12.References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003. - [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001 - [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002 - [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999 - [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148 - [7] DAYS4 System Handbook # Appendix A - System Performance Check Data Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 4/12/2006 3:38:25 PM System Check Body 2450MHz 20060412 DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.89 \text{ mho/m}$; $\epsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.7 °C; Liquid Temperature: 20.7 °C #### DASY4 Configuration: - Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn577; Calibrated: 11/11/2005 - Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.27 mW/g Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.8 V/m; Power Drift = 0.068 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.37 mW/g; SAR(10 g) = 2.48 mW/gMaximum value of SAR (measured) = 6.05 mW/g 0 dB = 6.05 mW/g # Appendix B - SAR Measurement Data Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 4/12/2006 4:40:49 PM #### Body 802.11b Ch1 NB Bottom Touch 20060412 DUT: 633010; Type: 802.11b PC Card Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7 °C; Liquid Temperature: 20.7 °C #### DASY4 Configuration: - Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn577; Calibrated: 11/11/2005 - Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 # Ch1/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.24 mW/g Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.5 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.509 mW/gMaximum value of SAR (measured) = 1.11 mW/g 0 dB = 1.11 mW/g Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 4/12/2006 4:16:07 PM # Body_802.11b Ch6_NB Bottom Touch_20060412 DUT: 633010; Type: 802.11b PC Card Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7 °C; Liquid Temperature: 20.7 °C #### DASY4 Configuration: - Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn577; Calibrated: 11/11/2005 - Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 # Ch6/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.712 mW/g Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.188 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.599 mW/g; SAR(10 g) = 0.323 mW/gMaximum value of SAR (measured) = 0.652 mW/g 0 dB = 0.652 mW/g Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 4/12/2006 4:56:00 PM #### Body 802.11b Ch11 NB Bottom Touch 20060412 DUT: 633010; Type: 802.11b PC Card Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7 °C; Liquid Temperature: 20.7 °C #### DASY4 Configuration: - Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn577; Calibrated: 11/11/2005 - Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 # Ch11/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.837 mW/g Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.8 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.640 mW/g; SAR(10 g) = 0.352 mW/gMaximum value of SAR (measured) = 0.693 mW/g Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 4/12/2006 4:40:49 PM ### Body 802.11b Ch1 NB Bottom Touch 20060412 2D DUT: 633010; Type: 802.11b PC Card Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7 °C; Liquid Temperature: 20.7 °C #### DASY4 Configuration: - Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn577; Calibrated: 11/11/2005 - Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303 - Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161 #### Ch1/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.24 mW/g Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.5 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.509 mW/gMaximum value of SAR (measured) = 1.11 mW/g # Appendix C – Calibration Data Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 C - --- D24ENV2 726 INDE | CALIBRATION | CERTIFICATE | | | |---|-----------------------------------|--|--| | Diject | D2450V2 - SN: 7 | 36 | | | Calibration procedure(s) | QA CAL-05.v6
Calibration proce | dure for dipole validation kits | | | Calibration date | July 12, 2005 | | | | Condition of the calibrated item | In Tolerance | | | | all calibrations have been conducation Equipment used (M8 | | ry facility: environment temperature (22 \pm 3)°C an | d humidity < 70%. | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | ower meter EPM E442 | GB37480704 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | ower sensor HP 8481A | US37292783 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | teference 20 dB Attenuator | SN: 5085 (20g) | 10-Aug-04 (METAS, No 251-00402) | Aug-05 | | telerence 10 dB Attenuator | SN: 5047.2 (10r) | 10-Aug-04 (METAS, No 251-00402) | Aug-05 | | teference Probe ES3DV2 | SN 3025 | 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) | Oct-05 | | AE4 | SN 601 | 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) | Jan-06 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | ower sensor HP 8481A | MY41092317 | 18-Oct-02 (SPEAG, in house check Oct-03) | In house check: Oct-05 | | RF generator R&S SML-03 | 100698 | 27-Mar-02 (SPEAG, in house check Dec-03) | In house check: Dec-05 | | letwork Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (SPEAG, in house check Nov-04) | In house check: Nov-05 | | | Name | Function | Signature | | Calibrated by: | Mike Meili | Laboratory Technician | The state of s | | | | | titkik | | | | | | | approved by: | Katja Pokovic | Technical Manager | Hair Katy | Certificate No: D2450V2-736_Jul05 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland SING BRA C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions*, Supplement C (Edition 01-01) to Bulletin 65 # Additional Documentation: d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-736 Jul05 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.6 | |------------------------------|----------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat IPhantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1.73 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.1 mW / g | | SAR normalized | normalized to 1W | 52.4 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 52.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.13 mW / g | | SAR normalized | normalized to 1W | 24.5 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 24.7 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-736_Jul05 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.2 ± 0.2) °C | 52.5 ± 6 % | 2.02 mho/m ± 8 % | | Body TSL temperature during test | (22.2 ± 0.2) °C | **** | - | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.5 mW / g | | SAR normalized | normalized to 1W | 54.0 mW / g | | SAR for nominal Body TSL parameters 2 | normalized to 1W | 52.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.26 mW / g | | SAR normalized | normalized to 1W | 25.0 mW / g | | SAR for nominal Body TSL parameters 2 | normalized to 1W | 24.5 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-736_Jul05 Page 4 of 9 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6 Ω + 3.7 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | -26.0 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.9 Ω + 5.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.5 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.157 ns | |----------------------------------|-----------| | Electrical Belay (one direction) | 1.707 118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-----------------|--| | Manufactured on | August 26, 2003 | | Certificate No: D2450V2-736_Jul05 Page 5 of 9 #### DASY4 Validation Report for Head TSL Date/Time: 12.07.2005 12:53:00 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon_c = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 29.10.2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 22.07.2004 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA - Measurement SW: DASY4, V4.5 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 149 #### Pin = 250 mW; d = 10 mm 2/Area Scan (41x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 16.6 mW/g #### Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.6 V/m; Power Drift = 0.077 dB Peak SAR (extrapolated) = 27.0 W/kg #### SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 15.0 mW/g Certificate No: D2450V2-736_Jul05 Page 6 of 9 #### DASY4 Validation Report for Body TSL Date/Time: 11.07.2005 17:33:35 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL 2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ES3DV2 SN3025; ConvF(4.13, 4.13, 4.13); Calibrated: 29.10.2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) Ph Fr (College Co - Electronics: DAE4 Sn601; Calibrated: 22.07.2004 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA - Measurement SW: DASY4, V4.6 Build 4; Postprocessing SW: SEMCAD, V1.8 Build 149 #### Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.8 mW/g #### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 85.9 V/m; Power Drift = 0.160 dB Peak SAR (extrapolated) = 27.6 W/kg #### SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g Maximum value of SAR (measured) = 15.5 mW/g Certificate No: D2450V2-736_Jul05 Page 8 of 9 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Methology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: ET3-1788 Sep04 Accreditation No.: SCS 108 | CALIBRATION | ERTIFICAT | | | | | |--|--|---|--|--|--| | Object | ET3DV6 - SN:1788 | | | | | | Celibration procedure(s) | QA CAL-01.v5
Calibration proc | | | | | | Calibration date: | September 30, 2 | 2004 | | | | | Condition of the calibrated item | In Tolerance | | | | | | Calibration Equipment used (M& | TE critical for calibration) | | | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | | | | | THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY. | 17441000 | | Scheduled Calibration | | | | Power motor E44198 | G841293874 | 5-May 04 (METAS, No. 251 (0388) | May-05 | | | | Power moter E44198
Power sensor E4412A | MY41495277 | 5-May-04 (METAS, No. 251-00388) | May-05
May-05 | | | | Power moter E44198
Power sensor E4412A
Reference 3 dB Attenuator | MY41495277
SN: S5054 (3c) | 5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403) | May-05
May-05
Aug-05 | | | | Fower moter E44198
Fower sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator | MY41495277
SN: S5054 (3c)
SN: S5088 (20b) | 5-Msy-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-Msy-04 (METAS, No. 251-00389) | May-05
May-05
Aug-05
May-05 | | | | Power moter E44198
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 30 dB Attenuator | MY41495277
SN: S5054 (3c)
SN: S5088 (20b)
SN: S5129 (30b) | 5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404) | May-05
May-05
Aug-05
May-05
Aug-05 | | | | Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ESSIOV2 | MY41495277
SN: S5054 (3c)
SN: S5088 (20b) | 5-Msy-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-Msy-04 (METAS, No. 251-00389) | May-05
May-05
Aug-05
May-05 | | | | Power moter E44198 Fower sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards | MY41495277
SN: S5054 (3c)
SN: S5088 (20b)
SN: S5129 (30b)
SN:3013
SN: 817 | 5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
28-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check | | | | Power moter E44108 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN:3013
SN: 517 | 5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
28-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house)
18-Sop-02 (SPEAG, in house check Oct-03) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check
In house check: Oct 05 | | | | Power motor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DA54 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | MY41495277
SN: S5054 (3c)
SN: S5088 (20b)
SN: S5129 (30b)
SN:3013
SN: 817
ID #
MY41092180
US3642U01700 | 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00304) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Dec-03) 4-Aug-99 (SPEAG, in house check Dec-03) | May-05
Moy-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check
In house check: Oct 05
In house check: Dec-05 | | | | Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | MY41495277
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN:3013
SN: 517 | 5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
28-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house)
18-Sop-02 (SPEAG, in house check Oct-03) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check
In house check: Oct 05 | | | | Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | MY41495277
SN: S5054 (3c)
SN: S5088 (20b)
SN: S5129 (30b)
SN:3013
SN: 817
ID #
MY41092180
US3642U01700 | 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00304) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Dec-03) 4-Aug-99 (SPEAG, in house check Dec-03) | May-05
Moy-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check
In house check: Oct 05
In house check: Dec-05 | | | | Power moter E44198 Fower sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards | MY41495277 SN: S5054 (3c) SN: S5086 (20h) SN: S5129 (30h) SN:3013 SN: 817 ID # MY41092180 US3642U01700 US37390585 | 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Det-03) 18-Oct-01 (SPEAG, in house check Dec-03) | May-05 May-05 Aug-05 May-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 | | | | Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E | MY41495277 SN: S5054 (3c) SN: S5088 (20b) SN: S5129 (30b) SN:3013 SN: 817 ID # MY41092180 US3642U01700 US37390685 Name | 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 28-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-03) Function | May-05 May-05 Aug-05 Aug-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 Signature | | | Certificate No: ET3-1788_Sep04 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z DCP Polarization φ diode compression point φ rotation around probe axis Polarization φ φ rotation a Polarization 9 9 rotation a 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ET3-1788_Sep04 Page 2 of 9 ET3DV6 SN:1788 September 30, 2004 # Probe ET3DV6 SN:1788 Manufactured: May 28, 2003 Last calibrated: August 29, 2003 Recalibrated: September 30, 2004 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1788_Sep04 Page 3 of 9 #### ET3DV6 SN:1788 September 30, 2004 # DASY - Parameters of Probe: ET3DV6 SN:1788 | Sensitivity in Free Space ^A | | | Diode Compression | | |--|-------------|-----------------|-------------------|-------| | NormX | 1.68 ± 9.9% | $\mu V/(V/m)^2$ | DCP X | 94 mV | | NormY | 1.70 ± 9.9% | $\mu V/(V/m)^2$ | DCP Y | 94 mV | | NormZ | 1.74 ± 9.9% | $\mu V/(V/m)^2$ | DCP Z | 94 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. # **Boundary Effect** | TSL | 900 MHz | Typical SAR gradient: 5 % per mm | |-----|---------|----------------------------------| | | | | | Sensor Cente | er to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|--------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 8.1 | 4.4 | | SAR _{be} [%] | With Correction Algorithm | 0.7 | 0.1 | #### TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 12.0 | 8.2 | | SAR _{be} [%] | With Correction Algorithm | 0.9 | 0.1 | #### Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1788_Sep04 Page 4 of 9 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8). Numerical linearization parameter; uncertainty not required. September 30, 2004 # Frequency Response of E-Field (TEM-Cell:Ifl110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1788_Sep04 Page 5 of 9 #### September 30, 2004 # Receiving Pattern (\$\phi\$), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1788_Sep04 Page 6 of 9 September 30, 2004 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1788_Sep04 Page 7 of 9 September 30, 2004 # Conversion Factor Assessment | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|----------------|-------|-------|--------------------| | 835 | ±50/±100 | Head | $41.5\pm5\%$ | 0.90 ± 5% | 1.12 | 1.42 | 6.74 ± 11.0% (k=2) | | 900 | ±50/±100 | Head | $41.5\pm5\%$ | $0.97 \pm 5\%$ | 1.07 | 1.44 | 6.63 ± 11.0% (k=2) | | 1750 | ±50/±100 | Head | $40.0\pm5\%$ | 1.40 ± 5% | 0.56 | 2.31 | 5.37 ± 11.0% (k=2) | | 1900 | ±50/±100 | Head | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 0.55 | 2.42 | 5.16 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Head | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 0.54 | 2.59 | 4.88 ± 11.0% (k=2) | | 2450 | ±50/±100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.65 | 2.22 | 4.56 ± 11.8% (k=2) | | 835 | ± 50 / ± 100 | Body | 55.2 ± 5% | 0.97 ± 5% | 1,04 | 1.52 | 6.53 ± 11.0% (k=2) | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.99 | 1.56 | 6.17 ± 11.0% (k=2) | | 1750 | ±50/±100 | Body | 53.3 ± 5% | $1.52 \pm 5\%$ | 0.53 | 2.74 | 4.73 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.55 | 2.82 | 4.56 ± 11.0% (k=2) | | 2000 | ±50/±100 | Body | 53.3 ± 5% | $1.52 \pm 5\%$ | 0.54 | 2.98 | 4.43 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.72 | 2.00 | 4.26 ± 11,8% (k=2) | ⁶ The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: ET3-1788_Sep04 Page 8 of 9 September 30, 2004 # Deviation from Isotropy in HSL Error (4, 8), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ET3-1788 Sep04 Page 9 of 9 Client Test Report No : FA633010-1-2-01 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE3-577_Nov05 Sporton (Auden) | ALIDITATION | ERTIFICATE | | | |---------------------------------|--|--|--| | bject | DAE3 - SD 000 D | 03 AA - SN: 577 | | | alibration procedure(s) | QA CAL-06.v12
Calibration proced | dure for the data acquisition electro | onics (DAE) | | alibration date: | November 11, 200 | 05 | | | ondition of the calibrated item | In Tolerance | | | | he measurements and the uncerta | ainties with confidence pro | anal standards, which realize the physical units obability are given on the following pages and a facility: environment temperature $(22\pm3)^{\circ}$ C a | ire part of the certificate. | | rimary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | uke Process Calibrator Type 702 | | 7-Oct-05 (Sintrel, No.E-050073) | Oct-05 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | alibrator Box V1.1 | SE UMS 006 AB 1002 | 29-Jun-05 (SPEAG, in house check) | In house check Jun-06 | | | | | | | | | | | | i a | | | | | | Name | Function | Signature | | alibrated by: | Name
Daniel Steinacher | Function
Technician | Signature | | alibrated by: | National Committee of the t | Technician | STATE OF THE PROPERTY P | Certificate No: DAE3-577_Nov05 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-577 Nov05 Page 2 of 5 #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.445 ± 0.1% (k=2) | 403.896 ± 0.1% (k=2) | 404.369 ± 0.1% (k=2) | | Low Range | 3.94241 ± 0.7% (k=2) | 3.89919 ± 0.7% (k=2) | 3.95427 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 130 ° ± 1 ° | |---|-------------| |---|-------------| Certificate No: DAE3-577_Nov05 Page 3 of 5 #### **Appendix** 1. DC Voltage Linearity | High Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 200000 | 199999.3 | 0.00 | | Channel X + Input | 20000 | 20006.75 | 0.03 | | Channel X - Input | 20000 | -19997.90 | -0.01 | | Channel Y + Input | 200000 | 200000.3 | 0.00 | | Channel Y + Input | 20000 | 20004.58 | 0.02 | | Channel Y - Input | 20000 | -20000.75 | 0.00 | | Channel Z + Input | 200000 | 199999.6 | 0.00 | | Channel Z + Input | 20000 | 20001.43 | 0.01 | | Channel Z - Input | 20000 | -20003.93 | 0.02 | | Low Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 2000 | 2000.1 | 0.00 | | Channel X + Input | 200 | 200.42 | 0.21 | | Channel X - Input | 200 | -200.30 | 0.15 | | Channel Y + Input | 2000 | 2000.1 | 0.00 | | Channel Y + Input | 200 | 199.35 | -0.32 | | Channel Y - Input | 200 | -200.96 | 0.48 | | Channel Z + Input | 2000 | 1999.9 | 0.00 | | Channel Z + Input | 200 | 199.37 | -0.31 | | Channel Z - Input | 200 | -200.62 | 0.31 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.40 | 12.55 | | | - 200 | -12.29 - | -13.06 | | Channel Y | 200 | -6.93 | -7.43 | | | - 200 | 6.72 | 6.47 | | Channel Z | 200 | 0.71 | 0.36 | | | - 200 | -1.67 | -1.93 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | (32 | 1.59 | 0.08 | | Channel Y | 200 | 1.69 | 2 | 3.62 | | Channel Z | 200 | -0.73 | -1.49 | | Certificate No: DAE3-577_Nov05 ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15946 | 15679 | | Channel Y | 15960 | 16151 | | Channel Z | 16233 | 15968 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.08 | -1.13 | 2.31 | 0.51 | | Channel Y | -0.35 | -2.00 | 0.81 | 0.43 | | Channel Z | -0.38 | -2.76 | 1.68 | 0.40 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 200.8 | | Channel Y | 0.2000 | 201.4 | | Channel Z | 0.2001 | 200.3 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE3-577_Nov05 Page 5 of 5