Page: 1 of 39

TEST REPORT

Equipment Under Test: IEEE802.11b/g WLAN USB2.0 Dongle

 Model No.
 : XG-703A

 FCC ID
 : M4Y-XG703A

Applicant : Z-Com, Inc.

Address of Applicant: 7F-2, No. 9. Prosperity RD.I Science-Based Industrial,

Park Hsinchu, 300 Taiwan

Date of Receipt : 2004.05.21

Date of Test(s) : 2004.05.24-2004.05.25

Date of Issue : 2004.05.31

Standards:

FCC OET Bulletin 65 supplement C, ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above. **Remarks**:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan E&E Services or testing done by SGS Taiwan E&E Services in connection with distribution or use of the product described in this report must be approved by SGS Taiwan E&E Services in writing.

Tested by : Dikin Yang Date : 2004.05.25

Approved by: Robert Chang Date: 2004.05.31

Report No.: ES/2004/50005-01 Page: 2 of 39

Contents

1. General Information	
1.1 Testing Laboratory 1.2 Details of Applicant	3
1.2 Details of Applicant	3
1.3 Description of EUT(s)	3
1.4 lest Environment	4
1.5 Operation description	4
1.6 Evaluation procedures	4
1.7 The SAR Measurement System	5
1.8 System Components	7
1.9 SAR System Verification	8
1.10 Tissue Simulant Fluid for the Frequency Band 2.4 to 2.5	5 GHz9
1.11 Test Standards and Limits	10
2. Instruments List	12
3. Summary of Results	13
4. Measurements	14
802.11b	
Configuration 1	
4.1.1 Vertical position, lowest channel	14
4.1.2 Vertical position, middle channel	15
4.1.3 Vertical position, highest channel	16
Configuration 2	
4.1.4 Horizontal position, lowest channel	17
4.1.5 Horizontal position, middle channel	18
4.1.6 Horizontal position, highest channel	19
802.11g	
Configuration 1	
4.2.1 Vertical position, lowest channel	20
4.2.2 Vertical position, middle channel	21
4.2.3 Vertical position, highest channel	22
Configuration 2	
4.2.4 Horizontal position, lowest channel	23
4.2.5 Horizontal position, middle channel	24
4.2.6 Horizontal position, highest channel	25
4.3 System Performance Validation	26
APPENDIX	
Photographs of Test Setup	27
2. Photographs of EUT	31
3. Probe Calibration certificate	33
4. Uncertainty Analysis	37
5. Phantom description	38
6 System Validation from Original equipment supplier	30

Page: 3 of 39

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd.

1F, No. 134, Wukung Road, Wuku industrial zone

Taipei county , Taiwan , R.O.C.
Telephone : +886-2-2299-3279
Fax : +886-2-2298-2698
Internet : http://www.sqs.com.tw

1.2 Details of Applicant

Applicant : Z-Com, Inc.

Address : 7F-2, No. 9, Prosperity I RD., Science-Based

Industrial Park, Hsinchu 300, Taiwan

1.3 Description of EUT(s)

Equipment Type	IEEE802.11b/g WLAN USB2.0 Dongle			
Test Procedure	FCC OET Bulletin	65, Supplement C		
TX Frequency range	2412-24	162 MHz		
FCC ID	M4Y-X	G703A		
Serial No.	Pre-Production			
Model(s)	XG-703A			
Modulation	Direct Sequence Spread Spectrum (DSSS)			
	802.11b Mode	802.11g Mode		
RF Conducted Output Power	17.71 dBm (2412MHz)	16.85 dBm (2412MHz)		
(Peak)	17.75 dBm (2437MHz)	16.87 dBm (2437MHz)		
	17.77 dBm (2462MHz)	16.91 dBm (2462MHz)		
Max. SAR Measured	1.3 W/kg			
Antenna Type	Prir	nted		

Page: 4 of 39

Antenna Gain	1.09 dBi			
Power Supply	From USB slot 3.3V			
Heat Lanton DC(a) Tostad	IBM ThinkPad T30			
Host Laptop PC(s) Tested	(S/N: 99AMZM5)			

1.4 Test Environment

Ambient temperature: 22.8° C

Tissue Simulating Liquid: 21.4° C

Relative Humidity: 64 %

1.5 Operation Configuration

The EUT is USB Adaptor, which is installed inside a Notebook. Since the Notebook is placed on the top of the leg, when it operates, it is to be defined as a portable device. SAR measurement is mandatory. In order to measure SAR value, we used continuous transmission mode. The test set up mode was prepared by manufacturer. Value of Crest Factor = 1 was used for SAR testing according to the nature of the EUT. The test configuration tested at the low, middle and high frequency channels (2412MHz,2437MHz and 2462MHz).By using the program subordinated in the computer, and change into the written channel, and then set in highest power. Finally, we will test it by dividing into 2 ways.

Configuration 1: Vertical of the PC at 90° and at a distance of 1.5 cm from the base of the phantom, and the antenna tip upward.(Fig. 3 & Fig. 4 & Fig. 5)

Configuration 2: Bottom of the PC is paralleled and at a distance of 0.0 cm from the base of the phantom, but 0.3 cm Spacing between EUT & Planar Phantom.(Fig.6 & Fig.7 & Fig.8)

NOTE:

- 1. Please reference "APPENDIX 1" for the photos of test configuration.
- 2. All test Configuration have been complied with the body worn configuration.
- 3. The Notebook has been installed the controlling software that could control the EUT transmitted channel and power. But that software is just for test software, not for normal user.

1.6 EVALUATION PROCEDURES

The evaluation was performed with the following procedure:

(1). Measurement of the SAR value at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Page: 5 of 39

(2). The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 15 mm x 15 mm. Based on these data, the area of the maximum absorption was determined by splint interpolation.

- (3). Around this point, a volume of 30 mm \times 30 mm \times 30 mm was assessed by measuring 7 x7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [1]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splints with the "Not a knot"-condition (in x, y and z-directions) [1], [2]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
 - 4. Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

1.7 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1760 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei| 2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in

Page: 6 of 39

tissue simulating liquid. The probe is equipped with an optical surface detector system.

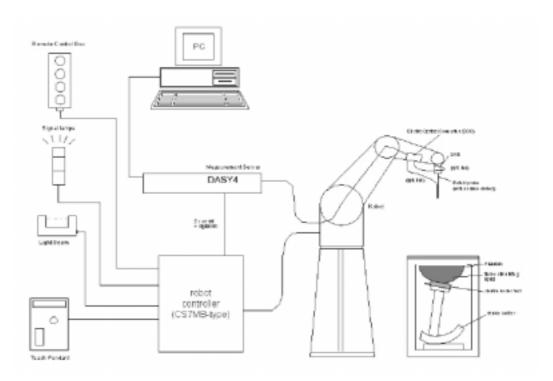


Fig. a The microwave circuit arrangement used for SAR system verification

- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.

Page: 7 of 39

• The device holder for handheld mobile phones.

- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

1.8 System Components

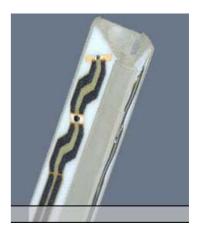
ET3DV6 E-Field Probe

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.g. glycol)


Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at

frequencies of 2450 MHz (accuracy \pm 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

ET3DV6 E-Field Probe

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

±0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Rnge: $5 \mu \text{W/g}$ to >100 mW/g; Linearity: $\pm 0.2 \text{ dB}$

Srfce. Detect: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

SAM PHANTOM V4.0C

Construction: The shell corresponds to the specifications of the Specific

Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the

dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow

Page: 8 of 39

the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the

robot.

Shell Thickness: $2 \pm 0.2 \text{ mm}$

Filling Volume: Approx. 25 liters
Dimensions: Height: 810 mm;

Length: 1000 mm; Width: 500 mm

PHANTOM v4.0C

DEVICE HOLDER

Construction

In combination with the Twin SAM Phantom V4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.9 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 22.8 °C, the relative humidity was in the range 64% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Page: 9 of 39

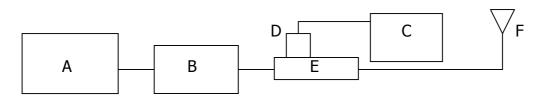


Fig. b The microwave circuit arrangement used for SAR system verification

- A. Agilent Model 8648D Signal Generator
- B. Mini circuits Model ZHL-42 Amplifier
- C. Agilent Model E4416A Power Meter
- D. Agilent Model 8482H Power Sensor
- E. Agilent Model 777D Dual directional coupling
- F. Reference dipole antenna

Photograph of the 2450MHz System Check

Validation Kit	Frequency	Target SAR 1g (250mW)	Target SAR 10g (250mW)	Measured SAR 1g	Measured SAR 10g	Measured date
DT3DV6 S/N :1760	2450 MHz	14.2 m W/g	6.62 m W/g	14 m W/g	6.31m W/g	2004-05-24

Table 1. Results system validation

1.10 Tissue Simulant Fluid for the Frequency Band 2.4 to 2.5 GHz

The dielectric properties for this body-simulant fluid were measured by using the HP Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjuncation with HP 8714ET Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

F (Mhz)	Tissue type	Limits/ Measured	Dielectric Parameters		
			Permittivity Conductivity		Simulated Tissue
					Temp(° C)
2450	Body	Measured,	53.22	1.985	21.4
		Measured,	53.1	1.981	21.4
		Recommended Limits	50.1-55.3	1.85-2.05	20-24

Page: 10 of 39

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the ear reference point of the phantom was 15cm±5mm during all tests. (Fig .2)

The composition of the brain tissue simulating liquid for 2450 MHz is:

Ingredient	2450Mhz (Head)	2450Mhz (Body)
DGMBE	550.0 g	301.7 ml
Water	450.0 g	698.3 ml
Total amount	1 L (1.0kg)	1 L (1.0kg)

1.11 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).

Page: 11 of 39

Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

	Uncontrolled Environment	Controlled Environment
Human Exposure	General Population	Occupational
Spatial Peak SAR	1.60 m W/g	8.00 m W/g
(Brain)		
Spatial Average SAR	0.08 m W/g	0.40 m W/g
(Whole Body)		
Spatial Peak SAR	4.00 m W/g	20.00 m W/g
(Hands/Feet/Ankle/Wrist)		

Table .4 RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Report No.: ES/2004/50005-01
Page: 12 of 39

2. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration
Schmid &				
Partner	Dosimetric E-Field	ET3DV6	1760	Feb.17.2004
Engineering AG	Probe			
Schmid &				
Partner	2450 MHz System	D2450V2	727	Mar.23. 2004
Engineering AG	Validation Dipole			
Schmid &	'			
Partner	Data acquisition	DAE3	547	Feb.10.2004
Engineering AG	Electronics			
Schmid &				Calibration isn't
Partner	Software	DASY 4 V4.1c		necessary
Engineering AG		Build 47		,
Schmid &				Calibration isn't
Partner	Phantom	SAM		necessary
Engineering AG				,
Agilent	Network Analyzer	8714ET	US41442815	Jun.16.2003
Agilent	Dielectric Probe Kit	85070D	US01440168	Jun.20.2003
Agilent	Dual-directional	777D	50114	Jun.27.2003
	coupler	778D	50313	Jun.27.2003
Agilent	RF Signal	8648D	3847M00432	Feb.09.2004
	Generator			
Agilent	Power Sensor	8482H	MY41091011	Nov.05.2003

Report No.: ES/2004/50005-01
Page: 13 of 39

3. Summary of Results

802.11b Mode

602.11b Wode							
SAR MEASUREMENT							
Crest factor: 1 (Duty cycle: 100%)							
Laptop PC:	IBM ThinkPa	ad T30 , S/N	1: 99AM	IZM5	Depth o	of Liquid	: 15.0 cm
EUT Config	uration 1						
EUT Set-up	conditions	Freque	ncy	Conducted Power	Liquid	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	[dBm] (Peak)	Temp[°C]	(W/kg)	(W/kg)
1.5	Printed	1	2412	17.71 dBm	21.4	0.0615	1.6
		6	2437	17.75 dBm	21.4	0.0698	
		11	2462	17.77 dBm	21.4	0.0774	
EUT Config	uration 2						
EUT Set-up	conditions	Freque	ncy	Conducted Power	Liquid	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	[dBm] (Peak)	Temp[°C]	(W/kg)	(W/kg)
0.0	Printed	1	2412	17.71 dBm	21.5	1.09	1.6
		6	2437	17.75 dBm	21.5	1.27	
		11	2462	17.77 dBm	21.5	1.3	

802.11a Mode

ooz. i ig wode							
EUT Configuration 1							
EUT Set-up	conditions	Frequency		Conducted Power	Liquid	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	[dBm] (Peak)	Temp[°C]	(W/kg)	(W/kg)
1.5	Printed	1	2412	16.85 dBm	21.4	0.0478	1.6
		6 2437		16.87 dBm	21.2	0.0538	
		11 2462		16.91 dBm	21.4	0.0592	
EUT Config	uration 2						
EUT Set-up	conditions	Freque	ncy	Conducted Power	Liquid	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	[dBm] (Peak)	Temp[°C]	(W/kg)	(W/kg)
0.0	Printed	1	2412	16.85 dBm	21.5	0.847	1.6
		6	2437	16.87 dBm	21.5	1.1	
		11	2462	16.91 dBm	21.5	1.16	

Measured Mixture Type	Body	Relative Humidity	64%
Ambient Temperature	22.8 °C	Fluid Temperature	21.4°C

Date/Time: 05/24/04 20:37:23

4.Measurements Page: 14 of 39

802.11b

Vertical position, lowest channel

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.93862 mho/m, = 53.3132, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

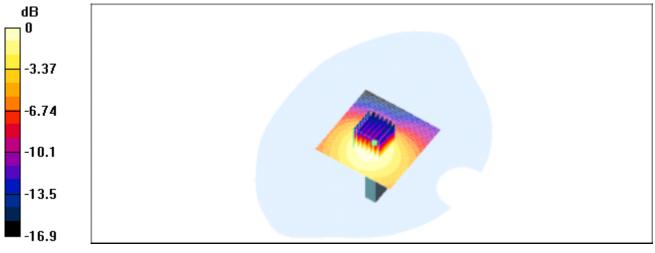
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 5.5 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.0624 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.0615 mW/g; SAR(10 g) = 0.0345 mW/g

Reference Value = 5.5 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 0.0634 mW/g

0 dB = 0.0634 mW/g

Page: 15 of 39

802.11b Vertical position, middle channel

Date/Time: 05/24/04 21:00:47

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.97667 mho/m, = 53.3192, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

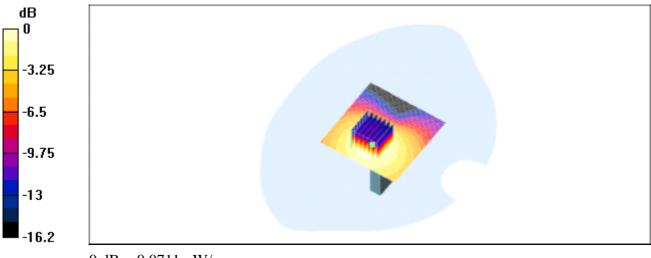
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 5.46 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 0.0719 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.14 W/kg

SAR(1 g) = 0.0698 mW/g; SAR(10 g) = 0.0403 mW/g

Reference Value = 5.46 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 0.0711 mW/g

0 dB = 0.0711 mW/g

Date/Time: 05/24/04 21:26:50

Page: 16 of 39

802.11b Vertical position, highest channel

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.99161 mho/m, = 53.0924, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

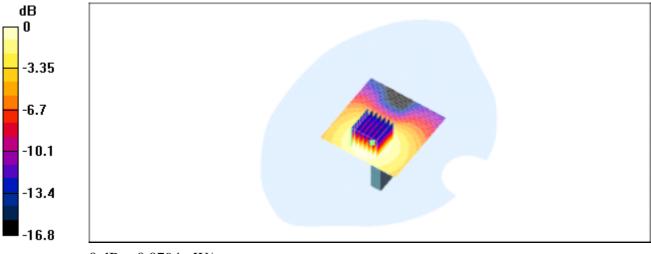
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 5.15 V/m

Power Drift = 0.03 dB

Maximum value of SAR = 0.0799 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.0774 mW/g; SAR(10 g) = 0.0448 mW/g

Reference Value = 5.15 V/m

Power Drift = 0.03 dB

Maximum value of SAR = 0.0794 mW/g

0 dB = 0.0794 mW/g

Page: 17 of 39

802.11b

Date/Time: 05/24/04 23:33:21 Horizontal position, lowest channel

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.93862 mho/m, r = 53.3132, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

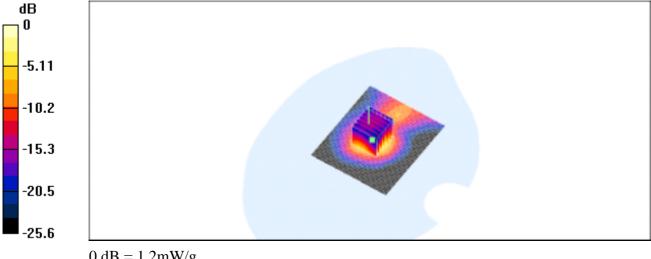
Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.98 V/m

Power Drift = -0.006 dB

Maximum value of SAR = 1.24 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.6 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.464 mW/g

Reference Value = 7.98 V/m

Power Drift = -0.006 dB

Maximum value of SAR = 1.2 mW/g

0 dB = 1.2 mW/g

Page: 18 of 39

802.11b

Horizontal position, middle channel Date/Time: 05/24/04 23:04:43

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.97667 mho/m, = 53.3192, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

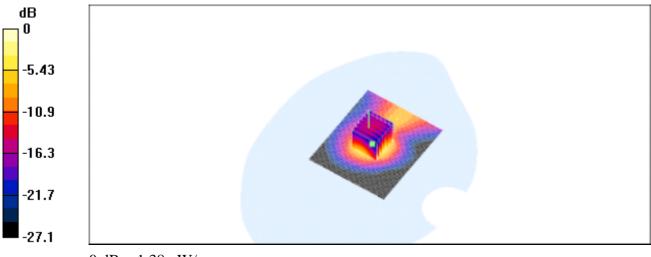
Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.96 V/m

Power Drift = -0.03 dB

Maximum value of SAR = 1.43 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.96 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.553 mW/g

Reference Value = 7.96 V/m

Power Drift = -0.03 dB

Maximum value of SAR = 1.38 mW/g

0 dB = 1.38 mW/g

Page: 19 of 39

802.11b

Horizontal position, highest channel Date/Time: 05/24/04 22:26:43

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.99161 mho/m, = 53.0924, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

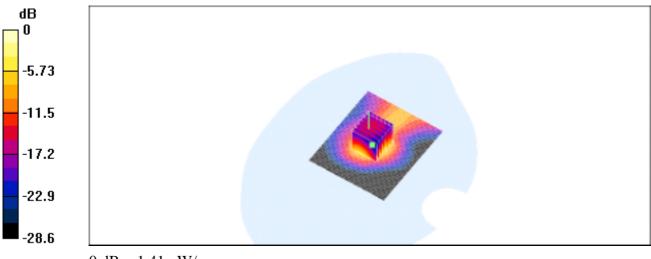
Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.95 V/m

Power Drift = -0.08 dB

Maximum value of SAR = 1.5 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.696 mW/g

Reference Value = 7.95 V/m

Power Drift = -0.08 dB

Maximum value of SAR = 1.41 mW/g

0 dB = 1.41 mW/g

Date/Time: 05/24/04 18:47:37

Page: 20 of 39

802.11g

Vertical position, lowest channel

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.93862 mho/m, = 53.3132, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

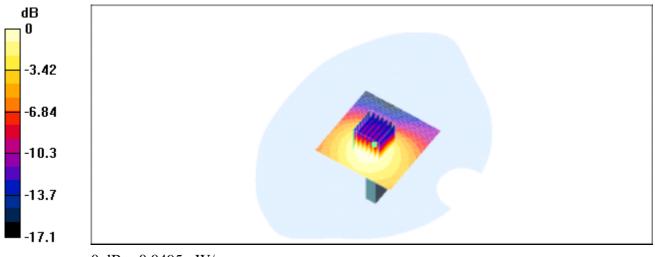
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.87 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 0.0491 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.0967 W/kg

SAR(1 g) = 0.0478 mW/g; SAR(10 g) = 0.0267 mW/g

Reference Value = 4.87 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 0.0495 mW/g

0 dB = 0.0495 mW/g

Page: 21 of 39

802.11g

Vertical position, middle channel Date/Time: 05/24/04 18:05:42

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.97667 mho/m, = 53.3192, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

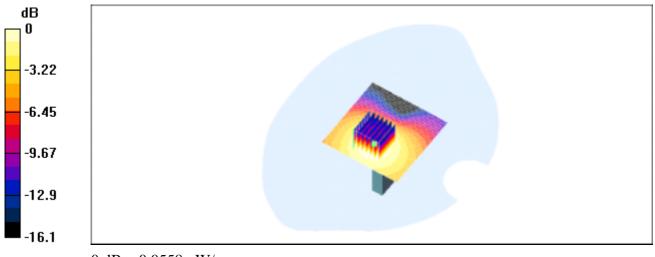
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.78 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 0.0566 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.0538 mW/g; SAR(10 g) = 0.031 mW/g

Reference Value = 4.78 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 0.0558 mW/g

0 dB = 0.0558 mW/g

Date/Time: 05/24/04 17:41:16

Page: 22 of 39

802.11g Vertical position, highest channel

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.99161 mho/m, = 53.0924, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

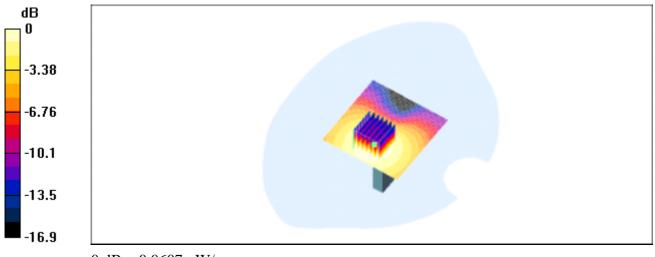
Vertical/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.51 V/m

Power Drift = 0.02 dB

Maximum value of SAR = 0.0611 mW/g

Vertical/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.0592 mW/g; SAR(10 g) = 0.034 mW/g

Reference Value = 4.51 V/m

Power Drift = 0.02 dB

Maximum value of SAR = 0.0607 mW/g

0 dB = 0.0607 mW/g

Page: 23 of 39

802.11g

Horizontal position, lowest channel Date/Time: 05/25/04 00:16:18

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.93862 mho/m, = 53.3132, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

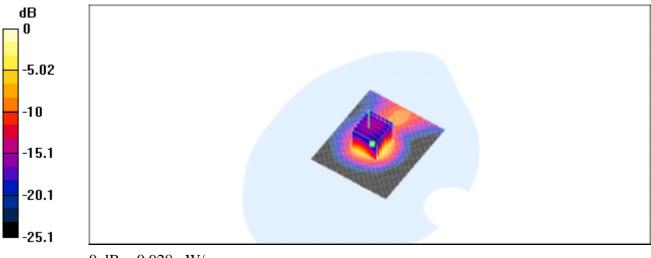
Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.18 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.964 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2 W/kg

SAR(1 g) = 0.847 mW/g; SAR(10 g) = 0.363 mW/g

Reference Value = 7.18 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.928 mW/g

0 dB = 0.928 mW/g

Page: 24 of 39

802.11g

Horizontal position, middle channel Date/Time: 05/25/04 01:15:35

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.97667 mho/m, = 53.3192, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.86 V/m

Power Drift = -0.09 dB

Maximum value of SAR = 1.27 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 2.6 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.469 mW/g

Reference Value = 6.86 V/m

Power Drift = -0.09 dB

Maximum value of SAR = 1.2 mW/g

0 dB = 1.2 mW/g

Page: 25 of 39

802.11g

Horizontal position, highest channel Date/Time: 05/25/04 01:41:49

DUT: IEEE802.11b/g WLAN USB2.0 Dongle; Type: XG-703A;

Program: 802.11b+g WLAN Adaptor

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.99161 mho/m, = 53.0924, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

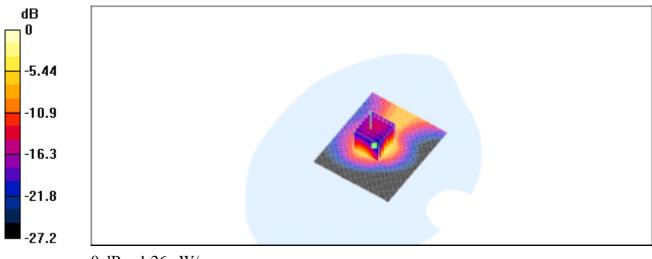
Horizontal/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 5.75 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 1.38 mW/g

Horizontal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.502 mW/g

Reference Value = 5.75 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 1.26 mW/g

0 dB = 1.26 mW/g

Date/Time: 05/24/04 09:15:29

Page: 26 of 39

•

SAR System Performance Verification

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:727

Program: 2004-05-24

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.98925 mho/m, = 53.2336, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

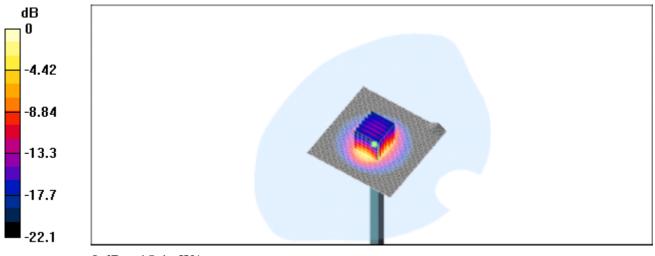
System Cal/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 92.3 V/m

Power Drift = 0.007 dB

Maximum value of SAR = 15.6 mW/g

System Cal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14 mW/g; SAR(10 g) = 6.31 mW/g

Reference Value = 92.3 V/m

Power Drift = 0.007 dB

Maximum value of SAR = 15.4 mW/g

0 dB = 15.4 mW/g

Report No. : ES/2004/50005-01 Page : 27 of 39

Appendix Photographs of Test Setup

Fig.1 Photograph of the SAR measurement System

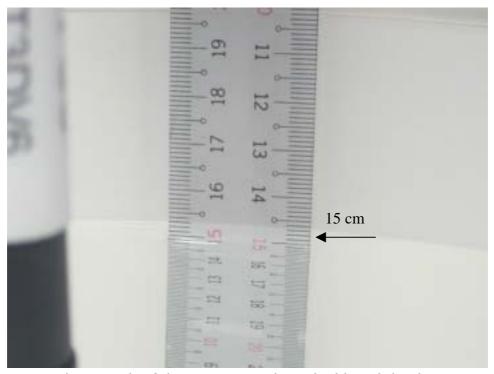


Fig.2 Photograph of the Tissue Simulant Fluid liquid depth 15cm

Report No. : ES/2004/50005-01 Page : 28 of 39

Fig.3 Photograph of the antenna tip is upward and at a distance of 1.5 cm from the base of the phantom.

Fig.4 Photograph of the antenna tip is upward and at a distance of 1.5 cm from the base of the phantom.

Report No. : ES/2004/50005-01 Page : 29 of 39

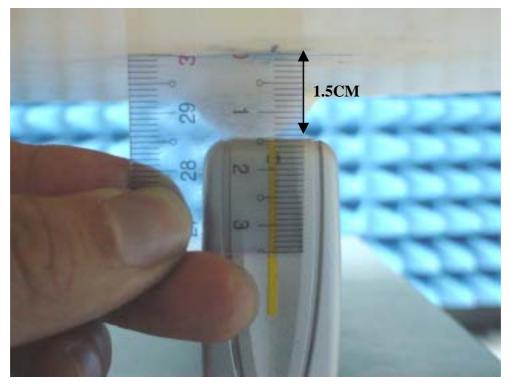


Fig.5 Photograph of the antenna tip is upward and at a distance of 1.5 cm from the base of the phantom.

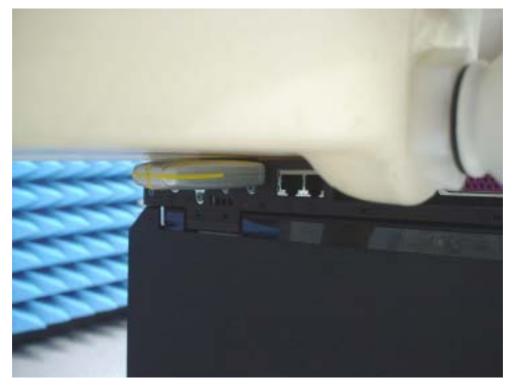


Fig.6 Photograph of the Bottom of the Pc is paralleled and at a distance of 0.0 cm from the base of the phantom.

Page: 30 of 39

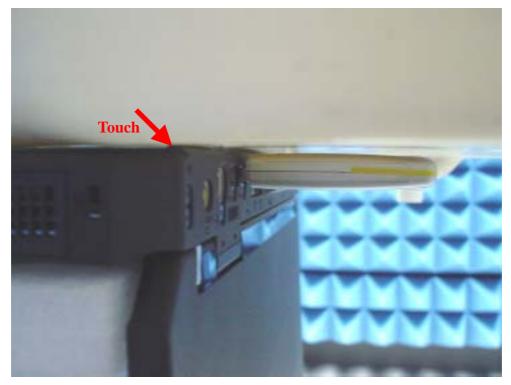


Fig.7 Photograph of the Bottom of the Pc is paralleled and at a distance of 0.0 cm from the base of the phantom.

Fig.8 Photograph of the Bottom of the Pc is paralleled and at a distance of 0.0 cm from the base of the phantom, but 0.3 cm Spacing between EUT & Planar Phantom.

Report No. : ES/2004/50005-01 Page : 31 of 39

Photographs of the EUT

Fig.9 Front view of device

Fig.10 Back view of device

Report No.: ES/2004/50005-01 Page: 32 of 39

Fig.11 With IBM ThinkPad T30 USB slot

Fig.12 With IBM ThinkPad T30 USB slot

Page: 33 of 39

Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Client

SGS Taiwan (Auden)

CALIBRATION CERTIFICATE Object(s) ET3DV6 - SN:1760 QA CAL-01.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date February 17, 2004 In Tolerance (according to the specific calibration document) This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Calaus and hursday < 75% Calibration Equipment used (M&TE critical for calibration) Model Type 10 # Cal Date (Calibrated by, Certificate No.) Scheduled Celibration Power meter EPM E44195 G041293874 2-Apr-03 (METAS, No 252-0250) Apr-04 Power senser E4412A MY41495277 2-Apr-03 (METAS, No 252-0250) Apr-04 Reference 20 dB Attenuator SN: 5086 (20b) 3-Apr-03 (METAS, No. 251-0340) Apr-04 Fluive Process Calibrator Type 702 SN: 6296803 8-Sep-03 (Sintral SCS No. E-030020) Sep-04 Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Oct 05 RF generator HP 8664C US3642U01700 4-Aug-99 (SPEAG, in house check Aug-92) In house check: Aug-05 Network Analyzer HP 6753E US37390595 18-Oct-01 (SPEAG, in house check Oct-03) In house check: Oct 05 Calibrated by Katja Pakovic Laberatory Director Niels Kunter Approved by **Quality Manager** Date issued February 17, 2004 This cellbration certificate is issued as an intermediate solution until the accreditation process (based on ISCAEC 17025 international Standard) for Calibration Laboratory of Schrad & Partner Engineering AG is completed.

Page: 34 of 39

Probe ET3DV6

SN:1760

Manufactured:

November 12, 2002

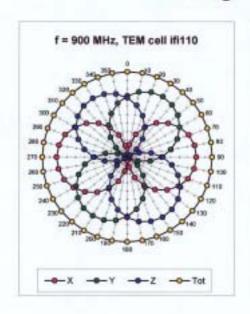
Last calibrated:

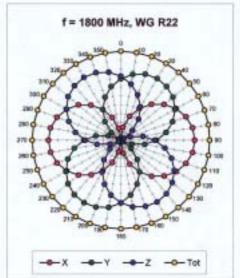
March 7, 2003

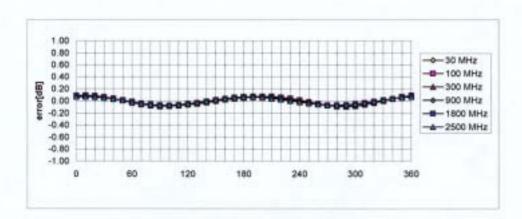
Recalibrated:

February 17, 2004

Calibrated for DASY Systems

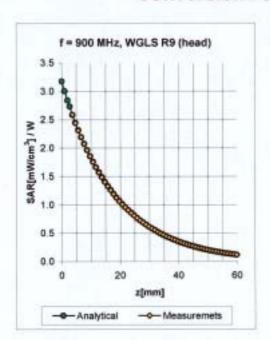

(Note: non-compatible with DASY2 system!)

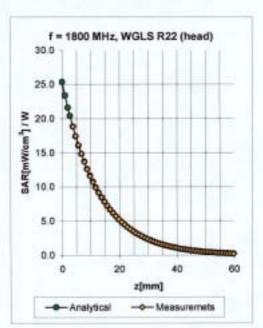

Page: 35 of 39


ET3DV6 SN:1760

February 17, 2004

Receiving Pattern (ϕ) , θ = 0°


Axial Isotropy Error < ± 0.2 dB


Page: 36 of 39

ET3DV6 SN:1760

February 17, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ⁸	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.51	1.96	6.34 ± 11.3% (k=2)
1800	1710-1890	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.36	5.13 ± 10.9% (k=2)
1900	1805-1995	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.42	5.10 ± 11.1% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.43	2.21	6.04 ± 11.3% (k=2)
1800	1710-1890	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.56	4.56 ± 10.9% (k=2)
1900	1805-1995	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.76	4.43 ± 11.1% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.47	1.45	4.18 ± 9.7% (k=2)

The total standard uncertainty is calculated as not-sum-equare of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

±10.3 %

 $\pm 20.6 \%$

 $\pm 10.0\%$

 $\pm 20.1 \%$

331

Page: 37 of 39

Uncertainty Analysis

Combined Std. Uncertainty

Expanded STD Uncertainty

DASY4 Uncertainty Budget According to IEEE P1528 [1] Uncertainty Prob. Div. Std. Unc. Std. Unc. (c_i) (c_i) (v_i) Error Description value. Dist. 10g (1g) (10g)lg. Peff Measurement System N Probe Calibration ±4.8% ±4.8% ±4.8% 1 00 Axial Isotropy 土4.7% R $\sqrt{3}$ 0.7 0.7 ±1.9% ±1.9% 00 Hemispherical Isotropy ±9.6% R $\sqrt{3}$ 0.70.7±3.9% $\pm 3.9 \%$ 00 Boundary Effects ±1.0% R $\sqrt{3}$ 1 1 ±0.6% ±0.6% 00 ±2.7% Linearity ±4.7% R $\sqrt{3}$ $\pm 2.7\%$ 1 1 00 System Detection Limits $\pm 1.0\%$ R $\sqrt{3}$ 1 1 ±0.6% ±0.6% 00 N Readout Electronics ±1.0% 1 1 1 ±1.0% ±1.0% 00 Response Time ±0.8% R $\sqrt{3}$ ±0.5% ±0.5% 1 1 00 Integration Time ±2.6% R $\sqrt{3}$ 1 1 ±1.5% ±1.5% 00 RF Ambient Conditions ±3.0% R $\sqrt{3}$ 1 1 士1.7% $\pm 1.7\%$ 00 R Probe Positioner $\pm 0.4\%$ $\sqrt{3}$ 1 ±0.2% $\pm 0.2\%$ 00 Probe Positioning ±2.9 % R $\sqrt{3}$ 1 $\pm 1.7\%$ ±1.7% 00 Max. SAR Eval. ±1.0% R $\sqrt{3}$ ±0.6% ±0.6% 1 1 00 Test Sample Related Device Positioning ±2.9 % N ±2.9% ±2.9 % 875 1 ±3.6% N Device Holder 1 ±3.6% ±3.6 % 5 Power Drift ±5.0% R $\sqrt{3}$ 1 ±2.9% $\pm 2.9 \%$ 00 Phantom and Setup Phantom Uncertainty ±4.0% R $\sqrt{3}$ $\pm 2.3\%$ $\pm 2.3\%$ 1 1 00 Liquid Conductivity (target) ±5.0% R $\sqrt{3}$ ±1.8% ±1.2 % 0.640.4300 Liquid Conductivity (meas.) ±2.5 % N 0.64 ±1.6% 1 0.43 $\pm 1.1\%$ 00 Liquid Permittivity (target) ±5.0 % $\sqrt{3}$ $\pm 1.4\%$ R 0.6 0.49±1.7% 00 N Liquid Permittivity (meas.) ±2.5 % 0.6 0.49 $\pm 1.2\%$ 1 土1.5% 00

Page: 38 of 39

Phantom description

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 345 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0	
Type No	QD 000 P40 CA	
Series No	TP-1150 and higher	3
Manufacturer / Origin +	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland	

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

_		Details	Units tested	
Test	Requirement	IT'S CAD File (*)	First article.	
Shape	Compliance with the geometry according to the CAD model.	II IS CAD File ()	Samples	
	according to the CAD model.	2mm +/- 0.2mm in	First article,	
Material thickness	Compliant with the requirements according to the standards	specific areas	Samples	
	according to alle standard	200 MHz - 3 GHz	Material	
Material parameters	Dielectric parameters for required frequencies	Relative permittivity < 5 Loss tangent < 0.05.	TP 104-5	
-	The state of the bar	Liquid type HSL 1800	Pre-series,	
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	and others according to the standard.	First article	

Standards

 COMMITTER	2 5 6	THE R. P. LEWIS CO., LANSING	
 Carrie	IL BOTT	E-DI-	50361

[2] IEEE P1528-200x draft 6.5

[3] *IEC PT 62209 draft 0.9
 (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Zaughaustrases 43, CH-4004 Zurich Tal. +91 1 245 97 00, Fan +41 1 245 97 79

Schmid &

F. Bombelt

Page: 39 of 39

System Validation from Original equipment supplier SPEAG Schmid & Partner

Page 1 of 1

Date/Time: 03/23/04 10:56:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN727

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz;

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

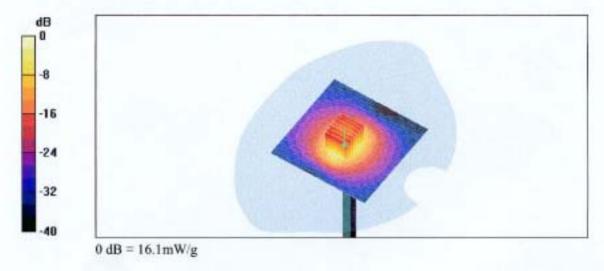
DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.02, 4.02, 4.02); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 89.7 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 17 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 89.7 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 16.1 mW/g

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.62 mW/g

