				ŧVBW 300	kHz		Sweep 2.	<u>482 s (</u> 1	001 pts)
Mark		Trac		Type			Axis		Amplitu			
1 2		(1) (1)		Freq Freq			.42 GHz .22 GHz		-0.89 c -39.97 c			
3		(1)		Freq			40 MHz		-46.94 0			
4		(1)		Freq		2.	.29 GHz		-51.70 (dBm		
	CH N	Mid	(301	MHz~	~26	GHz)	(802.1	1n H7	Г40 Coi	mbinec	I MOD	DE)
						,	(802.1	1n H7		mbinec R T	I MOE	DE)
* *	Agilent	17:1	0:55	Apr 14		,	(802.1	1n HT				
🔆 🗚 Spurio	Agilent us, H1	17:1 140 N		Apr 14	, 20	09		ln H7			Mkr4	2.29 GHz
* *	\gilent us, H⊺ ∂_dBm	17:1 140 N	0:55	Apr 14	, 20	,		1n H7			Mkr4	
¥ ₽ Spurio Ref 20	\gilent us, H⊺ ∂_dBm	17:1 140 N	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
¥¥ ▲ Spurio Ref 20 #Peak	\gilent us, H⊺ ∂_dBm	17:1 (40)	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
∰ ₽ Spurio Ref 20 #Peak Log	\gilent us, H⊺ ∂_dBm	17:1 [40 1	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
✤ A Spuriou Ref 20 #Peak Log 10 dB/ Offst	\gilent us, H⊺ ∂_dBm	17:1 [40 1	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
✤ A Spuriou Ref 20 #Peak Log 10 dB/ 0ffst 14.2	\gilent us, H⊺ ∂_dBm	17:1 [40 1	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
₩ Spuriou Ref 20 #Peak Log dB/ 0ffst 14.2 dB	\gilent us, H⊺ ∂_dBm	17:1 [40 1	.0:55 1ode M	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
₩ Spuriou Ref 20 #Peak Log dB/ Offst 14.2 dB DI	Agilent us, H7 dBm	17:1 [40 1	0:55	Apr 14	, 20	09		1n H7			Mkr4	2.29 GHz
₩ Spurion Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -18.5	Agilent us, H7 dBm	17:1 [40 1	.0:55 1ode M	Apr 14	, 20	09					Mkr4	2.29 GHz
★ A Spurion Ref 20 #Peak Log dB/ dB/ 0ffst 14.2 dB DI -18.5 dBm	Agilent us, H7 dBm	17:1 [40 1	.0:55 1ode M	Apr 14	, 20	09					Mkr4	2.29 GHz 94 dBm
₩ Spurion Ref 20 #Peak Log 10 dB/ 0ffst 14.2 dB DI -18.5	Agilent us, H7 dBm	17:1 [40 1	.0:55 1ode M	Apr 14	, 20	09					Mkr4	2.29 GHz 94 dBm
<pre></pre>	Agilent us, H1 dBm	17:1 [40 1	.0:55 1ode M	Apr 14	, 20	09					Mkr4	2.29 GHz 94 dBm
Image: wide wide wide wide wide wide wide wide	Agilent us, H1 ∂ dBm	17:17:17:17:17:17:17:17:17:17:17:17:17:1	.0:55 1ode M	Apr 14	, 20	09					Mkr4 -51	2.29 GHz 94 dBm
ypuriou Ref 20 HPeak Log 10 dB/ 0ffst 14.2 dB DI −18.5 dBm LgAv V1 S2 Start 3	Agilent us, H1 dBm	17:17:17:17:17:17:17:17:17:17:17:17:17:1	2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10	Apr 14	, 20	09 ten 20 c				R T	Mkr4 -51	2.29 GHz
Image: Weight of the second secon	Agilent us, HT ð dBm 30 dBm 30 dBm 30 dBm 31 dBm 32 dBm 330 MH 330 MH 34 10	17:17:1	2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	IB			R T	Mkr4 -51	2.29 GHz
Spuriou Ref 20 HPeak Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 S2 Start 1 *Res E Mark	Agilent us, H1 d dBm 30 MH 30 MH 34 10 ker	17:17:1 4 1 2 1 2 0 kH: Trac	2 0:55 1ode M	Apr 14 id Ch.	, 20	09 ten 20 c	IB		Amplitu	R T	Mkr4 -51	2.29 GHz
₩ ₽ Spuriou Ref 20 #Peak Log Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 S2 start ≦ 1 #Res E 1 1 2	Agilent us, H1 d dBm d dBm s d dBm d dBm s d dBm d dBm dBm d dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	17:1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	IB		Amplitu 1.53 c -42.21 c	R T	Mkr4 -51	2.29 GHz
Image: Weight of the second state Spurious Ref 20 Ref 20 HPeak Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 \$2 Mark 1 2 3	Agilent us, H1 d dBm d dBm s d dBm s d dBm s d dBm d dBm d dBm d dBm dBm d dBm d dBm dBm	17:17:11 140 I 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	UBW 300 Axis .25 GHz 40 MHz		Amplitu 1.53 (-42.21 (-45.47 (R T	Mkr4 -51	2.29 GHz
₩ ₽ Spuriou Ref 20 #Peak Log Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 S2 start ≦ 1 #Res E 1 1 2	Agilent us, H1 d dBm d dBm s d dBm s d dBm s d dBm d dBm d dBm d dBm dBm d dBm d dBm dBm	17:1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	IB		Amplitu 1.53 c -42.21 c	R T	Mkr4 -51	2.29 GHz
Image: Weight of the second state Spurious Ref 20 Ref 20 HPeak Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 \$2 Mark 1 2 3	Agilent us, H1 d dBm d dBm s d dBm s d dBm s d dBm d dBm d dBm d dBm dBm d dBm d dBm dBm	17:17:11 140 I 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	UBW 300 Axis .25 GHz 40 MHz		Amplitu 1.53 (-42.21 (-45.47 (R T	Mkr4 -51	2.29 GHz
Image: Weight of the second state Spurious Ref 20 Ref 20 HPeak Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 \$2 Mark 1 2 3	Agilent us, H1 d dBm d dBm s d dBm s d dBm s d dBm d dBm d dBm d dBm dBm d dBm d dBm dBm	17:17:11 140 I 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	UBW 300 Axis .25 GHz 40 MHz		Amplitu 1.53 (-42.21 (-45.47 (R T	Mkr4 -51	2.29 GHz
Image: Weight of the second state Spurious Ref 20 Ref 20 HPeak Log 10 dB/ Offst 14.2 dB DI -18.5 dBm LgAv V1 \$2 Mark 1 2 3	Agilent us, H1 d dBm d dBm s d dBm s d dBm s d dBm d dBm d dBm d dBm dBm d dBm d dBm dBm	17:17:11 140 I 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Apr 14 id Ch.	, 20	09 ten 20 c	UBW 300 Axis .25 GHz 40 MHz		Amplitu 1.53 (-42.21 (-45.47 (R T	Mkr4 -51	2.29 GHz

8.8 RADIATED EMISSIONS

8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS


§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

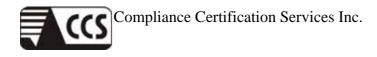
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

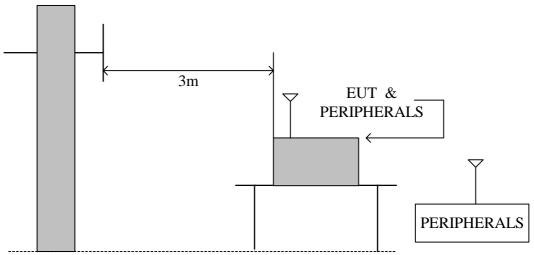
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

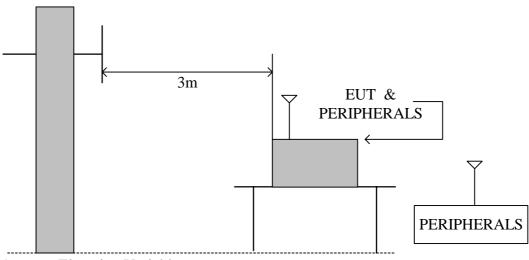

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

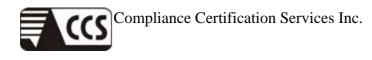
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
EMI TEST RECEIVER	R & S	ESCI	100221	05/20/2009
BILOG ANTENNA	SCHWARZBECK	VULB	9168_249	09/17/2009
HORN ANTENNA	ETS LINDGREN	3117	00078732	05/19/2009
PRE-AMPLIFIER	EM	EM30265	07032612	05/22/2009
Band Reject FILTER	Micro-Tronics	BRM50702-01	021	N.C.R.
RF COAXIAL CABLE	HUBERSUHNER	SUCOFLEX 104PEA	SN31350	07/21/2009


TEST EQUIPMENT

Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.



Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Antenna Elevation Variable

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	Wireless LAN Module	Test Date	2009/04/14
Model	XN-623	Test By	Rueyyan Lin
Test Mode	Normal operating	TEMP & Humidity	22°C, 52%

Horizontal									
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark			
148.34	62.40	-31.16	31.24	43.50	-12.26	QP			
178.41	67.50	-32.04	35.46	43.50	-8.04	QP			
195.87	72.10	-32.99	39.11	43.50	-4.39	QP			
205.57	67.90	-33.18	34.72	43.50	-8.78	QP			
213.33	69.80	-33.14	36.66	43.50	-6.84	QP			
364.65	67.29	-27.50	39.79	46.00	-6.21	Peak			
672.14	55.42	-22.33	33.09	46.00	-12.91	Peak			
801.15	56.44	-20.31	36.12	46.00	-9.88	Peak			

	Vertical									
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark				
165.80	72.31	-31.00	41.31	43.50	-2.19	Peak				
182.29	68.27	-32.29	35.99	43.50	-7.51	Peak				
196.84	71.60	-33.04	38.55	43.50	-4.95	Peak				
232.73	71.97	-31.68	40.29	46.00	-5.71	Peak				
299.66	66.46	-27.97	38.49	46.00	-7.51	Peak				
332.64	64.94	-27.81	37.13	46.00	-8.87	Peak				
497.54	63.05	-25.21	37.85	46.00	-8.15	Peak				
527.61	60.71	-24.69	36.02	46.00	-9.98	Peak				

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

4. No emisson found between lowest internal used/generated frequency to 30 MHz

8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Low)	TEMP & Humidity	22.3°C, 56%

	Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark	
1374.00	56.95		-13.84	43.11		74.00	54.00	-10.89	Peak	
1595.00	60.38		-12.76	47.62		74.00	54.00	-6.38	Peak	
				X 7 4• 1						
	· · · · · ·			Vertical	l	i				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark	
1357.00	58.27		-13.88	44.39		74.00	54.00	-9.61	Peak	
1595.00	68.76	48.60	-12.76	56.00	35.84	74.00	54.00	-18.16	AVG	
3218.50	61.79	59.07	-7.79	54.00	51.28	74.00	54.00	-2.72	AVG	
7230.50	51.41		-0.89	50.51		74.00	54.00	-3.49	Peak	

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP & Humidity	22.3°C, 56%

	Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark	
1391.00	58.79		-13.80	44.99		74.00	54.00	-9.01	Peak	
1595.00	61.22		-12.76	48.46		74.00	54.00	-5.54	Peak	
7307.00	54.85	48.20	-0.84	54.01	47.36	74.00	54.00	-6.64	AVG	
				Vertical	l					
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark	
1595.00	68.32	48.61	-12.76	55.56	35.85	74.00	54.00	-18.15	AVG	
3252.50	59.60	55.80	-7.74	51.86	48.06	74.00	54.00	-2.14	Peak	
7307.00	58.06	53.07	-0.84	57.22	52.23	74.00	54.00	-1.77	AVG	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH High)	TEMP & Humidity	22.3°C, 56%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1391.00	58.64		-13.80	44.84		74.00	54.00	-9.16	Peak
1595.00	59.99		-12.76	47.23		74.00	54.00	-6.77	Peak
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Vertical Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
1357.00	59.91		-13.88	46.03		74.00	54.00	-7.97	Peak
1595.00	67.50	48.05	-12.76	54.74	35.29	74.00	54.00	-18.71	AVG
3286.50	55.02		-7.69	47.33		74.00	54.00	-6.67	Peak
7392.00	50.23		-0.78	49.45		74.00	54.00	-4.55	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Low)	TEMP & Humidity	21°C, 59%

			_	Horizont	al	_			
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1348.50	59.59		-13.90	45.68		74.00	54.00	-8.32	Peak
1595.00	59.73		-12.76	46.98		74.00	54.00	-7.02	Peak
7443.00	50.59		-0.74	49.85		74.00	54.00	-4.15	Peak
				Vertical	l				-
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
1331.50	59.48		-13.95	45.54		74.00	54.00	-8.46	Peak
1595.00	67.81	47.83	-12.76	55.05	35.07	74.00	54.00	-18.93	AVG
3218.50	63.00	60.33	-7.79	55.21	52.54	74.00	54.00	-1.46	AVG

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP & Humidity	21°C, 59%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
1374.00	60.12		-13.84	46.28		74.00	54.00	-7.72	Peak
1595.00	60.85		-12.76	48.09		74.00	54.00	-5.91	Peak
				Vertical	1				
				v er tieu	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
· ·	(dBµV)	Ũ	Factor	Result-PK	Result-AV			-	Remark Peak
(MHz)	(dBµV)	Ũ	Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV)

Remark AVG = Result(AV) - Limit(AV)Remark AVG = Result(AV) - Limit(AV)

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH High)	TEMP & Humidity	21°C, 59%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1374.00	59.29		-13.84	45.45		74.00	54.00	-8.55	Peak
1595.00	58.96		-12.76	46.20		74.00	54.00	-7.80	Peak
				Vantiaa					
				Vertical	L				
Frequency (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor	Result-PK	Result-AV	-		Margin (dB)	Remark
(MHz)	(dBµV)	Reading-AV (dBµV)	Factor (dB/m)	Result-PK (dBµV/m)		(dBµV/m)	$(dB\mu V/m)$	(dB)	Remark
	U	Ũ	Factor	Result-PK	Result-AV	-		e	Remark Peak
(MHz)	(dBµV)	Ũ	Factor (dB/m)	Result-PK (dBµV/m)	Result-AV	(dBµV/m)	$(dB\mu V/m)$	(dB)	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV)

Remark AVG = *Result(AV)* – *Limit(AV)*

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT20 TX (CH Low)	TEMP & Humidity	21°C, 59%

		_	_	Horizont	al	_			
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
1358.50	60.59		-13.90	46.69		74.00	54.00	-7.31	Peak
1595.00	59.73		-12.76	46.98		74.00	54.00	-7.02	Peak
7445.00	49.59		-0.74	48.85		74.00	54.00	-5.15	Peak
				Vertical					
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1331.50	59.55		-13.95	45.60		74.00	54.00	-8.40	Peak
1595.00	62.87		-12.76	50.11		74.00	54.00	-3.89	Peak
3218.50	64.72	62.45	-7.79	56.93	54.66	90.56	78.61	-23.95	AVG

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT20 TX (CH Middle)	TEMP & Humidity	21°C, 59%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1374.00	59.90		-13.84	46.05		74.00	54.00	-7.95	Peak
1595.00	59.30		-12.76	46.54		74.00	54.00	-7.46	Peak
				Vertical	l	1			
				v ei tica					
Frequency (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor	Result-PK (dBuV/m)		-	Limit-AV (dBuV/m)	Margin (dB)	Remark
(MHz)	(dBµV)	Reading-AV (dBµV)	Factor (dB/m)	(dBµV/m)	Result-AV (dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	(dB)	
	U	e	Factor			-		0	Remark Peak
(MHz)	(dBµV)	e	Factor (dB/m)	(dBµV/m)		(dBµV/m)	$(dB\mu V/m)$	(dB)	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV)

Remark AVG = Result(AV) - Limit(AV)

Product Name	Wireless LAN Module	Test Date	2009/04/10
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT20 TX (CH High)	TEMP & Humidity	21°C, 59%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1382.50	60.22		-13.82	46.40		74.00	54.00	-7.60	Peak
1595.00	59.93		-12.76	47.17		74.00	54.00	-6.83	Peak
Vertical									
				Vertica					
Frequency (MHz)	Reading-PK	Reading-AV	Correction Factor	Result-PK	Result-AV	-	Limit-AV (dBuV/m)	Margin (dB)	Remark
(MHz)	(dBµV)	Reading-AV (dBµV)	Factor (dB/m)	Result-PK (dBµV/m)		-	$(dB\mu V/m)$	Margin (dB)	Remark
	(dBµV)	0	Factor	Result-PK	Result-AV	-		e	Remark Peak
(MHz)	(dBµV) 58.85	0	Factor (dB/m)	Result-PK (dBµV/m)	Result-AV	(dBµV/m)	$(dB\mu V/m)$	(dB)	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV)

Remark AVG = Result(AV) - Limit(AV)

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT40 TX (CH Low)	TEMP & Humidity	22.3°C, 56%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
1595.00	59.42		-12.76	46.66		74.00	54.00	-7.34	Peak
			I	Vertical	l	ſ	· · · · ·		T
Frequency	Reading-PK	Reading-AV	Correction Factor	Vertical Result-PK	Result-AV	Limit-PK	Limit-AV	Margin	
									Remark
(MHz)	(dBµV)	(dBµV)	(dB/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Remark
(MHz) 1595.00	(dBµV) 62.84	(dBµV)		(dBµV/m)	(dBµV/m)	(dBµV/m) 74.00	(dBµV/m) 54.00	(dB) -3.92	Remark Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT40 TX (CH Middle)	TEMP & Humidity	22.3°C, 56%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	-	Limit-AV (dBµV/m)	Margin (dB)	Remark
1195.50	57.04		-14.27	42.77		74.00	54.00	-11.23	Peak
1365.50	57.72		-13.86	43.86		74.00	54.00	-10.14	Peak
1595.00	60.06		-12.76	47.30		74.00	54.00	-6.70	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
1340.00	58.40		-13.92	44.48		74.00	54.00	-9.52	Peak
1595.00	68.24	48.50	-12.76	55.48	35.74	74.00	54.00	-18.26	AVG
3252.50	56.94		-7.74	49.20		74.00	54.00	-4.80	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

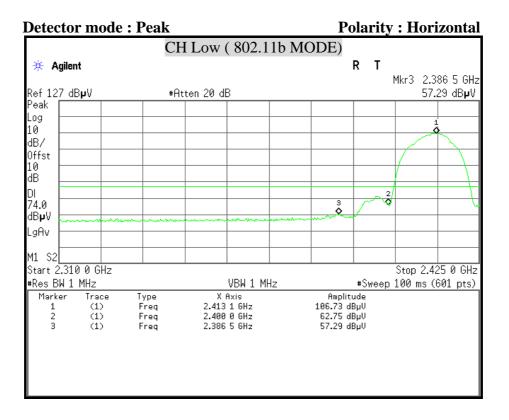
3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Wireless LAN Module	Test Date	2009/04/09
Model	XN-623	Test By	Rueyyan Lin
Test Mode	802.11n HT40 TX (CH High)	TEMP & Humidity	22.3°C, 56%

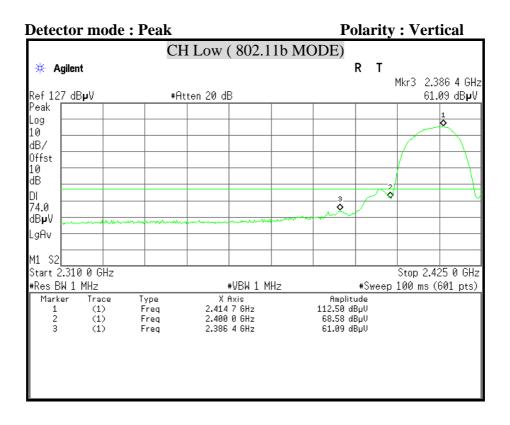
	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
1357.00	58.61		-13.88	44.72		74.00	54.00	-9.28	Peak
1595.00	62.44		-12.76	49.68		74.00	54.00	-4.32	Peak
2742.50	55.06		-8.49	46.57		74.00	54.00	-7.43	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
1595.00	68.40	49.04	-12.76	55.64	36.28	74.00	54.00	-17.72	AVG
3269.50	55.55		-7.71	47.84		74.00	54.00	-6.16	Peak

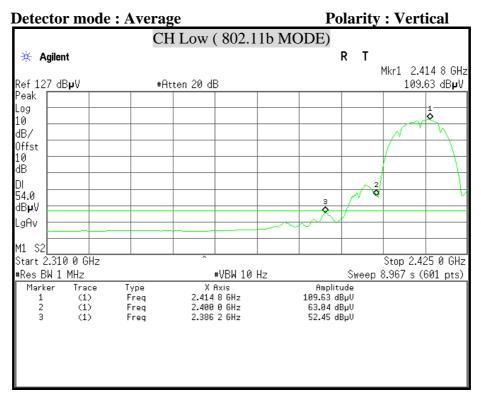
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

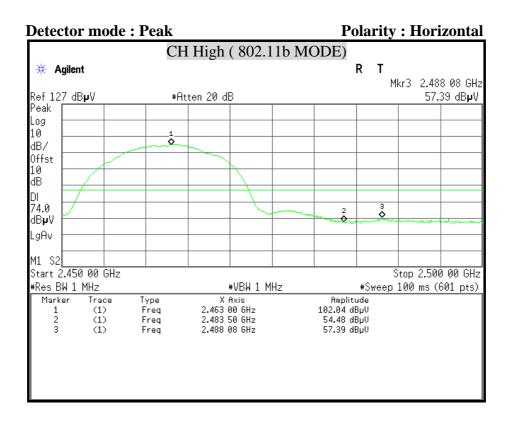
2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

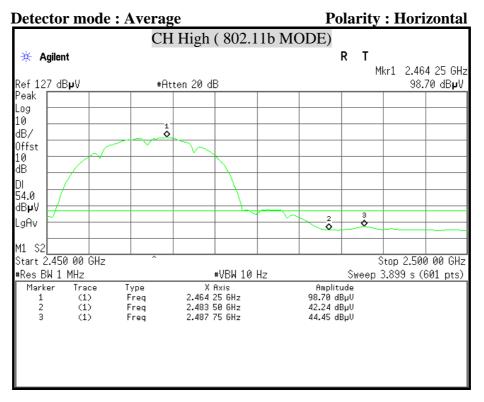

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

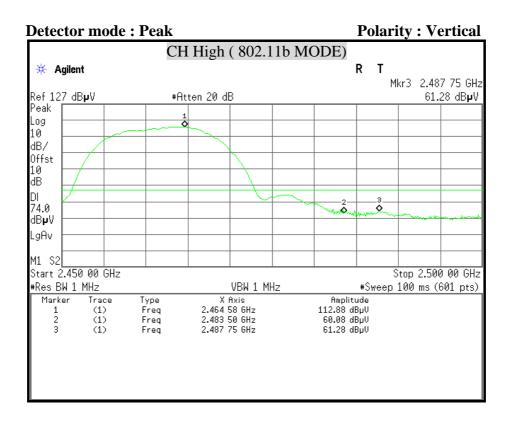
4. Result = Reading + Correction Factor Margin = Result – Limit

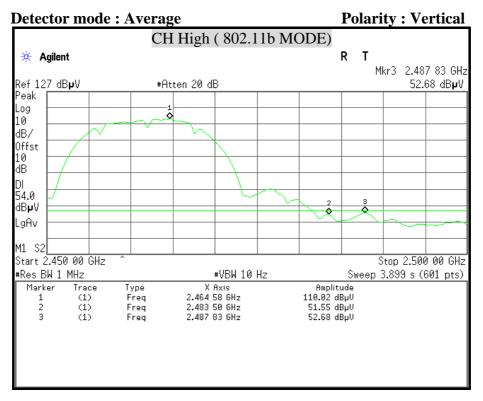

Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

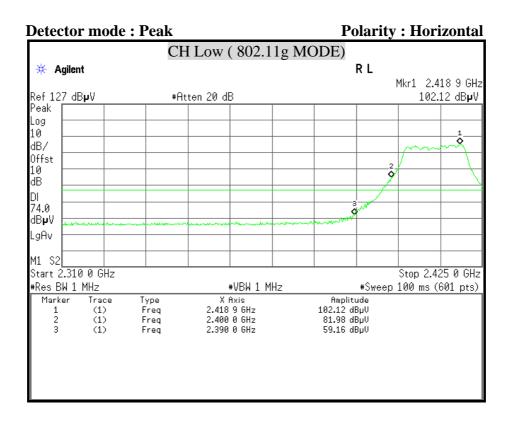


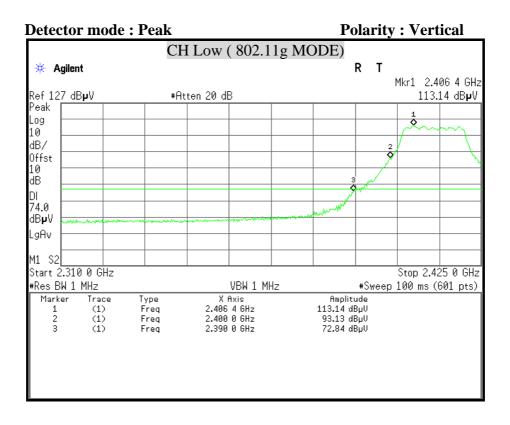

8.8.4 RESTRICTED BAND EDGES

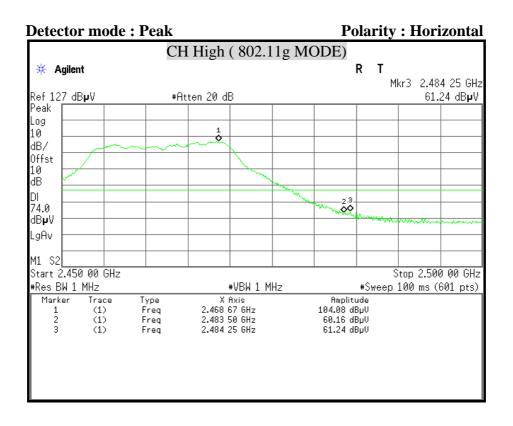


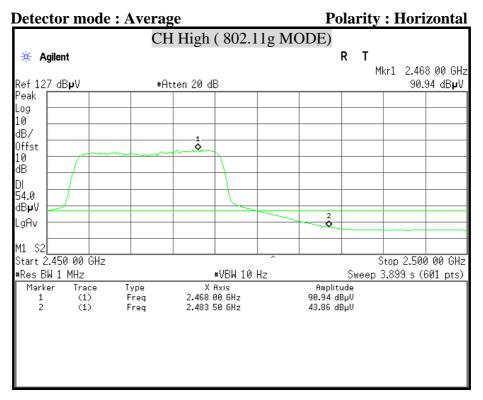

Detec	tor mode	: Avera	ge	Polarity : Horizontal
		Cl	H Low (802.11b N	MODE)
🔆 👫 Ag	gilent			RT
Ref 127	7 dBU	+0	Atten 20 dB	Mkr1 2.413 3 GHz 103.50 dB µ V
Peak [+		
Log				
10				
dB/				
Offst				
10 dB				
DI 54.0				
dBµV :				
LgAv				×_/
- 3				
M1 S2				
	.310 0 GHz			^ Stop 2.425 0 GHz
# Res B∣	l 1 MHz		#VBW 10 Hz	Sweep 8.967 s (601 pts)
Marke	er Trace (1)	Type	X Axis 2.413 3 GHz	Amplitude 103.50 dBµV
1 2 3	(1)	Freq Freq	2.413 3 GHZ 2.400 0 GHz	103.50 авро 55.25 dBµV
3	(1)	Freq	2.386 4 GHz	47.08 dBµV
L				

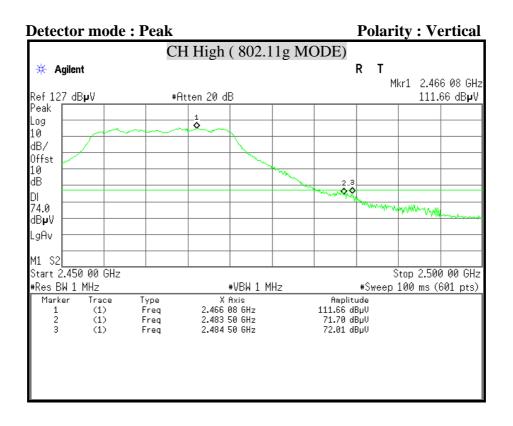


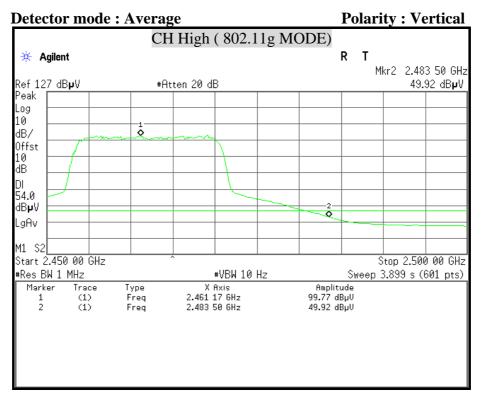


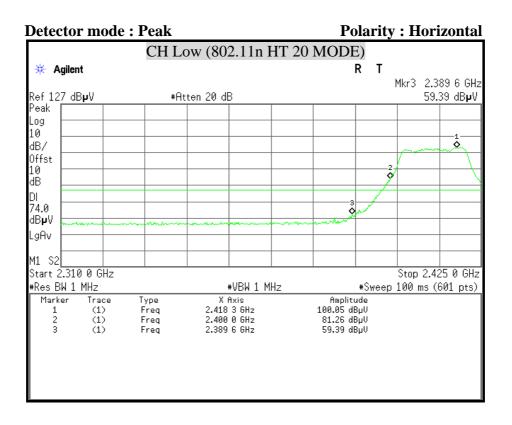


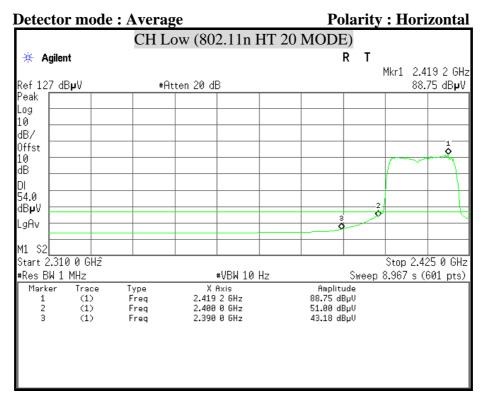


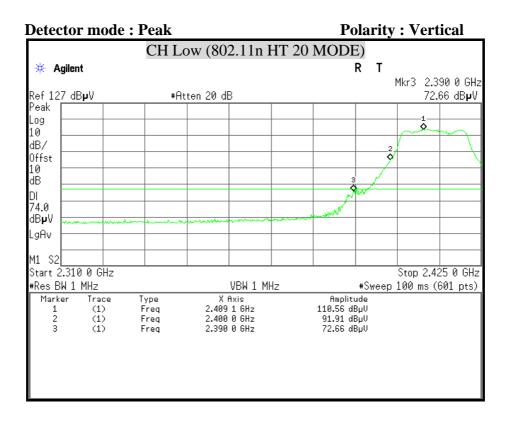


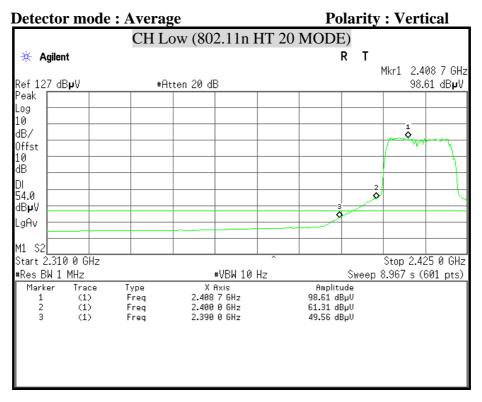


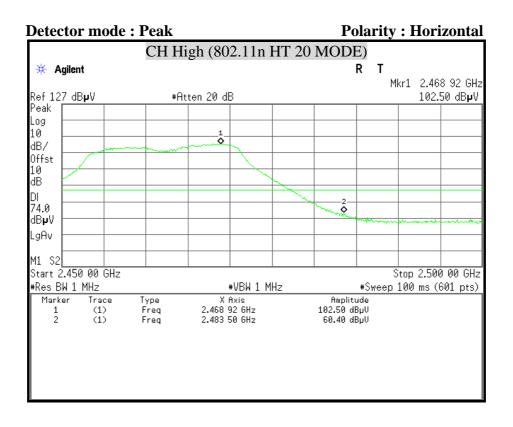


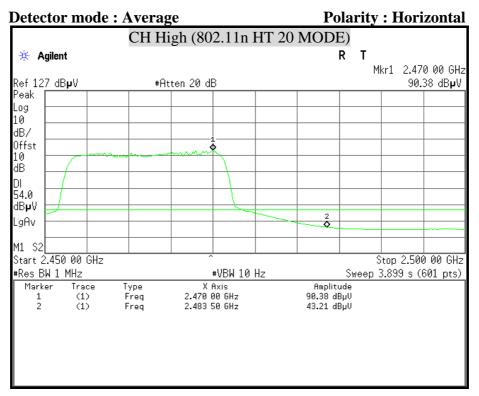


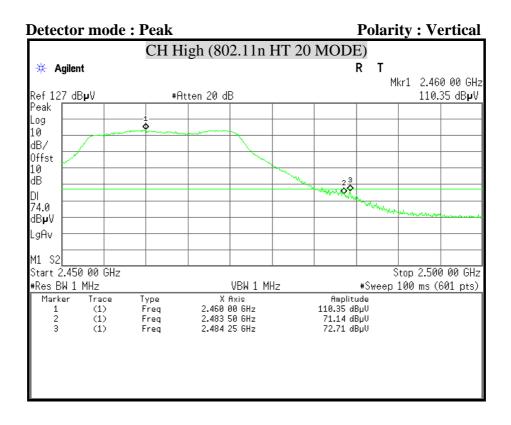


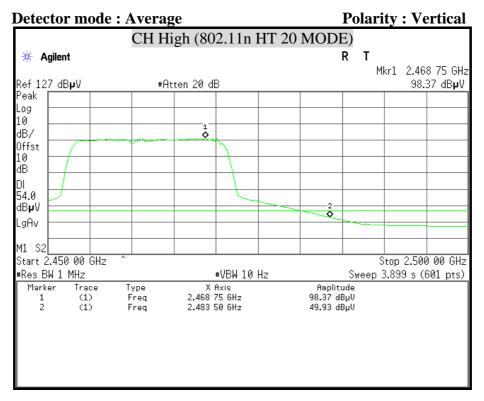


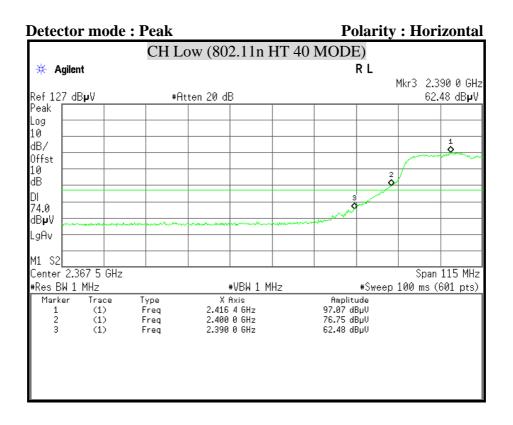


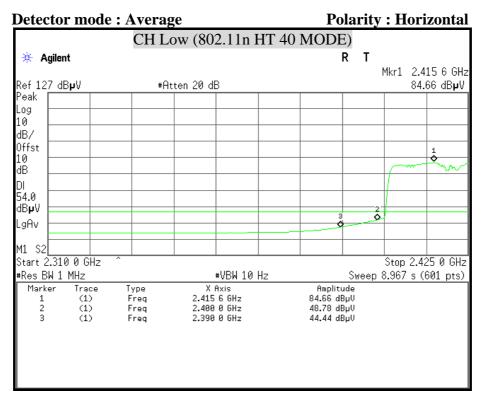


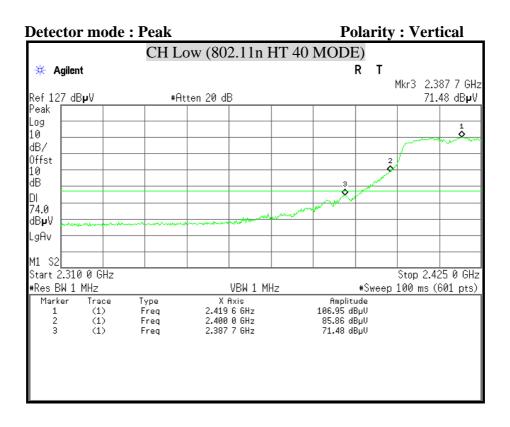


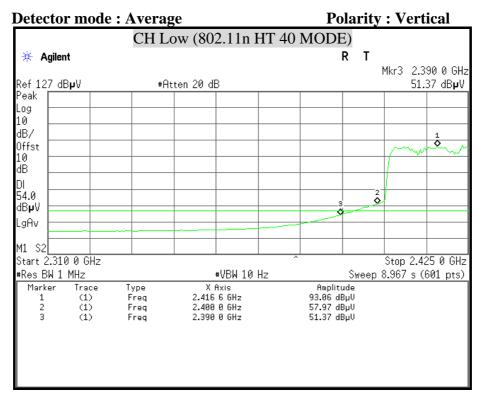


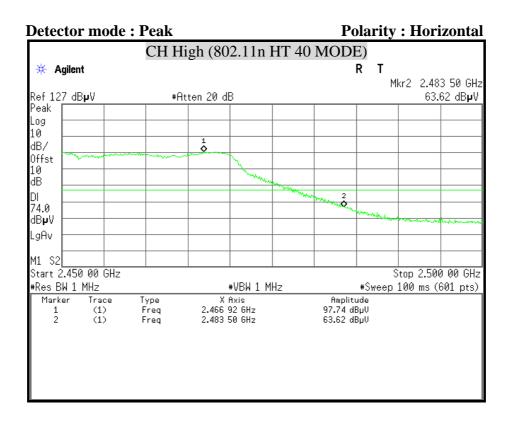


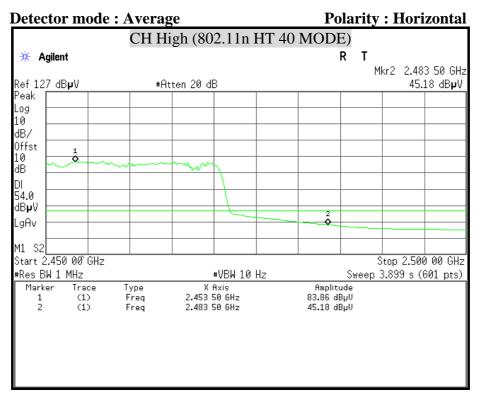


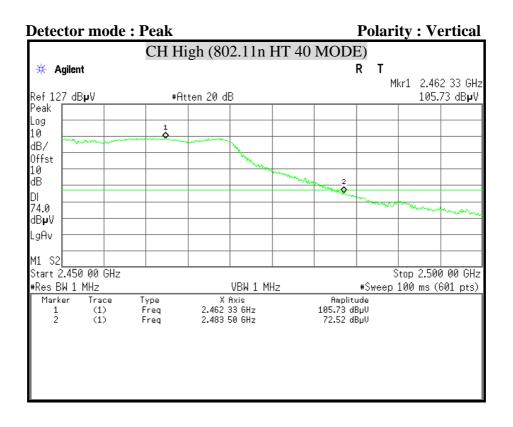


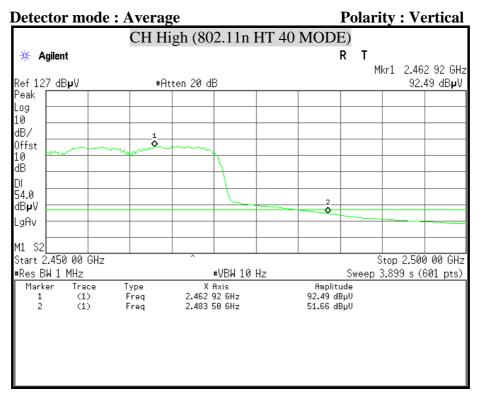








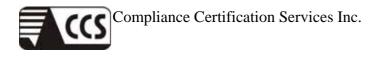




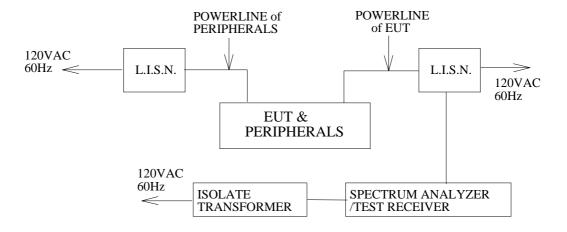
8.9 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.


The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.5 - 5	56	46
5 - 30	60	50


TEST EQUIPMENT

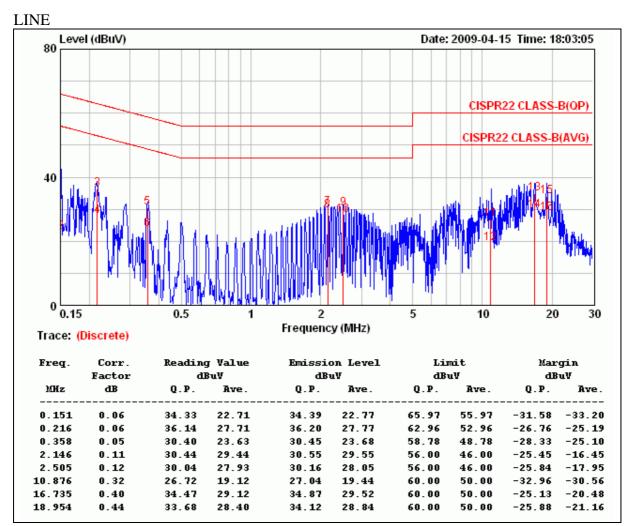
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/14/2009
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	10/13/2009
TEST RECEIVER	R & S	ESHS30	838550/003	02/03/2010
PULSE LIMIT	R & S	ESH3-Z2	100117	09/24/2009
N TYPE COAXIAL CABLE	BELDEN	8268 M17/164	003	09/14/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

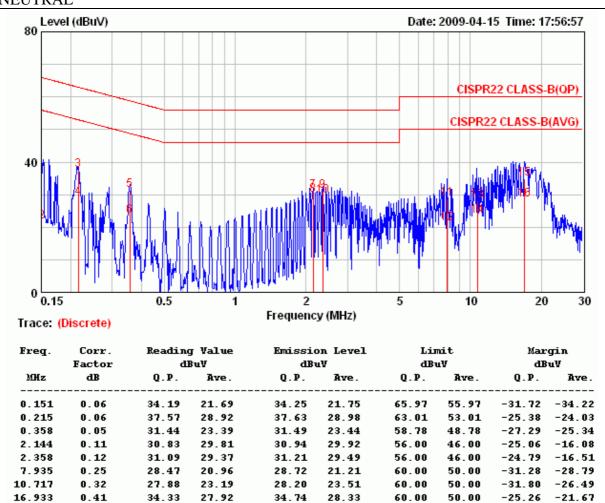
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4:2003.


TEST RESULTS

No non-compliance noted

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name Wireless LAN Module		Test Date	2009/04/15
Model Name	Model Name XN-623		Gundam Lin
Test Mode	Test ModeNormal operating (worst case)TEMP & Humidity		26.6 [°] C, 47%


Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

Product Name	roduct Name Wireless LAN Module		2009/04/15
Model Name	XN-623	Test By	Gundam Lin
Test Mode	Normal operating (worst case)	TEMP & Humidity	26.6°C, 47%

NEUTRAL

Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value