FCC/IC TEST REPORT

FOR

Estes-Cox Corp. d/b/a Estes Industries

PROTO N

Model No.: 5103

Additional Model No.: Please refer to page 5.

Prepared for : Estes-Cox Corp. d/b/a Estes Industries

Address : 1295 H Street, Penrose, Colorado 81240 United States

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an

District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : October 27, 2015

Number of tested samples : 1

Serial number : Prototype

Date of Test : October 27, 2015 – November 17, 2015

Date of Report : November 17, 2015

FCC/IC TEST REPORT

FCC CFR 47 PART 15 C(15.247): 2014/ RSS-247, Issue 1: 2015 / RSS-Gen, Issue 4: 2014

Report Reference No.: LCS1511020069E

Date of Issue: November 17, 2015

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards ■

Partial application of Harmonised standards \Box

Other standard testing method \Box

Applicant's Name: Estes-Cox Corp. d/b/a Estes Industries

Address: 1295 H Street, Penrose, Colorado 81240 United States

Test Specification

Standard: FCC CFR 47 PART 15 C(15.247): 2014

RSS-247, Issue 1:2015

RSS-Gen. Issue 4: 2014

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: PROTO N

Trade Mark: ESTES

Model/ Type reference.....: 5103

Ratings.....: DC 6V by battery(600mAh)

Result: Positive

Compiled by:

Supervised by:

Approved by:

Kyle Yin/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

FCC/IC -- TEST REPORT

Test Report No.: LCS1511020069E

November 17, 2015

Date of issue

Type / Model	: 5103
EUT	: PROTO N
Applicant	: Estes-Cox Corp. d/b/a Estes Industries
Address	: 1295 H Street, Penrose, Colorado 81240 United States
Telephone	:/
Fax	
Manufacturer	: Guangdong Cheerson Hobby Technology Co., Ltd.
	: Fengxin No.2 Road, Fengxin Industrial Zone, Chenghai, Shantou
11331033	City, Guangdong Province, China
Telephone	
Fax	
	: Guangdong Cheerson Hobby Technology Co., Ltd.
Address	
	· City, Guangdong Province, China
Telephone	
Fax	:/

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	5
1.1 Description of Device (EUT)	5
1.2 Support equipment List	
1.3 External I/O Cable	6
1.4 Description of Test Facility	
1.5 Statement of The Measurement Uncertainty	6
1.6 Measurement Uncertainty	
1.7 Description Of Test Modes	
1.8. Pseudorandom Frequency Hopping Sequence	
2. TEST METHODOLOGY	
2.1 EUT Configuration	9
2.2 EUT Exercise	
2.3 General Test Procedures	9
3. SYSTEM TEST CONFIGURATION	10
3.1 Justification	10
3.2 EUT Exercise Software	10
3.3 Special Accessories	10
3.4 Block Diagram/Schematics	10
3.5 Equipment Modifications	
3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	11
5. SUMMARY OF TEST EQUIPMENT	12
6. ANTENNA PORT MEASUREMENT	13
6.1 Peak Power	13
6.2 Frequency Separation And 20 dB Bandwidth and 99% BW	
6.3 Number Of Hopping Frequency	19
6.4 Time Of Occupancy (Dwell Time)	
6.5 Conducted Spurious Emissions and Band Edges Test	
7. RADIATED MEASUREMENT	31
7.1 Block Diagram of Test Setup	31
7.2 Radiated Emission Limit	
7.3 Instruments Setting	33
7.4 Test Procedures	34
7.5 Results for Radiated Emissions	
7.6 Results for Band edge Testing (Radiated)	40
7.7. Power line conducted emissions	41
8. ANTENNA REQUIREMENT	42
8.1 Standard Applicable	42
8.2 Antenna Connected Construction	42

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : PROTO N

Model No. : 5103

Product Software

Version

: CX-01

Product Hardware

Version

: CD-STARS-KD

Radio Software

Version

: CX-02

Radio Hardware

Version

: CD-02

Test Software Version: CX-03

Frequency Range : 2.405-2.475GHz

Channel Number : 71 channels

Channel frequency: 2405.00-2475.00MHz (Channel Number: 71,

Channel Frequency=2405+1(K-1), $K=1, 2, 3 \dots 71$);

Channel Spacing : 1MHz

Modulation Type : GFSK

Antenna Gain : Internal antenna, 0dBi(Max.)

Input Voltage : DC 6V by battery(600mAh)

Additional models No.								
5103	5104	5105	5106					
Romark: PCR board st	ructure and internal of th	Remark: PCR heard structure and internal of these model(s) are the same So no additional						

Remark: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.3 External I/O Cable

I/O Port Description	Quantity	Cable

1.4 Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

1.5 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty:		150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description Of Test Modes

The EUT was programmed to fix the TX frequency that was for the purpose of the measurements. The EUT can transmit different frequency by used different button combinations. The rates and the power level use the default value. The power level and the rates can't be setting by the button combinations.

The EUT operates in the unlicensed ISM Band at 2.4GHz. The following operating modes were applied for the related test items. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. All test modes were tested, only the result of the worst case was recorded in the report.

		,	The Hoppin	ng sequence	e		
2405	2406	2407	2408	2409	2410	2411	2412
2413	2414	2415	2416	2417	2418	2419	2420
2421	2422	2423	2424	2425	2426	2427	2428
2429	2430	2431	2432	2433	2434	2435	2436
2437	2438	2439	2440	2441	2442	2443	2444
2445	2446	2447	2448	2449	2450	2451	2452
2453	2454	2455	2456	2457	2458	2459	2460
2461	2462	2463	2464	2465	2466	2467	2468
2469	2470	2471	2472	2473	2474	2475	

Mode of Operations	Frequency Range		
		(MHz)	
		2405	
GFSK	2445		
	2475		
For Conduc		ed Emission	
Test Mode		TX Mode	
	For Radiate	d Emission	
Test Mode		TX Mode	

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(2405-Low Channel).

1.8. Pseudorandom Frequency Hopping Sequence

Frequency Hopping Systems. A spread spectrum system in which the carrier is modulated with the coded information in a conventional manner causing a conventional spreading of the RF energy about the frequency carrier. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. The wide RF bandwidth needed by such a system is not required by spreading of the RF energy about the carrier but rather to accommodate the range of frequencies to which the carrier frequency can hop. The test of a frequency hopping system is that the near term distribution of hops appears random, the long term distribution appears evenly distributed over the hopset, and sequential hops are randomly distributed in both direction and magnitude of change in the hopset.

The selection scheme chooses a segment of 71 hop frequencies spanning about 70 MHz and visits these hops in a pseudo-random order. Next, a different 71-hop segment is chosen, etc.

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 71 hops.

Hop selection scheme in CONNECTION state.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 09, 01, 09, 33, 41, 33, 41, 65, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 68, 21, 29, 10, 26, 42, 58, 44, 60, 13, 03, 11, 35, 43, 37, 45, 69, 55, 08, 24, 08, 24, 40, 56, 40, 48, 01, 01, 25, 33, 12, 28, 44, 60, 42, 58, 11, 05, 13, 37, 45, etc.

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their

corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C, RSS-247 and RSS-Gen.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table 0.8 meter above ground for below 1GHz and 1.5m for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

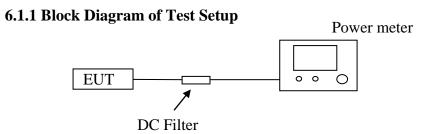
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C/ RSS-247						
FCC	IC Rules	Description of Test	Result			
Rules						
§15.247(a)	§5.4.2	Maximum Conducted Output Power	Compliant			
§15.247(c)	§5.1(2)	Frequency Separation And 20 dB Bandwidth	Compliant			
/	§5.1(2)	99% BW				
§15.247(a) (1)(ii)	§ 5.1(4)	Number Of Hopping Frequency	Compliant			
§15.247(a) (1)(iii)/	§5.1(4)	Time Of Occupancy (Dwell Time)	Compliant			
§15.209, §15.205	§ 5.5	Conducted Spurious Emissions and Band Edges Test	Compliant			
§15.209, §15.247(d)	RSS-Gen §8.9	Radiated and Conducted Spurious Emissions	Compliant			
§15.205	RSS-Gen §8.10	Emissions at Restricted Band	Compliant			
§15.207(a)	RSS-Gen §8.8	Conducted Emissions	N/A			
§15.203	RSS-Gen §6.7	Antenna Requirements	Compliant			
§15.247(i) §2.1093	RSS-102	RF Exposure	Compliant			

Note:


^{1. &}quot;N/A" means this test item is not applicable.

5. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z51	100458	2015-06-18	2016-06-17
2	Power Sensor	R&S	NRV-Z32	10057	2015-06-18	2016-06-17
3	Power Meter	R&S	NRVS	100444	2015-06-18	2016-06-17
4	DC Filter	MPE	23872C	N/A	2015-06-18	2016-06-17
5	RF Cable	Harbour Industries	1452	N/A	2015-06-18	2016-06-17
6	SMA Connector	Harbour Industries	9625	N/A	2015-06-18	2016-06-17
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2015-10-27	2016-10-26
8	Signal analyzer	Agilent	E4448A(Exte rnal mixers to 40GHz)	US44300469	2015-06-16	2016-06-15
9	RF Cable	Hubersuhne	Sucoflex104	FP2RX2	2015-06-18	2016-06-17
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2015-06-18	2016-06-17
11	Amplifier	SCHAFFNER	COA9231A	18667	2015-06-18	2016-06-17
12	Amplifier	Agilent	8449B	3008A02120	2015-06-16	2016-06-15
13	Amplifier	MITEQ	AMF-6F-260 400	9121372	2015-06-16	2016-06-15
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2015-06-18	2016-06-17
15	By-log Antenna	SCHWARZBE CK	VULB9163	9163-470	2015-06-10	2016-06-09
16	Horn Antenna	EMCO	3115	6741	2015-06-10	2016-06-09
17	Horn Antenna	SCHWARZBE CK	BBHA9170	BBHA9170154	2015-06-10	2016-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2015-06-18	2016-06-17
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03СН03-НҮ	2015-06-18	2016-06-17
20	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2015-06-18	2016-06-17
21	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2015-06-18	2016-06-17
22	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2015-06-18	2016-06-17
23	EMI Test Software	AUDIX	ЕЗ	N/A	2015-06-18	2016-06-17

6. ANTENNA PORT MEASUREMENT

6.1 Peak Power

6.1.2 Limit

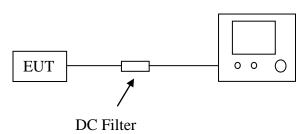
According to §15.247(a)(1) & RSS-247 §5.4.2, For frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW..

6.1.3 Test Procedure

The transmitter output is connected to the Power Meter.

6.1.4 Test Results

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limit (mW)	Result
	2405	5.942	3.9283	1000	Pass
GFSK	2445	5.843	3.8397	1000	Pass
	2475	5.423	3.4858	1000	Pass


6.2 Frequency Separation And 20 dB Bandwidth and 99% BW

6.2.1 Limit

According to §15.247(c) & RSS-247 §5.1(2), FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.2.2 Block Diagram of Test Setup

Spectrum Analyzer

6.2.3 Test Procedure

Frequency separation test procedure:

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = middle of hopping channel.
- D. Set the Spectrum Analyzer as RBW = 100kHz, VBW = 300kHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.
- E. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

20dB bandwidth test procedure:

- A. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.
- B. RBW $\geq 1\%$ of the 20 dB bandwidth, VBW \geq RBW.
- C. Detector function = peak.
- D. Trace = max hold.

6.2.4 Test Results

The Measurement Result For GFSK Modulation						
Channel	Channel Separation (MHz)	Min. Limit (MHz)	Result			
Low		0.8239	Pass			
Middle	1.000	0.8247	Pass			
High		0.8247	Pass			

The Measurement Result for 20dB Bandwidth(MHz)				
Channel	GFSK			
Low	0.8239			
Middle	0.8247			
High	0.8247			

The Measurement Result for 99% Bandwidth(MHz)				
Channel	GFSK			
Low	0.83343			
Middle	0.83380			
High	0.83719			

The test data refer to the following page.

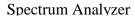
Test Plot Of Frequency Separation (GFSK)

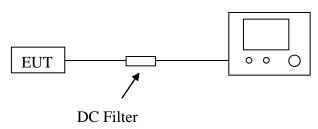
Measurement of 20dB Bandwidth

Test frequency: 2405MHz(GFSK)

Test frequency: 2445MHz(GFSK)

Test frequency: 2475MHz(GFSK)




6.3 Number Of Hopping Frequency

6.3.1 Limit

According to § 15.247(a)(1)(ii) & RSS-247 §5.1(4), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

6.3.2 Block Diagram of Test Setup

6.3.3 Test Procedure

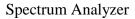
- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz.
- E. Max hold, view and count how many channel in the band.

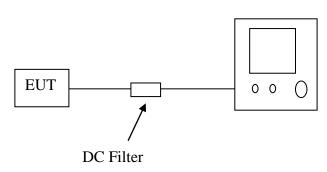
6.3.4 Test Results

The Measurement Result With The Worst Case of 1Mbps For GFSK Modulation						
Total No. of	Measurement Result (No. of Ch)	Limit (MHz)	Result			
Hopping Channel	71	≥15	Pass			

The test data refer to the following page.

Test Plot- Number of Hopping Channel




6.4 Time Of Occupancy (Dwell Time)

6.4.1 Limit

According to § 15.247(a)(1)(iii) & RSS-247 §5.1(4), Frequency hopping systems operating in the 2400MHz- 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

6.4.2 Block Diagram of Test Setup

6.4.3 Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = operating frequency.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- E. Repeat above procedures until all frequency measured were complete.

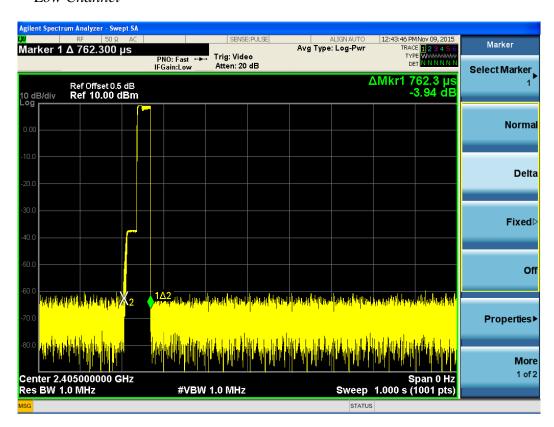
6.4.4 Test Results

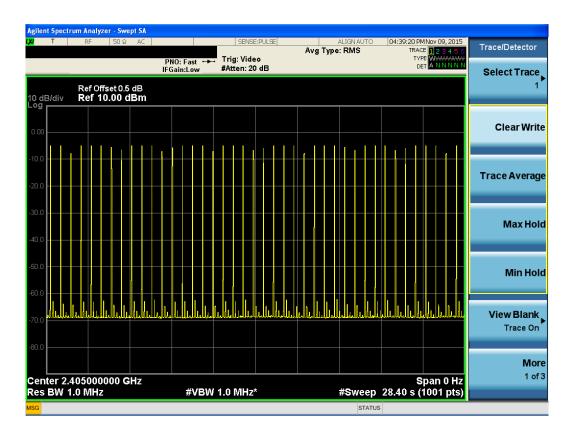
The Measurement Result With The Worst Case For GFSK Modulation								
Channel Time of Pulse (ms) Period Time Sweep Time (ms) (ms)								
Low	0.7623	28.4	31.25	400				
Middle	0.7797	28.4	31.97	400				
High	0.7542	28.4	30.92	400				

Low Channel

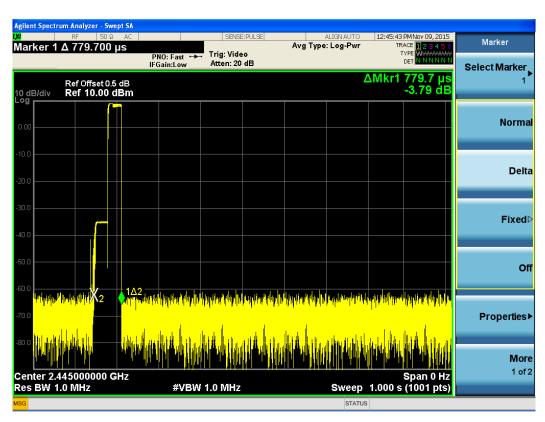
0.7623*41=31.25ms

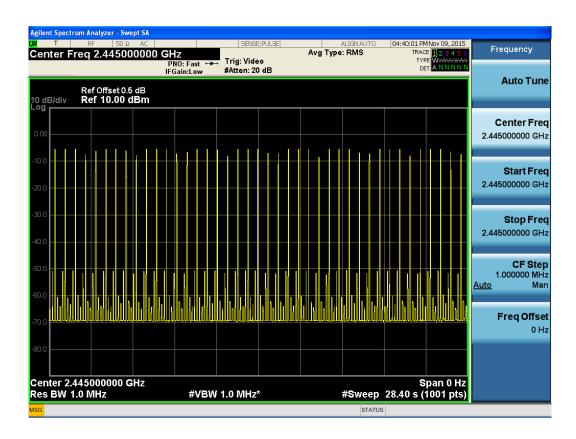
Middle Channel

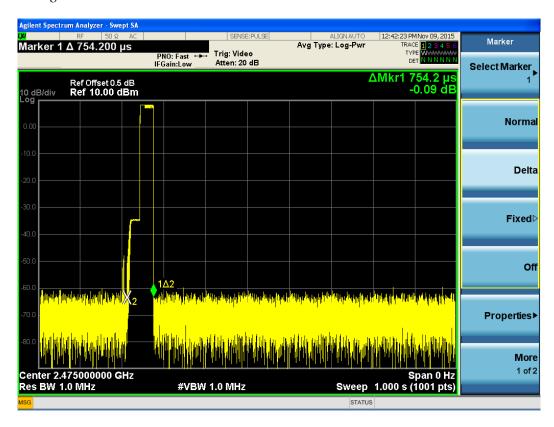

0.7797*41=31.97ms

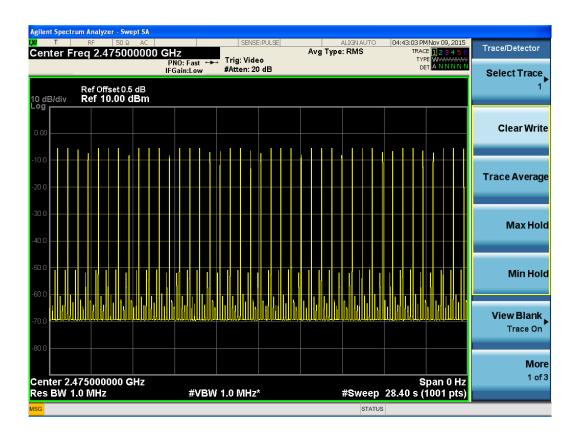

High Channel

0.7542*41=30.92ms

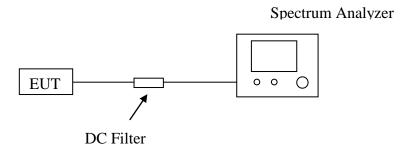

The test data refer to the following:


Low Channel




Middle Channel

High Channel



6.5 Conducted Spurious Emissions and Band Edges Test

6.5.1 Limit

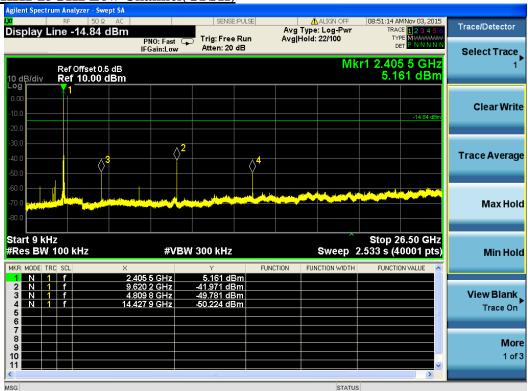
According to §15.209, §15.205 & RSS-247 §5.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen & 15.209(a)is not required.

6.5.2 Block Diagram of Test Setup

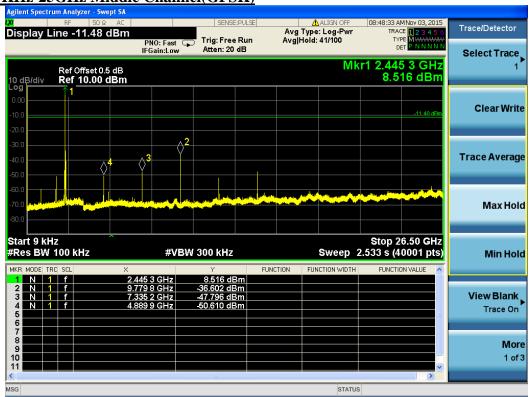
6.5.3 Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

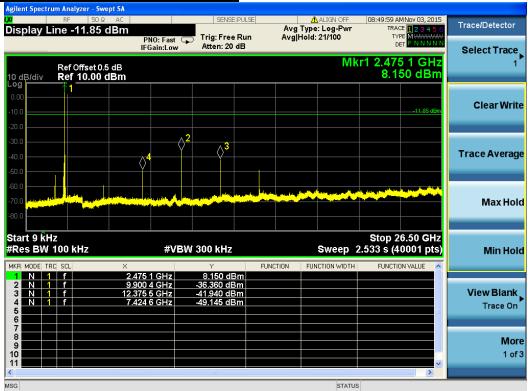
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.


Measurements are made over the 9kHz to 25GHz range with the transmitter set to the lowest, middle, and highest channels

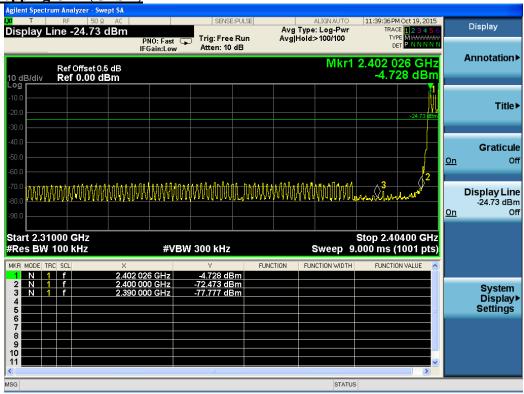
6.5.4 Test Results of Conducted Spurious Emissions


No non-compliance noted. Only record the worst test result (TX-GFSK) in this report. The test data refer to the following page.

Test Plot

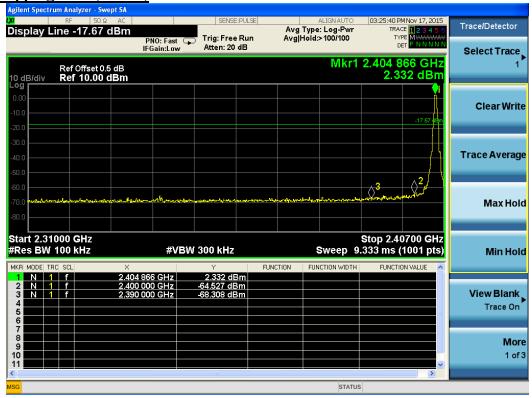

9KHz-25GHz Low Channel(GFSK)

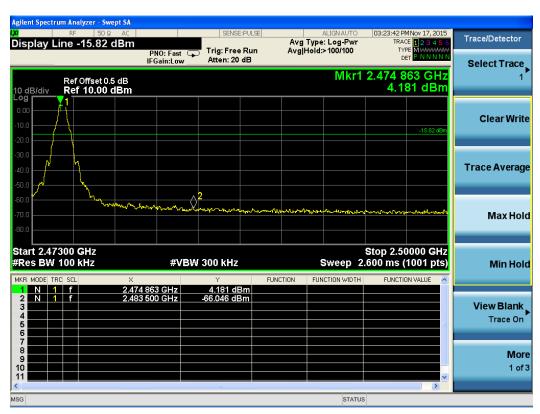
9KHz-25GHz High Channel(GFSK)

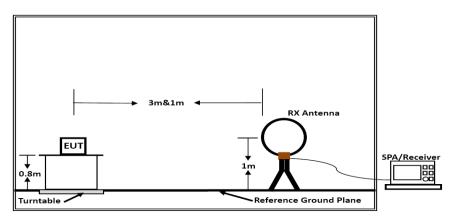


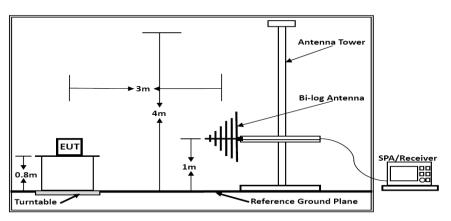
6.5.5 Test Results of Band Edges Test

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

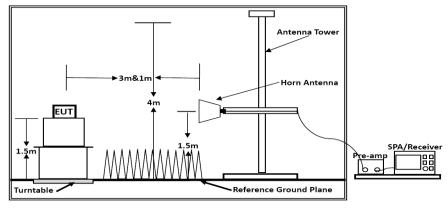

Test Plot


Hopping On - (GFSK)


Hopping Off - (GFSK)


7. RADIATED MEASUREMENT

7.1 Block Diagram of Test Setup



Below 30MHz

Below 30MHz

Below 1GHz

Above 1GHz

7.2 Radiated Emission Limit

15.205 (a) & RSS-Gen §8.10 Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 or Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable 15.209/RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Part 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table and transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

^{\2\} Above 38.6

7.3 Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.4 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 $^{\circ}$ to 315 $^{\circ}$ using 45 $^{\circ}$ steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0 $^{\circ}$ to 360 $^{\circ}$) and by rotating the elevation axes (0 $^{\circ}$ to 360 $^{\circ}$).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45 °) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with OP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45 °) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

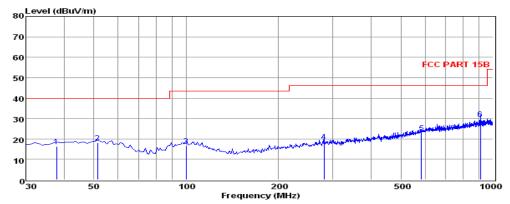
Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

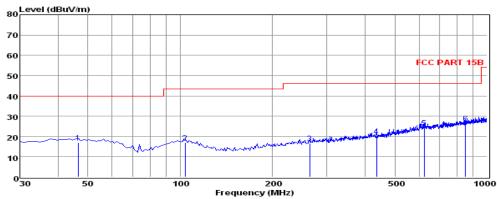
Final measurement:


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

7.5 Results for Radiated Emissions

PASS.

Only record the worst test result in this report. The test data please refer to following page:


Below 1GHz (Low Channel)

24°C/56% Env./Ins: PROTO N EUT: M/N: 5103 DC 6V TX-2405 Power Rating: Test Mode: Operator: KYLE YIN Memo: pol: VERTICAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
	MHZ	авау	аь	ub/m	ubuv/m	ubuv/m	иь	
1	37.76	2.94	0.38	13.01	16.33	40.00	-23.67	QP
2	51.34	4.31	0.54	13.19	18.04	40.00	-21.96	QP
3	99.84	3.01	0.60	13.15	16.76	43.50	-26.74	QP
4	281.23	4.88	1.06	12.69	18.63	46.00	-27.37	QP
5	584.84	3.11	1.50	18.17	22.78	46.00	-23.22	QP
6	909.79	6.83	1.88	21.15	29.86	46.00	-16.14	QP

- Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

24°C/56% Env./Ins: EUT: PROTO N M/N: 5103 Power Rating: DC 6V TX-2405 Test Mode: Operator: KYLE YIN Memo: pol: HORIZONTAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
1	46.49	3.14	0.35	13.46	16.95	40.00	-23.05	QP
2	103.72	3.39	0.61	12.82	16.82	43.50	-26.68	QP
3	263.77	3.34	1.03	12.17	16.54	46.00	-29.46	QP
4	436.43	3.15	1.41	15.54	20.10	46.00	-25.90	QP
5	624.61	4.43	1.49	18.54	24.46	46.00	-21.54	QP
6	850.62	4.03	1.89	20.58	26.50	46.00	-19.50	QP

- Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

Above 1GHz

The worst test result for GFSK, Tx-Low Channel:

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4810.00	54.56	33.06	35.04	3.94	56.52	74	-17.48	Peak	Horizontal
4810.00	39.16	33.06	35.04	3.94	41.12	54	-12.88	Average	Horizontal
4810.00	52.45	33.06	35.04	3.94	54.41	74	-19.59	Peak	Vertical
4810.00	40.38	33.06	35.04	3.94	42.34	54	-11.66	Average	Vertical

The worst test result for GFSK, Tx-Middle Channel:

Freq. MHz	Reading Dbuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4890.00	57.99	33.16	35.15	3.96	59.96	74	-14.04	Peak	Horizontal
4890.00	38.05	33.16	35.15	3.96	40.02	54	-13.98	Average	Horizontal
4890.00	53.99	33.16	35.15	3.96	55.96	74	-18.04	Peak	Vertical
4890.00	37.91	33.16	35.15	3.96	39.88	54	-14.12	Average	Vertical

The worst test result for GFSK, Tx-High Channel:

Freq. MHz	Reading DBuv	Ant. Fac dB/m	Pre. Fac dB	Cab. Los dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4950.00	59.99	33.26	35.14	3.98	62.09	74	-11.91	Peak	Horizontal
4950.00	38.47	33.26	35.14	3.98	40.57	54	-13.43	Average	Horizontal
4950.00	50.85	33.26	35.14	3.98	52.95	74	-21.05	Peak	Vertical
4950.00	36.02	33.26	35.14	3.98	38.12	54	-15.88	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. 18~25GHz at least have 20dB margin. No recording in the test report.

7.6 Results for Band edge Testing (Radiated)

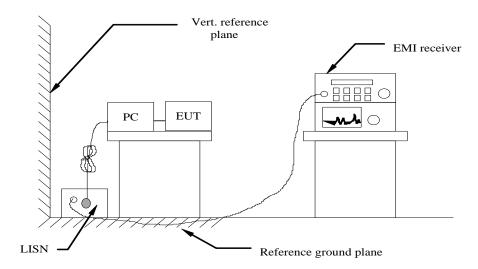
Only record the worst test case (Tx, GFSK, Non-hopping) as following:

Tx-2402, GFSK, Non-hopping

		- , 01 511,	Tion nop	78					
Freq. MHz	Readin g Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
2385.00	54.66	32.89	35.16	3.51	55.90	74	-18.10	Peak	Horizonta I
2385.00	38.03	32.89	35.16	3.51	39.27	54	-14.73	Averag e	Horizonta I
2400.00	53.68	32.92	35.16	3.54	54.98	74	-19.02	Peak	Horizonta I
2400.00	38.85	32.92	35.16	3.54	40.15	54	-13.85	Averag e	Horizonta I
2385.00	46.71	32.89	35.16	3.51	47.95	74	-26.05	Peak	Vertical
2385.00	35.85	32.89	35.16	3.51	37.09	54	-16.91	Averag e	Vertical
2400.00	48.45	32.92	35.16	3.54	49.75	74	-24.25	Peak	Vertical
2400.00	32.67	32.92	35.16	3.54	33.97	54	-20.03	Averag e	Vertical

Tx-2480, GFSK, Non-hopping

Freq. MHz	Readin g Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
2483.50	50.18	33.06	35.18	3.60	51.66	74	-22.34	Peak	Horizonta I
2483.50	36.43	33.06	35.18	3.60	37.91	54	-16.09	Averag e	Horizonta I
2483.50	50.10	33.06	35.18	3.60	51.58	74	-22.42	Peak	Vertical
2483.50	36.41	33.06	35.18	3.60	37.89	54	-16.11	Averag e	Vertical


7.7. Power line conducted emissions

7.7.1 Standard Applicable

According to §15.207 (a) & RSS-Gen: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

7.7.2 Block Diagram of Test Setup

7.7.3 Test Results

The EUT only work by using battery and don't have power port. No applicable.

8. ANTENNA REQUIREMENT

8.1 Standard Applicable

According to antenna requirement of §15.203 & RSS-Gen §6.7.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.2 Antenna Connected Construction

8.2.1. Standard Applicable

According to §15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

8.2.3. Results: Compliance.

Measurement parameters:

Measurement parameter						
Detector:	Peak					
Sweep time:	Auto					
Resolution bandwidth:	3 MHz					
Video bandwidth:	3 MHz					
Trace-Mode:	Max hold					

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth devices, the GFSK mode is used.

Limits:

FCC	IC						
Antenna Gain							
6.0dBi							

Tnom	Vnom	lowest channel 2405 MHz	middle channel 2445 MHz	highest channel 2475 MHz	
Measu	power [dBm] red with nodulation	5.942	5.843	5.423	
Measu	oower [dBm] red with oodulation	5.912 5.833		5.403	
Gain [dBi]	i] Calculated -0.03		-0.01	-0.02	
Me	easurement unce	ertainty	\pm 1.5 dB (cond.)) / ± 3.0 dB (rad.)	

Result: -/-