

Bundesnetzagentur

Test Report

Test report no.: 21075947-25568-0 Date of issue: 2022-05-02

Test result: The test item - passed - and complies with below listed standards.

Applicant

Continental Automotive GmbH

Manufacturer

Continental Automotive GmbH

Test Item

RHT433

RF-Spectrum Testing according to:

FCC 47 CFR Part 15 Radio Frequency Devices (Subpart C)

RSS-210, Issue 10 (2019-12)

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

> **RSS-Gen, Issue 5 (2018-04)** General Requirements for Compliance of Radio Apparatus

Tested by (name, function, signature)

Karsten Geraldy Lab Manager RF

Approved by (name, function, signature) Andreas Bender Deputy Managing Director

signature

Company: IBL-Lab GmbH · Heinrich-Hertz-Allee 7-10 · 66386 Sankt Ingbert · Germany · Tel: +49 6894 38938-0 · Fax: +49 6894 38938-99 Company Register: 105151, Amtsgericht Saarbrücken URL: www.ib-lenhardt.de · E-Mail: info@ib-lenhardt.de

Applicant and Test item details	
Applicant	Continental Automotive GmbH Siemensstrasse 12 D-93055, Regensburg, Germany
Manufacturer	Same as applicant
Test item description	Car Key with RKE and PASE
Model/Type reference	RHT433
FCC ID	M3NRHT433
IC	7812A-RHT433
HMN	RHT433
PMN	Continental RHT433
HVIN	N/A
FVIN	N/A
Frequency	433.92 MHz
Antenna	Integrated PCB antenna
Power supply	3 V battery
Temperature range	-20 °C to +70 °C

Disclaimer and Notes

The content of this rest report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full.

The last valid version is available at TAMSys®.

Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a ⊠ point / □ comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take test samples. The samples used for testing are provided by the applicant.

Decision rule:

Decision rule based on simple acceptance without guard bands, binary statement, based on mutually agreed uncertainty tolerances with expansion factor k=2 according to ILAC-G8:09/2019

2022-05-02

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	
2 2.1 2.2 2.3 2.4 2.5 2.6	GENERAL INFORMATION Administrative details Possible test case verdicts Observations Opinions and interpretations Revision history Further documents	
3 3.1 3.2	ENVIRONMENTAL & TEST CONDITIONS Environmental conditions Normal and extreme test conditions	
4	TEST STANDARDS AND REFERENCES	6
5 5.1 5.2 5.3 5.4	EQUIPMENT UNDER TEST (EUT) Product description Description of test item Technical data of test item Additional information	
6	SUMMARY OF TEST RESULTS	
7 7.1 7.2 7.3 7.4	TEST RESULTS Field strength of fundamental Field strength of spurious emissions Transmission time 20 dB bandwidth / occupied bandwidth	
8 8.1 8.2	Test Setup Description Semi Anechoic Chamber with Ground Plane Measurements under normal and extreme climatic conditions	
9 9.1 9.2 9.3	Measurement procedures Radiated spurious emissions from 9 kHz to 30 MHz Radiated spurious emissions from 30 MHz to 1 GHz Radiated spurious emissions from 1 GHz to 5 GHz	
10	MEASUREMENT UNCERTAINTIES	
Annex 1	EUT Photographs, external	51
Annex 2	EUT Photographs, internal	
Annex 3	Test Setup Photographs	

2 GENERAL INFORMATION

2.1 Administrative details		
Testing laboratory	IBL-Lab GmbH	
	Heinrich-Hertz-Allee 7	
	66386 Sankt Ingbert / Germany	
	Fon: +49 6894 38938-0	
	Fax: +49 6894 38938-99	
	URL: <u>www.ib-lenhardt.de</u>	
	E-Mail: info@ib-lenhardt.de	
Accreditation	The testing laboratory is accredited by Deutsche GmbH (DAkkS) in compliance with DIN EN ISO	e Akkreditierungsstelle /IEC 17025:2018.
	Scope of testing and registration number:	
	Electronics	<u>D-PL-21375-01-01</u>
	Electromagnetic Compatibility	D-PL-21375-01-02
	 Electromagnetic Compatibility and 	
	Telecommunication (FCC requirements)	<u>D-PL-21375-01-03</u>
	Testing Laboratory Designation Number	DE0024
	I elecommunication (IC) and	
	Electromagnetic Compatibility (EMC)	D DI 21275 01 04
	IOF Canadian Standards	<u>D-PL-21375-01-04</u> 27156
	Testing Laboratory CAB Identifier	DE0020
	Telecommunication (TC)	D-PL-21375-01-05
		<u>D121373-01-03</u>
	Website DAkkS: <u>https://www.dakks.de/</u>	
	The Doutenha Akkroditionungentelle CmbH (DA)	kke) in also a signatory to
	the ILAC Mutual Recognition Arrangement	
Testing location		
	Heinrich-Hertz-Allee 7	
	66386 St. Ingbert / Germany	
Date of receipt of test samples	2022-03-01	
Start – End of tests	2022-03-10 – 2022-03-14	

2022-05-02

2.2 Possible test case verdicts	
Test sample meets the requirements	P (PASS)
Test sample does not meet the requirements	F (FAIL)
Test case does not apply to the test sample	N/A (Not applicable)
Test case not performed	N/P (Not performed)

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision history

-0 Initial Version

2.6 Further documents

List of further applicable documents belonging to the present test report: – no additional documents –

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions

Temperature	20°C ± 5°C
Relative humidity	25-75 % r.H.
Barometric Pressure	860-1060 mbar
Power supply	230 V / 50 Hz

2022-05-02

3.2 Normal and extreme test conditions

	minimum	normal	maximum
Temperature	-20 °C	20 °C	+70 °C
Relative humidity	-/-	45 % r.h.	-/-
Power supply	2.3 V DC	3 V DC	3.2 V DC

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
FCC 47 CFR Part 15	Radio Frequency Devices (Subpart C)
RSS-210, Issue 10 (2019-12)	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-Gen, Issue 5 (2018-04)	General Requirements for Compliance of Radio Apparatus

Reference	Description
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

5 EQUIPMENT UNDER TEST (EUT)

5.1 Product description

Car Key with RKE and PASE

5.2 Description of test item

•	
Model name*	RHT433
Serial number*	conducted EUT: engineering sample radiated EUT: engineering sample
PCB identifier*	A2C12690100_01
Hardware status*	01
Software status*	31.00

*: as declared by applicant

5.3 Technical data of test item	
Operational frequency*	433.92 MHz
Operational frequency band*	433.05 MHz – 434.79 MHz
Type of radio transmission*	RKE protocol
	LOCK – Continuous message group
	UNLOCK – Continuous wave
	TRUNK – Continuous Manchester
	PASE protocol
	LOCK + UNLOCK – Continuous wave
	TRUNK + LOCK – Continuous wave
	UNLOCK + TRUNK – Continuous Manchester
Modulation type*	RKE protocol
	LOCK – Continuous message group
	UNLOCK – ASK
	TRUNK – ASK
	PASE protocol
	LOCK + UNLOCK – FSK
	TRUNK + LOCK – FSK
	UNLOCK + TRUNK – FSK
Number of channels*	3
Antenna*	Integrated PCB antenna
Power supply*	3 V battery
Temperature range*	-20 °C to +70 °C

*: as declared by applicant

5.4 Additional information

Model differences	none
Ancillaries tested with	none
Additional equipment used for	none
testing	

6 SUMMARY OF TEST RESULTS

Test specification FCC 47 CFR Part 15 RSS-210, Issue 10 (2019-12) RSS-Gen, Issue 5 (2018-04)

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§15.231(b) RSS-210, D (b)	Fundamental field strength	Normal	86.4 dBµV/m @3m	Pass
§15.231(b) / §15.209(a) RSS-210, D (c)	Field strength of spurious emissions	Normal	< limit	Pass
§15.231 (a) (1) RSS-210, A.1.1(a)	Transmit time	Normal	< limit	Pass
§15.231(c) RSS-Gen, 6.7	20 dB bandwidth Occupied bandwidth	Normal	76.90 kHz 67.283 kHz	Pass

Notes

– none –

Comments and observations

– none –

7 TEST RESULTS

7.1 Field strength of fundamental

Description / Limits

§15.231 (b) / RSS-210, D (b)

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Frequency	Field strength of fundamental @3m			
[MHz]	[µV/m]	[dBuV/m]		
40.66-40.70	2250	67.04		
70-130	1250	61.93		
130-174	1250 to 3750*	61.93 to 71.48*		
174-260	3750	71.48		
260-470	3750 to 12500*	71.48 to 81.93*		
Above 470	12500	81.93		

*Linear interpolations

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges. (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Test procedure

§15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrumentation using the CISPR quasi-peak detector can be found in ANSI C63.4-2014, clause 4 (incorporated by reference, see §15.38). As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function as long at the same bandwidth as indicated for CISPR quasi-peak measurements are employed.

2022-05-02

Test setup: see 8.1

Test results:

Quasi-Peak-Limit at 433.92 MHz: 80.84 dBµV/m Pos-Peak Limit at 433.92 MHz: 100.84 dBµV/m

EUT mode	Channel frequency [MHz]	Frequency [MHz]	Peak Field strength [dBµV/m]	Peak Limit [dBµV/m]	Margin [dB]	Verdict
RKE – LOCK	433.92	433.9204	86.066	100.84	14.774	Pass
RKE – UNLOCK	433.92	433.9211	86.279	100.84	14.561	Pass
RKE – TRUNK	433.92	433.9217	86.281	100.84	14.559	Pass
PASE – LOCK + UNLOCK	433.905	433.9055	86.194	100.84	14.646	Pass
PASE – LOCK + TRUNK	433.934	433.9344	86.253	100.84	14.587	Pass
PASE – UNLOCK + TRUNK	433.92	433.9062	86.362	100.84	14.478	Pass

Plot no. 1: Fundamental field strength, RKE, LOCK

Plot no. 2: Fundamental field strength, RKE, UNLOCK

Plot no. 3: Fundamental field strength, RKE, TRUNK

Plot no. 4: Fundamental field strength, PASE, LOCK + UNLOCK

2022-05-02

Plot no. 5: Fundamental field strength, PASE, LOCK + TRUNK

Plot no. 6: Fundamental field strength, PASE, UNLOCK + TRUNK

7.2 Field strength of spurious emissions

Description / Limits

§15.231 (b) / RSS-210, D (c)

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Frequency	Field strength of spurious emissions @3m				
[MHz]	[µV/m]	[dBuV/m]			
40.66-40.70	225	47.04			
70-130	125	41.94			
130-174	125 to 375*	41.94 to 51.48*			
174-260	375	51.48			
260-470	375 to 1250*	51.48 to 61.94*			
Above 470	1250	61.94			

*Linear interpolations

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges. (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement distance
0.009 – 0.490 MHz	2400/F[kHz] μV/m	300 m
0.490 – 1.705 MHz	24000/F[kHz] μV/m	30 m
1.705 – 30.0 MHz	30.0 µV/m / 29.5 dBµV/m	30 m
30 – 88 MHz	100 μV/m / 40.0 dBμV/m	3 m
88 – 216 MHz	150 μV/m / 43.5 dBμV/m	3 m
216 – 960 MHz	200 µV/m / 46.0 dBµV/m	3 m
960 – 100 000 MHz	500 μV/m / 54.0 dBμV/m	3 m

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

§15.209 (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

§15.209 (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

Test procedure

§15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrumentation using the CISPR quasi-peak detector can be found in ANSI C63.4-2014, clause 4 (incorporated by reference, see §15.38). As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function as long at the same bandwidth as indicated for CISPR quasi-peak measurements are employed.

Test setup: see 8.1

Test results							
EUT mode	Channel frequency [MHz]	Frequency [MHz]	Detector	Test distance [m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
RKE – LOCK	433.92	see plots	see plots	3	see plots	see plots	see plots
RKE – UNLOCK	433.92	see plots	see plots	3	see plots	see plots	see plots
RKE – TRUNK	433.92	see plots	see plots	3	see plots	see plots	see plots
PASE – LOCK + UNLOCK	433.905	see plots	see plots	3	see plots	see plots	see plots
PASE – LOCK + TRUNK	433.934	see plots	see plots	3	see plots	see plots	see plots
PASE – UNLOCK + TRUNK	433.92	see plots	see plots	3	see plots	see plots	see plots
Note:							

2022-05-02

Plot no. 8: Field strength of spurious emissions 9 kHz - 30 MHz, RKE, UNLOCK

2022-05-02

Plot No. 9: Field strength of spurious emissions 9 kHz – 30 MHz, RKE, TRUNK

Plot no. 10: Field strength of spurious emissions 9 kHz - 30 MHz, PASE, LOCK + UNLOCK

2022-05-02

Plot no. 12: Field strength of spurious emissions 9 kHz - 30 MHz, PASE, UNLOCK + TRUNK

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
867.836000	37.15	61.93	24.78	100.0	120.000	154.0	V	46.0

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
867.836000	47.19	61.93	14.74	100.0	120.000	116.0	V	69.0

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
867.837500	46.87	61.93	15.06	100.0	120.000	116.0	V	89.0

Plot no. 16: Field strength of spurious emissions 30 MHz – 1 GHz, hor./vert. polarization, PASE, LOCK + UNLOCK

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
867.812500	40.23	61.93	21.70	100.0	120.000	154.0	V	88.0

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
867.861000	46.77	61.93	15.16	100.0	120.000	114.0	V	77.0

Plot no. 18: Field strength of spurious emissions 30 MHz – 1 GHz, hor./vert. polarization, RKE, UNLOCK + TRUNK

2022-05-02

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
	(ubµv/iii)	(ubµv/m)	(ub)	(115)	(KNZ)	(CIII)		(uey)
44.177000	6.45	40.00	33.55	100.0	120.000	225.0	Н	288.0
867.811000	15.84	61.93	46.09	100.0	120.000	246.0	V	88.0

2022-05-02

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
4773.108333	50.31		74.00	23.69	100.0	1000.000	150.0	н
4773.333333		36.09	54.00	17.91	100.0	1000.000	150.0	Н

2022-05-02

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
4773.111111		48.75	54.00	5.25	100.0	1000.000	150.0	н
4774.086111	38.72		74.00	35.28	100.0	1000.000	150.0	н

2022-05-02

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
4339.180556	46.85		74.00	27.15	100.0	1000.000	150.0	н
4339.555556		34.41	54.00	19.59	100.0	1000.000	150.0	V
4773.108333	51.04		74.00	22.96	100.0	1000.000	150.0	н
4773.333333		42.57	54.00	11.43	100.0	1000.000	150.0	н

INGENIEURBÜRO LENHARDT

TR no.: 21075947-25568-0

Plot no. 22: Field strength of spurious emissions 1 GHz – 5 GHz, hor./vert. polarization, PASE, LOCK + UNLOCK

2022-05-02

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
4772.961111	51.11		74.00	22.89	100.0	1000.000	150.0	н
4773.111111		48.21	54.00	5.79	100.0	1000.000	150.0	Н

Plot no. 23: Field strength of spurious emissions 1 GHz – 5 GHz, hor./vert. polarization, PASE, LOCK + TRUNK

2022-05-02

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
4773.330556	50.84		74.00	23.16	100.0	1000.000	150.0	н
4773.555556		47.14	54.00	6.86	100.0	1000.000	150.0	н

Plot no. 24: Field strength of spurious emissions 1 GHz - 5 GHz, hor./vert. polarization, RKE, UNLOCK + TRUNK

2022-05-02

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
4772.958333	51.17		74.00	22.83	100.0	1000.000	150.0	н
4773.333333		47.33	54.00	6.67	100.0	1000.000	150.0	Н

7.3 Transmission time

Description / Limits

§15.231 / RSS-210, A 1.1 (a)

(a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition

(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Test results					
EUT mode	Test conditions	Declared frequency [MHz]	Measured time [ms]	Limit [s]	Result
RKE – LOCK	Normal	433.92	555	5	Pass
RKE – UNLOCK	Normal	433.92	555	5	Pass
RKE – TRUNK	Normal	433.92	555	5	Pass
PASE – LOCK + UNLOCK	Normal	433.905	555	5	Pass
RKE – LOCK + TRUNK	Normal	433.934	555	5	Pass
RKE – UNLOCK + TRUNK	Normal	433.92	555	5	Pass
	•		· · · · · ·		
Note:					

Plot no. 25: Transmission time, RKE, LOCK

17:19:47 14.03.2022

Plot no. 26: Transmission time, RKE, UNLOCK

							I
MultiView - Spectrum	X Spectrum 2 X	Spectrum 3	× Spectru	um 4 🗙			•
Ref Level 110.00 dBµV	• RBW 100 kHz	-	_				SGL
TRG:VID TDF "CAB_LABOOD	• SWI 5 s • VBW 300 KHZ)163"						
1 Zero Span						M1	0 1Pk Clrw
						1011	555.00 ms
100 dBµV							
90 dBµV М1							
80 dвµ∨							
70 авµ∨							
-6D-dBµV	.000 dBµV						
50 dвµV	لأبرين أجراب أرابه	1			A. 4. 11. 1		1
my to be my mythingh	man and second s	Manna wantana	MrV-MNrWW-LWV	Wander	n/h/m/manah/habala/	CAPAN-WWWWWWW	M CANALANALAN VINA
40 dBµV							
30 dBµV							
20 dBµV							
CF 433.92 MHz		1001	pts				500.0 ms/
v				~	Ready		++ 14.03.2022 17:20:24

17:20:24 14.03.2022

.

MultiView 📒	Spectrum	× Spectrun	n 2 X	Spectrum 3	× Spectr	um 4 🗙			
Ref Level 110	.00 dBuV	- RBW 1	D0 kHz		_				SGL
 Att 	30 dB 🖷 SW	T 5 s 🗢 VBW 3	D0 kHz						
TRG:VID TDF "CA	AB_LAB000163"								o toly class
1 Zero Span								M1	O IPK CIPW
									555.00 ms
100 dBµV									
90 dBuV									
	M1								
80 dBµ∨									
70 dBµ∨									
60-dBµV	TRG 60.000 d	вµ∨							
SO dBuV									
	humandraw	We march denorm	moundmanster	moundarist	Automa hole w	warman At	Monwhillow	hundersupposed	announdaring
10 10 11									
40 UBH V									
30 dBµ∨									
20 dBµV									
CE 422 02 MUz				100					500.0 mc/
GI 433.92 MITZ				100.	i pis		Boodu		14.03.2022
							Reauy		17:20:53

Plot no. 27: Transmission time, RKE, TRUNK

17:20:53 14.03.2022

Plot no. 28: Transmission time, RKE, LOCK + UNLOCK

MultiView Spectrum X Spectrum 3 X Spectrum 4 X Spectrum 5 Spectrum 5 Spectrum 4 X Spect										
Ref Level 110.00 dBµV RBW 100 kHz SGL Att 30 dB • SWT 55 • VBW 300 kHz Terce Span OIPk Chw I Zero Span OIPk Chw 90 dBµV H1 90 dBµV H1	MultiView	Spectrum	× Spectrum	n 2 🗙	Spectrum 3	× Spectr	um 4 🗙	1		
Att 30 db • SWT 5 s • VBW 300 kHz Tisc-VID Tor Cab_LAB000163" 01Fk Clrw IZ cro Span M1 [1] 97.07 db µV 100 db µV M1 [1] 97.07 db µV 90 db µV M1 90 db µV M1 M1 M1 90 db µV M1 M1 M1 M1 M1 90 db µV M1 M1 M1 M1 M1 M1 90 db µV M1 M2 M1 M2 M1 M1 M1 M1 M2 M1 M2 M1 M2 M1 M2 M2<	Ref Level 110).00 dBµV	• RBW 10	D0 kHz				2		SGL
1 Zero Span 0 1Ek Clw 100 dBµV M1 [1] 97.07 dBµV 90 dBµV M1 90 dBµV TBC-60.000 dBµV 90 dBµV M1 90	 Att TRG:VID TDF "C/ 	30 dB 🖷 SW AB_LAB000163''	T 5 s 🗢 VBW 30	00 kHz						
M1 1 3.0 / dbµV 100 dbµV 90 dbµV 110 dbµV 110 dbµV 110 dbµV 110 dbµV 110 dbµV 111 dbµV <	1 Zero Span									o 1Pk Clrw
100 dBµV 4<									M1	1] 87.07 dBµV 555.00 ms
90 dBµV	100 dBµV									
90 dBµV M1 Image: See dBµV M1 Image: See dBµV Ima										
80 dBµv - </td <td>90 dBµV</td> <td>-M1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	90 dBµV	-M1								
80 80 <td< td=""><td></td><td>m l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		m l								
70 deµv - <td>80 dвµ∨</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	80 dвµ∨									
7D dBµV - <td></td>										
6b dbuv - - TRG 60.000 dbuv - </td <td>70 dвµ∨</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	70 dвµ∨									
60 dbµV - - - - - 50 dbµV - - - - - 60 dbµV - - - - - 50 dbµV - - - - - 40 dbµV - - - - - 30 dbµV - - - - - 20 dbµV - - - - -										
SD dBµV Image: SD Im	-60-dBµ∨	TRG 60.000 dl	энл							
40 dBµV 30 dBµV 20 dBµV 20 dBµV	w W w w	when marked	worked man shall	manunkenset	and market when the sub-	mound	an reachard when	windermark	hardenna	war malharman
20 dBµV	40 dBuV	Arra it Ar								
30 dBµV										
20 dBµV	30 dвµV									
20 dBµV										
	20 dBµV									
CE 433.92 MHz 500.0 ms/	CE 433.92 MHz	,			1001	nts				500.0 ms/
Ready #14.03.2022					1001		~	Ready		14.03.2022

17:21:34 14.03.2022

2022-05-02

\diamond MultiView 📑 Spectrum X Spectrum 4 × X Spectrum 2 × Spectrum 3 Ret Level 110.00 dBµV • RBW 100 kHz • Att 30 dB • SWT 5 s • VBW 300 kHz TRG:VID TDF "CAB_LAB000163" 1 Zero Span SGL ● 1Pk Clrw [1] 85.18 dBµ\ M1 . 555.00 m 100 dBµV-90 dBµV Π Π To be a summarised and an an and a second stranger and an and a second and a second and a second and the beaution of the second 40 dBµV∙ 30 dBµV-20 dBµV— CF 433.92 MHz 1001 pts 500.0 ms/ Ready ++ 14.03.2022 17:22:10

Plot no. 29: Transmission time, RKE, LOCK + TRUNK

17:22:10 14.03.2022

Plot no. 30: Transmission time, RKE, UNLOCK + TRUNK

									I
MultiView 📒	Spectrum	× Spectrum	n 2 🗙	Spectrum 3	× Spectr	um 4 🗙			
RefLevel 110).00 dBµV	• RBW 1	00 kHz						SGL
Att	30 dB 🖷 SW	T 5 s 🗢 VBW 3	00 kHz						
1 Zero Span	AB_LABUUU163								●1Pk Clrw
								M1	[1] 86.19 dBµV
									555.00 ms
100 dBµV									
90 dBµV	MI								
וחדוו	Î								
80 dвµ∨									
70 dвµV									
-60-dBµV	TRG 60.000 df	вру							
50 dвµ∨									
leave have been long	book was a was a way of the	allaman	monthearth	www.www.www.	moundulatest	mound	Amalingualitation	on some how would	warmen Mentan
40 dBµV									
30 dBµV									
20 dBµV									
CF 433.92 MHz	<u>:</u>			1001	pts				500.0 ms/
	~					~	Ready		17:23:10

17:23:10 14.03.2022

7.4 20 dB bandwidth / occupied bandwidth

Description / limit

§15.231 (c) / RSS-Gen, 6.7

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

- The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:
 - The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
 - The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
 - The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
 - The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

- The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency,

INGENIEURBÜRO

are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

Test Results:

EUT mode	Channel frequency [MHz]	Min. Frequency F⊾ [MHz]	Max. frequency F _H [MHz]	Occupied bandwidth (99%) [kHz]
RKE – LOCK	433.92	433.893	433.948	55.266
RKE – UNLOCK	433.92	433.908	433.931	23.792
RKE – TRUNK	433.92	433.894	433.947	53.553
PASE – LOCK + UNLOCK	433.905	433.893	433.917	24.030
PASE – LOCK + TRUNK	433.934	433.922	433.946	24.110
PASE – UNLOCK + TRUNK	433.92	433.886	433.953	67.283

EUT mode	Channel frequency [MHz]	Min. Frequency F _L [MHz]	Max. frequency F _H [MHz]	20 dB bandwidth [kHz]
RKE – LOCK	433.92	433.898	433.942	44.0
RKE – UNLOCK	433.92	433.906	433.933	27.0
RKE – TRUNK	433.92	433.898	433.942	44.0
PASE – LOCK + UNLOCK	433.905	433.892	433.919	27.0
PASE – LOCK + TRUNK	433.934	433.92	433.947	27.0
PASE – UNLOCK + TRUNK	433.92	433.881	433.958	76.9

Where:

 $F_{L} =$ is the lower edge of the OBW

	Fн	=	is the uppe	r edge o	of the C	ЭВV
--	----	---	-------------	----------	----------	-----

Verdict	- PASS -	Measurement plot(s) see next page(s).
		•

Comment

INGENIEURBÜRO

2022-05-02

TR no.: 21075947-25568-0

Plot No. 31: 99 % Occupied Bandwidth, RKE, LOCK

16:35:50 14.03.2022

Plot No. 32: 99 % Occupied Bandwidth, RKE, UNLOCK

								~~~~
MultiView	Spectrum	× Spectrum 2	× Spectr	um 3	×			
Ref Level 1	10.00 dBu/ Of	fset -13.00 dB • BBW 10 kH:	7		_			
<ul> <li>Att</li> </ul>	30 dB • SV	VT 10 ms • VBW 30 kH:	- z <b>Mode</b> Auto Swe	ep				
TDF "CAB_LAB	000163"			-,				
1 Occupied B	andwidth					1		o1Pk Max
							M1[1]	94.22 dBµV
100 dBuV							43	3.920 000 MHz
			N	1				
90 dBuV			(	<u> </u>				
				$\Gamma$				
80 dBuV				12				
70 dBuV								
60 dBuV								
l '								
50 dBuV		man	mm	Nur	many	have		
- and and	mm					mul	montim	mmm.
40 dBµV								* ~~0~
30 dBµV								
20 dBµV								
CE 433 03 MI		1001	nto	10				Spap 1.0 MHz
2 Marker Tak	12	1001	pts					Span 1.0 MHz
	ef Trc	X-Value	Y-Value		Function		Function Re	esult
M1	1	433.92 MHz	94.22 dBµV	Occ Bw			23.791 607 9	956 kHz
T1 T2	1	433.907.64 MHz 433.931.431 MHz	79.56 dBµV 79.54 dBµV	Occ Bw Cer	ntroid a Offset		433.919.53	5 547 MHz 345 358 Hz
L 14	1	400.901401 MINZ	79.54 UDµV	OCC BW FIE	iy onset		-404.4333	- 14.03.2022
	V				~	Measuring		16:40:47

16:40:48 14.03.2022

# INGENIEURBÜRO

#### 2022-05-02

#### TR no.: 21075947-25568-0

#### Plot No. 33: 99 % Occupied Bandwidth, RKE, TRUNK



16:42:10 14.03.2022

#### Plot No. 34: 99 % Occupied Bandwidth, PASE, LOCK + UNLOCK

					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiView 📑 Spectru	m X Spectrum 2	× Spectru	m 3 🗙		-
Ref Level 110.00 dBuV	Offset -13.00 dB ● RBW 10 kHz		—		
• Att 30 dB • :	SWT 10 ms • VBW 30 kHz	Mode Auto Sweep	5		
TDF "CAB_LAB000163"					
1 Occupied Bandwidth		1			●1Pk Max
				M1[1]	94.21 dBµV
100 dBuV				2	133.905 000 MHz
		M1			
90 dBuV					
80 dBuV		T1 12			
oo abp.		1 Y 1			
70 dBuV					
10 0000					
60 dBuV					
00 0844					
FD dbuly	mon	man 1	man	thing is	
SU UBPY	manager			and when the second	nn .
40 40.00					·······
40 0BHV					
30 gBhA					
20 dBhA					
CF 433.92 MHz	1001 p	ts	100.0 kHz/		Span 1.0 MHz
2 Marker Table					
Type Ref Trc	X-Value	Y-Value	Function	Function I	Result
T1 1	433.903 MHZ 1	77 77 dBuy	Occ Bw Centroid	24.U2974: 433.005	
T2 1	433.917181 MHz	78.59 dBµV	Occ Bw Freq Offset	-14.834	133 687 kHz
~				- Measuring	14.03.2022 16:44:45

16:44:45 14.03.2022

INGENIEURBÜRO LENHARDT

2022-05-02

TR no.: 21075947-25568-0

Plot No. 35: 99 % Occupied Bandwidth, PASE, LOCK + TRUNK

								Solution
MultiView	Spectrum	× Spectrum 2	× Spectru	ım 3 💙	<			-
Ref Level 11	0.00 dBµV Off	set -13.00 dB 🖷 RBW 10 kHz			_			
Att	30 dB 🖷 SW	T 10 ms 🖷 VBW 30 kHz	Mode Auto Swee	р				
TDF "CAB_LABO	00163" pdwidth							o 1Dk May
r occupied bu							M1[1]	94.21 dBuV
							43	3.934 000 MHz
100 dBµV				М1				
00.40.41				۸ I				
ao asha ———								
en deuv			ti H	т2				
80 GBH 4				Ť.				
70 dBuV								
			1					
60 dBµV								
				1	00.000			
50 dBµ∨	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	" o o o man ma	~~~~	and a more that we have a	mmm		
mm	monney	,						m
40 dBµV								
30 dBµV								
20 dBµV								
CF 433.92 MH:	Z	1001	ots	10	0.0 kHz/	1	1	Span 1.0 MHz
2 Marker Tabl	e							
Type Ref		X-Value 433 934 MHz	Y-Value 94 21 dBuV	Occ Bw	Function		Function Re	
T1	1	433.921 621 MHz	79.13 dBµV	Occ Bw Cer	ntroid	-	433.93367	6 369 MHz
T2	1	433.945732 MHz	77.35 dBµV	Occ Bw Fre	q Offset		13.6763	869 45 kHz
						Measuring		14.03.2022

16:46:48 14.03.2022

Plot No. 36: 99 % Occupied Bandwidth, PASE, UNLOCK + TRUNK

16:48:01 14.03.2022

2022-05-02

Plot No. 37: 20 dB Bandwidth, RKE, LOCK

16:38:06 14.03.2022

Plot No. 38: 20 dB Bandwidth, RKE, UNLOCK

					4	\$
MultiView	Spectrum	× Spectrur	n 2 × Spectr	rum 3 🗙		•
Ref Level 1	20.00 dBµV Off	set -13.00 dB • RBW	10 kHz		-	
 Att TDF "CAB_LABI 	30 dB 🖷 SW 000163"	'T 10 ms 🖷 VBW	30 kHz Mode Auto Swe	ep		
1 Frequency	Sweep				o 1Pk Ma	iх
					M1[1] 94.22 dB	ψV
110 dBuV					433.920 000 M	iHz
100 dBuV						
100 0004			M	1		
00 deux						
90 dbpv						
oo douw						
00 UBHV			Ţ <u>i</u>	12		
			Ϋ́	Y I		
70 dвµV						
60 dBµV						
			momment	Imm		
50 dBµV	man	m man and the second se		~ ~	and the second s	
mm	n n n n n n n n n n n n n n n n n n n					\sim
40 dBµV						-
30 dBµV						-
CE 433 92 MF			1001 pts	100.0 kHz/	Spap 1.0 M	Hz
2 Marker Tak			1001 pts	100.0 KH27	Span no M	112
Type Re	ef Trc	X-Value	Y-Value	Function	Function Result	
M1	1	433.92 MHz	94.22 dBµV	ndB	20.0 dB	
T1 TO	1	433.906 MHz	73.91 dBµV	ndB down BW	27.00 kHz	
12	1	433.933 MHZ	74.U2 dBµV	ų Factor	1608/	
					 Measuring Measuring Measuring 	37

16:41:37 14.03.2022

2022-05-02

Plot No. 39: 20 dB Bandwidth, RKE, TRUNK

16:42:52 14.03.2022

Plot No. 40: 20 dB Bandwidth, PASE, LOCK + UNLOCK

16:45:30 14.03.2022

2022-05-02

Plot No. 41: 20 dB Bandwidth, PASE, LOCK + TRUNK

16:47:26 14.03.2022

Plot No. 42: 20 dB Bandwidth, PASE, UNLOCK + TRUNK

16:48:36 14.03.2022

8 Test Setup Description

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclically chamber inspections and range calibrations are performed. Where possible resp. necessary, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

8.1 Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: ULTRALOG antenna 3 m; loop antenna 3 m EMC32 software version: 11.10.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NE	-
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NE	-
3	Power Supply	Chroma	61604	616040005416	LAB000285	NE	-
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NE	-
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NE	-
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	К	$\textbf{2021-07-01} \rightarrow \textbf{12M} \rightarrow \textbf{2022-07-01}$
78	Semi-Anechoic Chamber (SAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NE	-
9	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NE	-
10	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NE	-
11	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NE	-
12	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NE	-
132	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NE	-
14	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NE	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NE	-
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	К	$\textbf{2020-04-23} \rightarrow \textbf{36M} \rightarrow \textbf{2023-04-23}$
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	к	$\textbf{2020-07-05} \rightarrow \textbf{36M} \rightarrow \textbf{2023-07-05}$
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NE	-
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	K	$2020\text{-}04\text{-}23 \rightarrow 36\text{M} \rightarrow 2023\text{-}04\text{-}23$
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	К	$2020\text{-}07\text{-}05 \rightarrow 36\text{M} \rightarrow 2023\text{-}07\text{-}05$
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	к	$2020\text{-}03\text{-}25 \rightarrow 36\text{M} \rightarrow 2023\text{-}03\text{-}25$

2022-05-02

8.2 Measurements under normal and extreme climatic conditions

2022-05-02

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dBµV/m] = 31.05 [dBµV/m]

List of test equipment used:

No.	Equipment	Туре	Manufacturer	Serial No.	IBL No.	Kind of Calibration	Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350263	LAB000190	NE	-
2	Coaxial Cable	Huber & Suhner	ST18/72"	2278434	LAB000160	ZW	$\textbf{2021-08-16} \rightarrow \textbf{12M} \rightarrow \textbf{2022-08-16}$
3	Spectrum Analyser	Rohde & Schwarz	FSW50	101450	LAB000111	К	$2021\text{-}07\text{-}22 \rightarrow 12 M \rightarrow 2022\text{-}07\text{-}22$
4	Climatic Chamber	CTS GmbH	T-65/50	204002	LAB000110	ZW	$\textbf{2021-06-18} \rightarrow \textbf{12M} \rightarrow \textbf{2022-06-18}$
5	RF cable	ST18/72"	Huber & Suhner	2278434	LAB000160	-	-

9 Measurement procedures

9.1 Radiated spurious emissions from 9 kHz to 30 MHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
- In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- For each turntable step the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated with special 3D adapter set to find maximum level of emissions.
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade of distance in the region closer than λ in m divided by 2π (i.e., $\lambda/2\pi$), and at 20 dB/decade of distance beyond that, using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the limit line of corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

9.2 Radiated spurious emissions from 30 MHz to 1 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table. In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission. This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

9.3 Radiated spurious emissions from 1 GHz to 5 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table. In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission. This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

10 MEASUREMENT UNCERTAINTIES

Radio frequency	≤ ± 10 ppm
Radiated emission	≤ ± 6 dB
Temperature	≤ ± 1 °C
Humidity	≤±5%
DC and low frequency voltages	≤±3 %

The indicated expanded measurement uncertainty corresponds to the standard measurement uncertainty for the measurement results multiplied by the coverage factor k = 2. It was determined in accordance with EA-4/01 m:2013. The true value is located in the corresponding interval with a probability of 95 %.