

SOSHIN ELECTRIC Co., Ltd. Soshin Asama Testing Lab. 800-38 Nagatoro, Saku-city, Nagano 385-0021, Japan Phone 0267-66-1424 Fax 0267-66-1425

EMC TEST REPORT

for

TOYODA AUTOMATIC LOOM WORKS, LTD.

8, Cyaya, Kyouwa-cho, Obu-shi, Aichi-ken,474-8601, JAPAN

Electric Vehicle Charger **TCG2000**

Soshin Report No.

: SAL 99125-1AT

Date of issue

: 29/09/1999

Approved by

Susumu Okamura

Chief Engineer, Soshin Asama Testing Lab

SOSHIN ELECTRIC Co.,Ltd.

1 Applicant

:TOYODA AUTOMATIC LOOM WORKS, LTD.

8, Cyaya, Kyouwa-cho, Obu-shi, Aichi-ken, 474-8601, Japan

2 Manufacturer

:TOYODA AUTOMATIC LOOM WORKS, LTD.

8, Cyaya, Kyouwa-cho, Obu-shi, Aichi-ken, 474-8601, Japan

3 Description of Device

A) Kind of Equipment

Electric Vehicle Charger

B) Model Name

: TCG2000

C) Serial No

10

D) Type of Sample Tested:

Pre- production

E) Clock Frequency Used

16MHz

F) Carrier Frequency

 $140 \mathrm{kHz} \sim 360 \mathrm{kHz}$

G) Tested Power Supply

: AC240V, 1 ϕ , 60Hz, 30A

H) Date of Manufacture

July 1999

4 Date of Measurement

: August $28\sim29$, September 19/1999

5 Regulations Applied

: FCC Rules & Regulation Part 15 Subpart B Class B

FCC Rules & Regulation Part 15 Subpart C FCC Rules & Regulation Part 18 Subpart C

6 Measurement Procedure

ANSI C63.4 - 1992

7 Test Facility

Soshin Electric Co., Ltd. Soshin Asama Testing Lab.

Address: 800-38 Nagatoro, Saku-city, Nagano, 385-0021, Japan

8 Operating conditions of the EUT

No.	Operating conditions
1	No Output (Paddie in the holster)
2	No Output (Paddie in the Electric Vehicle)
3	Full Power
4	3 amp delivered to load (Electric Vehicle Battery)
5	RF Transmission (Paddie out of the holster)
6	RF Transmission (Paddie in the Charge Port)

Conducted Emissions 450kHz to 30MHz (about No.1, 2)

The conducted test for the floor standing EUT was performed on a ground plane.

The Electric Vehicle Charger model: TCG2000 was powered through the Impedance

Stabilization Network bonded to the ground plane.

During this test, there were two operating conditions of the EUT.

The power transfer and RF communications were not active. (Paddie in the holster)

The RF communications were active and no output power. (Paddie in the Electric Vehicle)

Radiated Emissions 10kHz to 1GHz (about No.3, 4)

The Electric Vehicle Charger model: TCG2000 was connected to the Electric Vehicle.

During this test, the power transfer and RF communications were active.

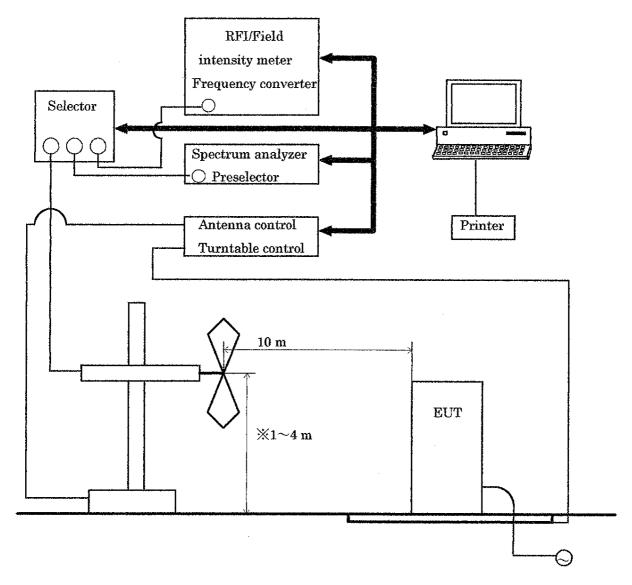
The EUT was tested at 3 amp current at the load (Electric Vehicle Battery), and full power.

Radiated Emissions 1GHz to 10GHz (about No.5, 6)

The Paddle of the Electric Vehicle Charger model: TCG2000 was out of the holster (No.5) and was connected to the Charge Port (No.6).

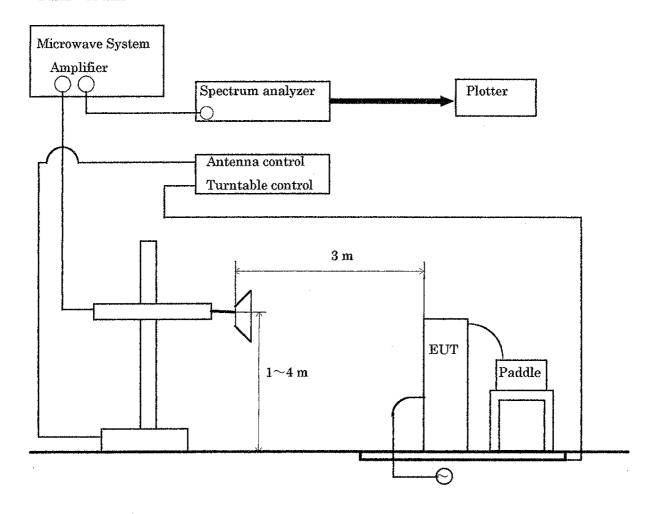
During this test, the power transfer was Disabled, leaving only the RF transmission active.

9 Test Results


9.1 Radiated Emission

(1) Measurement Instrumentation Used

Description	Model	Serial No.	Manufacturer	Soshin	Next
T	0500	0011 0040	EMOO	control No.	calibration
Loop antenna	6502	8811-2248	EMCO	G-1AT-003	April 2000
Biconical antenna	BBA9106		SCHWARZBECK	G-1AT-014	April 2000
Log-per antenna	UHALP9107	1393/1395	SCHWARZBECK	G-1AT-008	April 2000
Double-Ridged Wave	3115	9906-5829	EMCO	G-1AT-022	July 2000
guide Horn antenna	***************************************	*************************			
Spectrum analyzer	R3361A	11730287	ADVANTEST	G-1AZ-157	April 2000
Spectrum analyzer	R3271A	07019700	ADVANTEST	Rent from	March 2000
,.,.,.	***************************************	,		ORIX Rentec	ļ <u>.</u>
Preselector	R3551	12970022	ADVANTEST	G-1AZ-157-1	April 2000
RFI/Field intensity meter	ESS	844362/014	ROHDESCHWARZ	G-1NF-027	October 1999
Selector	PSU	843265/008	ROHDE/SCHWARZ	G-1NF-027-1	October 1999
Pre-amplifier	MH648A	M48993	Anritsu	G-1WP-008	March 2000
Microwave System	83017A	3123A00530	HEWLETT	G-1WP-014-1	March 2000
Amplifier			PACKERD		


(2) Measurement configuration

9kHz~1GHz × 9kHz~30MHz : Antenna height is 1m

EUT = A: System configuration

$1\mathrm{GHz}{\sim}10\mathrm{GHz}$

EUT = A: System configuration

(3-1) Measurement data

Operation mode : 3A delivered to load (Electric Vehicle Battery)

The spectrum was scanned from 9kHz to 30MHz

Detector function: CISPR Quasi-peak

IF band width

: 9kHz

Measuring distance was 10 meter.

Date : 29, Augast, 1999

Temp. : 23℃

30MHz: $450 \mu V/m$

Humi.: 56%

FCC Rules & Regulation Part 18 Subpart C

Antenna Height: 1m

Emission Frequency [MHz]	Antenna factor [dB] ※1	Meter Reading [dB μ V/m]	Field Strength [\mu V/m]	Limit [μ V/m]
0.0809	12.4	27.7	101.2	450
0.2189	11.6	38.2	309.0	450
0.4526	11.3	31.9	144.5	450
0.9780	11.1	25.8	70.0	450
1.1857	11.1	38.5	302.0	450
1.4519	11.1	36.6	242.7	450
4.4398	11.1	22.7	49.0	450

X1 The cable loss is included in the antenna factor.

[Sample Calculation]

[Limit]

9kHz to

0.0809MHz, Horizontal Polarization

[12.4+27.7] /20

10

 $=101.2[\mu \text{ V/m}]$

Tested by

(3-2) Measurement data

Operation mode : Full Power

The spectrum was scanned from 9kHz to 30MHz.

Detector function: CISPR Quasi-peak

IF band width

: 9kHz

Measuring distance was 10 meter.

Date

: 29, Augast, 1999

Temp. : 23℃ Humi.: 56%

FCC Rules & Regulation Part 18 Subpart C

Antenna Height: 1m

Emission Frequency [MHz]	Antenna factor [dB] ※1	Meter Reading [dB μ V/m]	Field Strength [\mu V/m]	Limit [µ V/m]
0.0808	12.4	27.6	100.0	450
0.1407	11.9	23.3	57.5	450
0.2219	11.6	38.0	302.0	450
0.3368	11.4	34.6	199.5	450
0.4219	11.1	32.6	156.7	450
1.0007	11.1	29.4	105.9	450
1.4388	11.1	35.4	211.3	450
1.9834	11.0	18.9	31.3	450

X1 The cable loss is included in the antenna factor.

[Sample Calculation]

[Limit]

9kHz to

0.0808MHz, Horizontal Polarization

[12.4+27.6] /20

10

 $=100.0[\mu \text{ V/m}]$

30 MHz : $450 \mu \text{ V/m}$

Tested by

(3-3) Measurement data

Operation mode : 3A delivered to load (Electric Vehicle Battery)

The spectrum was scanned from 30MHz to 1GHz

Detector function : CISPR Quasi-peak

IF band width

120kHz

Measuring distance was 10 meter.

Date

: 29, Augast, 1999

Temp.:

23°C

Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Class B Horizontal Polarization

Emission Frequency [MHz]	Antenna factor dB	Meter Reading [dB μ V/m]	Field Strength [\mu V/m]	Limit [\mu V/m]
30.200	-9.7	27.9	8.1	30
30.473	-9.8	28.0	8.1	30
33.915	-11.0	24.2	4.6	30
34.874	-11.5	23.7	4.1	30
79.380	-20.3	44.1	15.5	30
285.140	-7.0	24.5	7.5	60
856.820	-0.9	26.6	19.3	60

The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit]

30.200MHz, Horizontal Polarization

[(-9.7)+27.9]/20

10

 $=8.1[\mu \text{ V/m}]$

30MHz to

88MHz :

 $30~\mu~V/m$

88MHz to

216MHz :

45 µ V/m

216MHz to

960MHz

 $60 \mu \text{ V/m}$

960MHz to 1000MHz

 $150 \mu \text{ V/m}$

Tested by

(3-4) Measurement data

Operation mode

: 3A delivered to load (Electric Vehicle Battery)

The spectrum was scanned from 30MHz to 1GHz.

Detector function: CISPR Quasi-peak

IF band width

120kHz

Measuring distance was 10 meter.

29, Augast, 1999

Temp.:

 23° C

Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Class B Vertical Polarization

Emission Frequency [MHz]	Antenna factor [dB] ×1	Meter Reading [dB μ V/m]	Field Strength [\(\mu \) V/m]	Limit [
30.200	-9.7	33.5	15.5	30
30.473	-9.8	32.7	14.0	30
33.915	-11.0	33.8	13.8	30
46.295	-14.9	38.9	15.8	30
49.306	-16.0	38.8	13.8	30
79.380	-20.3	46.4	20.2	30
264.003	-8.1	30.9	13.8	60
856.820	-0.9	30.3	29.5	60

The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit]

30.200MHz, Horizontal Polarization

[(-9.7)+33.5]/20

10

 $=15.5[\mu \text{ V/m}]$

30 MHz to

88MHz : 30 µ V/m

88MHz to 216MHz :

45 µ V/m

216MHz to

960MHz :

60 μ V/m

960MHz to 1000MHz :

 $150~\mu~V/m$

Tested by

(3-5) Measurement data

: Full Power Operation mode

The spectrum was scanned from 30MHz to 1GHz

Detector function: CISPR Quasi-peak

IF band width

: 120kHz

Measuring distance was 10 meter.

Date : 29, Augast, 1999

Temp.: 23° C Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Class B Horizontal Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[MHz]	[dB] ※1	[dB \(\mu \) V/m]	[\(\mu \) V/m]	[\(\mu \) \(\mu \)]
30.157	-9.7	28.5	8.71	30
30.279	-9.7	27.0	7.33	30
33.945	-11.0	22.4	3.72	30
49.268	-16.0	28.5	4.22	30
56.090	-18.5	25.0	2.11	30
78.995	-20.3	41.0	10.84	30
94.421	-18.2	21.3	1.43	45
181.957	-10.5	21.4	3.51	45

X1 The cable loss is included in the antenna factor.

[Sample Calculation]

[Limit]

30.157MHz, Horizontal Polarization [(-9.7)+28.5]/20

10 $=8.71[\mu \text{ V/m}]$

30MHz to 88MHz : $30 \mu \text{ V/m}$ 88MHz to 216MHz : $45 \mu \text{ V/m}$ 960MHz : 216MHz to 60 μ V/m 960MHz to 1000MHz : 150 μ V/m

Tested by

(3-6) Measurement data

: Full Power Operation mode

The spectrum was scanned from 30MHz to 1GHz

Detector function: CISPR Quasi-peak

IF band width

: 120kHz

Measuring distance was 10 meter.

Date

: 29, Augast, 1999

Temp. :

23°C

Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Class B Vertical Polarization

Emission Frequency [MHz]	Antenna factor dB ×1	Meter Reading [dB μ V/m]	Field Strength [\mu V/m]	Limit [<i>u</i> V/m]
30.157	-9.7	33.9	19.2	30
30.279	-9.7	33.7	15.8	30
33.658	-10.9	28.8	7.9	30
47.001	-15.2	32.9	7.7	30
49.268	-16.0	35.9	9.9	30
51.084	-16.6	34.3	7.7	30
78.995	-20.3	44.5	16.2	30
258.514	-8.4	32.5	16.0	60

X1 The cable loss is included in the antenna factor.

[Sample Calculation]

[Limit]

30.157MHz, Horizontal Polarization [(-9.7)+33.9]/20

10

 $=19.2[\mu \text{ V/m}]$

30MHz to

88MHz : 30 µ V/m

216MHz : 216MHz to 960MHz:

45 μ V/m 60 μ V/m

960MHz to 1000MHz : 150 μ V/m

Tested by

(3-14) Measurement data

Transmitter test (Harmonics & Spurious)

Operation mode

: RF Transmission (Paddie in the Charge Port)

The spectrum was scanned from 1GHz to 10GHz

Detector function: Peak

IF band width

: 1MHz

Measuring distance was 3 meter.

Date

: 19, September, 1999

Temp. : 25 °C

Humi.: 55 %

FCC Rules & Regulation Part 15 Subpart C Vertical Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[GHz]	[dB] ※1	[dB	[\(\mu \) \(\mu \)]	[\(\mu \) V/m]
3.6640	6.6	40.3	221.3	500

Above 3.6640GHz was not founded.

X1 The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit] : 500 μ V/m

3.6640GHz, Vertical Polarization

[6.6+40.3] /20

10 $=221.3 [\mu V/m]$ 902MHz to 918MHz : $500 \mu \text{ V/m}$

Tested by

(3-13) Measurement data

Transmitter test (Harmonics & Spurious)

Operation mode : RF Transmission (Paddie in the Charge Port)

The spectrum was scanned from 1GHz to 10GHz

Detector function : Peak IF band width : 1MHz

Measuring distance was 3 meter.

Date: 19, September, 1999

Temp.: 25 °C Humi.: 55 %

FCC Rules & Regulation Part 15 Subpart C Horizontal Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[GHz]	[dB] ※1	[dB	[\(\mu \) V/m]	[\(\mu \) V/m]
2.7677	2.7	42.7	186.2	500
5.4686	10.1	39.7	309.0	500

Above 5.4686GHz was not founded.

X1 The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit] : 500 μ V/m

2.7677GHz, Horizontal Polarization [2.7+42.7] /20

902MHz to

918MHz

: $500 \mu \text{ V/m}$

10 = $186.2 [\mu \text{ V/m}]$

Tested by

(3-12) Measurement data

Transmitter test (Harmonics & Spurious)

Operation mode

: RF Transmission (Paddie out of the holster)

The spectrum was scanned from 1GHz to 10GHz

Detector function: Peak

IF band width

: 1MHz

Measuring distance was 3 meter.

: 19, September, 1999

Temp. : 25 ℃

Humi.: 55 %

FCC Rules & Regulation Part 15 Subpart C Vertical Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[GHz]	[dB] ※1	[dB \(\mu \) V/m]	[\(\mu \) \(\mu \) \(\mu \)	[\(\mu \) V/m]
1.8054	-3.7	55.8	402.7	500
2.7459	2.5	48.3	346.7	500

Above 2.7459GHz was not founded.

X1 The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit] : 500 μ V/m

1.8054GHz, Vertical Polarization

[(-3.7)+55.8] /20

10 $= 402.7 [\mu \text{ V/m}]$ 902MHz to 918MHz : 500 μ V/m

Tested by

(3-11) Measurement data

Transmitter test (Harmonics & Spurious)

Operation mode

: RF Transmission (Paddie out of the holster)

The spectrum was scanned from 1GHz to 10GHz

Detector function : Peak

IF band width

: 1MHz

Measuring distance was 3 meter.

: 19, September, 1999

: 500 μ V/m

Temp. : 25 °C

Humi.: 55 %

FCC Rules & Regulation Part 15 Subpart C Horizontal Polarization

Emission Fre		Meter Reading	Field Strength	Limit
[GHz]	[dB] ※1	[dB \(\mu \) V/m]	[\(\mu \) \(\mu \)]	[\(\mu \) V/m]
2.7597	2.6	42.5	180.0	500

Above 2.7597GHz was not founded.

X1 The cable loss and the amplifier gain are included in the antenna factor.

[Sample Calculation]

[Limit] : 500 μ V/m

918MHz

902MHz to

2.7597GHz, Horizontal Polarization

[2.6+42.5]/20

10 $=180 [\mu V/m]$

Tested by

(3-10) Measurement data

Transmitter test (Fundamental)

Operation mode

:Full Power

The spectrum was scanned from 300MHz to 1GHz

Detector function: Peak

IF band width

: 120kHz

Measuring distance was 10 meter.

Date

: 29, Augast, 1999

Temp. : 23℃

918MHz

Humi.: 56%

: 15000 μ V/m

FCC Rules & Regulation Part 15 Subpart C Vertical Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[MHz]	[dB] ※1	[dB μ V/m]	[\(\mu \) V/m]	[µ V/m] ※2
915.260	1.9	50.4	412.1	15000

- X1The cable loss and the amplifier gain are included in the antenna factor.
- The limit value of radiated emission changed the limit value of the 3m method into the value of the 10m method by the distance converting method.

In this case

Limit (3m) = 50000 μ V/m

Limit (10m) = 50000 μ V/m \times 3m/10m = 15000 μ V/m

[Sample Calculation]

[Limit]

902MHz to

915.260MHz, Vertical Polarization

[1.9+50.3] /20

10

 $=412.1 [\mu \text{ V/m}]$

Tested by

(3-9) Measurement data

Transmitter test (Fundamental)

Operation mode

:Full Power

The spectrum was scanned from 300MHz to 1GHz

Detector function: Peak

IF band width

: 120kHz

Measuring distance was 10 meter.

: 29, Augast, 1999

Temp. : 23℃

Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Horizontal Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[MHz]	[dB] ※1	[dB \(\mu \) V/m]	[\(\mu \) \(\mu \)]	[\(\mu \) V/m] \(\times 2
915.260	1.9	50.8	431.5	15000

- The cable loss and the amplifier gain are included in the antenna factor. $\times 1$
- The limit value of radiated emission changed the limit value of the 3m method into the value of the 10m method by the distance converting method.

In this case

Limit (3m) = 50000 μ V/m

Limit (10m) = 50000 μ V/m \times 3m/10m = 15000 μ V/m

[Sample Calculation]

[Limit]

902MHz to

918MHz

: 15000 μ V/m

915.260MHz, Horizontal Polarization [1.9+50.8] /20

10

 $=431.5 [\mu V/m]$

Tested by

(3-8) Measurement data

Transmitter test (Fundamental)

Operation mode :3A delivered to load (Electric Vehicle Battery)

The spectrum was scanned from 300MHz to 1GHz

Detector function : Peak IF band width : 120kHz

Measuring distance was 10 meter.

Date : 29, Augast, 1999

Temp.: 23°C Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C Vertical Polarization

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit
[MHz]	[dB] ※1	[dB \(\mu \) V/m]	[\(\mu \) \(\mu \) \(\mu \)	[µV/m] ※2
915.260	1.9	55.1	707.9	15000

X1 The cable loss and the amplifier gain are included in the antenna factor.

X2 The limit value of radiated emission changed the limit value of the 3m method into the value of the 10m method by the distance converting method.

In this case

Limit (3m) = 50000 μ V/m

Limit (10m) = 50000 μ V/m × 3m/10m = 15000 μ V/m

[Sample Calculation]

[Limit]

915.260MHz, Vertical Polarization

[1.9+55.1] /20

10 = $707.9 [\mu \text{ V/m}]$

902MHz to 918MHz

: 15000 μ V/m

Tested by

(3-7) Measurement data

Transmitter test (Fundamental)

Operation mode

:3A delivered to load (Electric Vehicle Battery)

The spectrum was scanned from 300MHz to 1GHz

Detector function: Peak

IF band width

: 120kHz

Measuring distance was 10 meter.

29, Augast, 1999

Temp.:

23℃

Humi.: 56%

FCC Rules & Regulation Part 15 Subpart C **Horizontal Polarization**

Emission Frequency	Antenna factor	Meter Reading	Field Strength	Limit (10m)	
[MHz]	[dB] ※1	[dB \(\mu \) V/m]	[# V/m]	[μV/m] ※2	
915.260	1.9	53.4	582.1	15000	

- $\times 1$ The cable loss and the amplifier gain are included in the antenna factor.
- The limit value of radiated emission changed the limit value of the 3m method into the value of the 10m method by the distance converting method.

In this case

Limit (3m) = 50000 μ V/m

Limit (10m) = 50000 μ V/m × 3m/10m = 15000 μ V/m

[Sample Calculation]

[Limit]

902MHz to

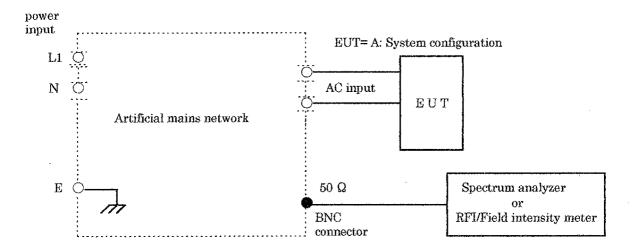
918MHz

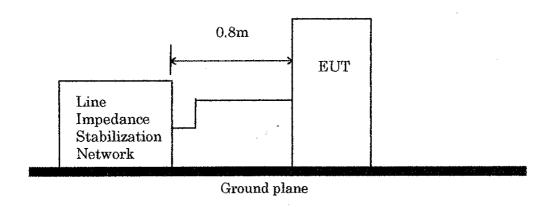
: 15000 \(\mu \) V/m

915.260MHz, Horizontal Polarization [1.9+53.4] /20

10

 $=582.1[\mu \text{ V/m}]$


Tested by


9.2 Conducted Emission

(1) Measurement Instrumentation Used

Description	Model	Serial No.	Manufacturer	Soshin	Next
				control No.	calibration
Artificial mains network	ESH2-Z5	842966/013	ROHDE/SCHWARZ	G-1NA-005	February 2000
Spectrum analyzer	R3361A	71720647	ADVANTEST	G-1AZ-234	April 2000
Preselector	R3551	72970020	ADVANTEST	G-1AZ-234-1	April 2000
RFI/Field intensity meter	KNM2402	4N-164-3	Kyoritsu	G-1NF-005	April 2000
Selector	MP59B	M59385	Anritsu	G-1VR-146	April 2000
UHF Variable attenuater	URA-0330Y	27233	Tamagawa	G-1VA-041	March 2000

(2) Measurement configuration

(3-1) Measurement data

Operation mode : No Output (Paddie in the holster) The spectrum was scanned from 450kHz to 30MHz

Detector function: CISPR Quasi-peak

IF band width

: 9kHz

Line: L1

Date: 28, August, 1999 Temp.: 21°C Humi.: 41%

450kHz to 30MHz : 250 μ V

FCC Rules & Regulation Part 15 Class B

Emission Frequency [MHz]	Line	LISN correction factor[dB] ※	Meter Reading [dB μ V]	RF Voltage [µV]	Limit [µV]
0.524	L1	0.2	- 12.3	0.24	250
12.539	L1	0.7	4.1	1.74	250
13.903	L1	0.8	5.4	2.04	250
14.557	Ll	0.8	11.7	4.22	250
24.861	L1	1.6	5.3	2.21	250
28.405	LI	2.0	4.3	2.07	250

* The cable loss is included in the LISN correction factor.

[Sample Calculation]

[Limit]

0.524MHz,L1

[0.7+(-12.3)]/20

10

 $=0.24 [\mu V]$

Tested by

(3-2) Measurement data

Operation mode : No Output (Paddie in the holster) The spectrum was scanned from 450kHz to 30MHz

Detector function: CISPR Quasi-peak

IF band width : 9kHz

Line: L2

Date: 28, August, 1999 Temp.: 21°C Humi: 41%

FCC Rules & Regulation Part 15 Class B

Emission Frequency [MHz]	Line	LISN correction factor[dB] ※	Meter Reading [dB μ V]	RF Voltage [μV]	Limit [μ V]
0.524	L2	0.2	— 12.3	0.25	250
12.540	L2	0.7	7.3	2.51	250
13.901	L2	0.8	6.6	2.34	250
14.337	L2	0.8	7.0	2.45	250
14,556	L2	0.8	12.6	4.68	250
24.860	L2	1.6	3.8	1.86	250
28.404	L2	2.0	2.7	1.72	250

* The cable loss is included in the LISN correction factor.

[Sample Calculation]

[Limit]

0.489MHz,L1

[0.2+(-12.3)]/20

10 =0.46 [μ V]

450kHz to 30MHz : 250 μ V

Tested by

(3-3) Measurement data

Operation mode : No Output (Paddie in the Electric Vehicle)

The spectrum was scanned from 450kHz to 30MHz

Detector function :

CISPR Quasi-peak

IF band width

: 9kHz

Line: L1

Date : 28, August, 1999

450kHz to 30MHz : 250 μ V

Temp.: 21°C Humi.: 41%

FCC Rules & Regulation Part 15 Class B

Emission Frequency [MHz]	Line	LISN correction factor[dB] ※	Meter Reading [dB μ V]	RF Voltage [μ V]	$\begin{array}{c} \text{Limit} \\ [\mu \text{ V}] \end{array}$
0.489	L1	0.2	- 6.4	0.49	250
5.728	L1	0.5	7.6	2.54	250
6.164	L1	0.5	8.8	2.92	250
6.545	L1	0.5	7.2	2.43	250
6.872	L1	0.5	1.8	1.30	250
12.489	L1	0.7	- 3.2	0.75	250
26,548	L1	1.8	-15.1	0.22	250

* The cable loss is included in the LISN correction factor.

[Sample Calculation]

[Limit]

0.489MHz,L1

[0.2+(-6.4)] /20

10

 $=0.49 [\mu V]$

Tested by

(3-4) Measurement data

Operation mode : No Output (Paddie in the Electric Vehicle)

The spectrum was scanned from 450kHz to 30MHz

Detector function : CISPR Quasi-peak

IF band width : 9kHz

Line: L2

Date: 28, August, 1999 Temp.: 21°C Humi.: 41%

450kHz to 30MHz : 250 μ V

FCC Rules & Regulation Part 15 Class B

Emission Frequency [MHz]	Line	LISN correction factor[dB] ※	Meter Reading [dB μ V]	RF Voltage [µV]	Limit [µV]
0.490	L2	0.2	-6.9	0.46	250
5.726	L2	0.5	8.2	2.72	250
6.162	L2	0.5	10.5	3.55	250
6.543	L2	0.5	8.8	2.92	250
6.871	L2	0.5	3.4	1.57	250
12.598	L2	0.7	3.4	1.60	250
26.548	L2	1.8	-13.6	0,26	250

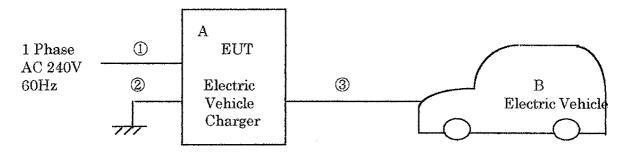
* The cable loss is included in the LISN correction factor.

[Sample Calculation]

[Limit]

0.489MHz,L1

[0.2+(-6.9)] /20


10

 $=0.49 [\mu V]$

Tested by

10 Tested System Details

(1) System configuration

(2) List of tested device

No.	Product name	Model No.	Manufacture	Remarks
		Serial No.		
A	Electric Vehicle Charger	TCG2000	TOYODA	EUT
		10	AUTOMATIC LOOM	
			WORKS, LTD.	
В	Electric Vehicle	RAV4EV	TOYOTA	
		A400A		

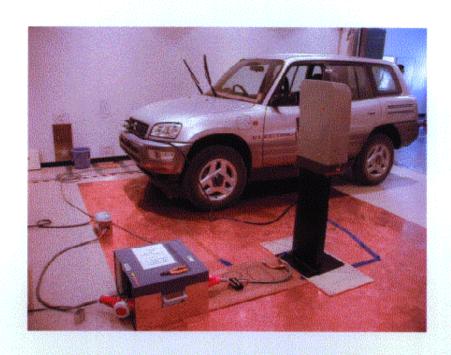
(3)Type of used cables

No.	Cable of Description	Length (m)	Shield	Grounding	Remarks
				Point of shield	
1	AC Input Cable	1.0		traditus	
2	Earth Cable	1.0	_	_	
3	Charger Cable	3.0	0	EUT Side	

 \bigcirc : Single Shielding

11 Measurement Photos Photo 10.1 Radiated Emission

9kHz to 30MHz


30MHz to 1GHz

1GHz to 10GHz

Photo 11.2 Conducted Emission

