Page 1 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

Test Report acc. to the relevant standard 47 CFR Part 15 C – Intentional Radiators Measurement Procedure: ANSI C63.4 - 1992 relating to Siemens AG Siemens Automotive Corporation 5WY7976

Measurement of Radio- Noise Emissions from Low- Voltage Electrical and Electronic Equipment Technical characteristics and test methods for radio equipment in the frequency range 9 kHz to 40 GHz

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

Manufacturer's details			
Manufacturer Siemens Automotive Corporation			
Manufacturer's grantee code	M3N		
Manufacturer's address	Siemens Automotive Corporation		
	2400 Executive Hills Drive		
	Auburn Hills, Michigan, Zip Code: 48326-2980		
	United States		
	Phone: 248 764 6826		
	Fax: 248 764 7064		
	E-mail: bhan.uttam@siemens.com		
Relevant standard used	47 CFR Part 15C - Intentional Radiators		
	ANSI C63.4-1992		

Test report prepared by		
Technical engineer	Ralf Trepper	
	m.dudde hochfrequenz-technik (laboratory)	
	Rottland 5a	
	D-51429 Bergisch Gladbach	
	Germany	
	Phone: +49 2207 96890	
	Fax : +49 2207 968920	
	E-mail: m.duddelabor@t-online.de	

Equipment Under Test (EUT)		
Equipment category	Inductive system	
Trade name	Siemens	
Type designation	5WY7976	
Serial no.	none	
Variants		

Fax: +49 2207 9689-20

http://www.dudde.com

Page 3 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976

Date of issue: 2007-11-16

0 Test result

CFR	Report	Requirements	T	est resu	ılt
Section	Chapter	Headline		OK	
15.203	10.1	Antenna Requirement	pass	fail	n.a.
15.205 15.209	10.2	Radiated spurious emissions	pass	fail	n.a.

Test requirements kept	ves no
Test requirements kept	yes no

Signature test personnel

Ralf Trepper

Signature of the company official

Manfried Dudde

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

List of contents	Page
0 Test result	3
1 Testing laboratory	5
2 Introduction	5
3 Product	6
4 Test schedule	6
5 Product and measurement documentation	7
6 Observations and comments	7
7 Summary	7
8 Conclusions	8
9 Operation description	9
10.1 Antenna Requirement	10
10.1.1 Regulation	10
10.1.2 Result	10
10.2 Radiated emission.	11
10.2.1 Regulation	11
10.2.2 Test equipment	12
10.2.3 Test procedures	13
10.2.4 Calculation of field strength Section 15.209 below 30 MHz	14
10.2.5 Calculation of field strength Section 15.209 above 30 MHz	14
10.2.6 Calculation of the field strength	
10.2.7 Calculation of Average Correction Factor	15
11 Additional information to this test report	19

Page 5 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

1 Testing laboratory

Company name: m.dudde hoch frequenz-technik

Street: Rottland 5a

51429 Bergisch Gladbach City:

Country: Germany

Laboratory:

FCC Registration Number: 699717

This site has been fully described in a report submitted to the FCC and was accepted with letter dated Registration Number .699717

+49-2207-9689-0 Phone: +49-2207-9689-20 Fax:

E-mail: manfred.dudde@t-online.de Web: http://www.dudde.com

2 Introduction

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz - technik.

This report contains the result of tests performed by m. dudde hochfrequenz - technik for the purpose of a type approval. The order for carrying out these tests had been placed by:

Manufacturer

Company name : Siemens Automotive Corporation

Address : 2400 Executive Hills Drive

Postcode : 48326-2980

City/town : Auburn Hills, Michigan

Country : United States

Telephone : 248 764 6826

Telefax : 248 764 7064

E-mail : bhan.uttam@siemens.com

Date of order : 2007-11-16

References : Mr. Bhan Uttam

D-51429 Bergisch Gladbach Tel.: +49 2207-9689-0

EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

3 Product

Samples of the following apparatus were submitted for testing:

Type of equipment : Inductive system

Trademark : Siemens

Type designation : 5WY7976

Hardware version : 5WY7976

Serial number : ---

Software release : ---

Power used : 13.50 VDC

Frequency used : 134.2 kHz

Generated or used frequencies : 4.00 MHz / 134.2 KHz

ITU emission class : 25K1 A1D

FCC ID : M3N5WY7976

4 Test schedule

Tests were carried out in accordance with the specifications detailed in chapter 7 "Summary" of this report.

Tests were carried out at:

- m. dudde hochfrequenz - technik, D-51429 Bergisch Gladbach

The test sample was received on:

- 2007-09-12

The tests were carried out in the following period of time:

- 2007-10-16

e-mail: manfred.dudde@t-online.de

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

5 Product and measurement documentation

For issuing this report the following product documentation was used and the following annexes were created:

Description:	Date:	Identifications:
External photographs of the Equipment Under Test (EUT)	2007-10-16	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2007-10-16	Annex no. 2
Occupied bandwidth plot	2007-10-16	Annex no. 3
Label sample	2007-03-02	Annex no. 4
Functional description	2007-03-02	Annex no. 5
Test setup photos	2007-03-02	Annex no. 6
Block diagram	2007-03-02	Annex no. 7
Schematics	2007-03-02	Annex no. 8
Operational description	2007-03-02	Annex no. 9

The above mentioned documentation will be filed at m. dudde hochfrequenz - technik for a period of 10 years following the issue of this test report.

6 Observations and comments

7 Summary

The product is intended for the use in the following areas of application: Radio- Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the frequency range 9 kHz to 40 GHz

The samples were tested according to the following specification:

47 CFR Part 15C – Intentional Radiators, ANSI C63.4 - 1992

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20

http://www.dudde.com

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

8 Conclusions

Samples of the apparatus were found to **CONFORM WITH** the specifications stated in chapter 7 "Summary" of this report.

In the opinion of m. dudde hochfrequenz - technik, the samples satisfied all applicable requirements relating to the network interface types specified in chapter 7 "Summary".

The results of the type tests as stated in this report are exclusively applicable to the product item as identified in this report. m. dudde hochfrequenz - technik does not accept any responsibility for the results stated in this report, with respect to the properties of product items not involved in these tests.

This report consists of a main module, modules with test results and annexes listed in chapter 5: "Product documentation". All pages have been numbered consecutively and bear the m. dudde hochfrequenz - technik logo, the report number and sub numbers.

The total number of pages in this report is **20.**

Tester:

Date : 2007-11-16

Name : Ralf Trepper

Signature : All Integer

Technical responsibility for area of testing:

Date : 2007-11-16

Name : Manfried Dudde

Signature : Man find Quelel

e-mail: manfred.dudde@t-online.de

Vers. no. 1.06

Page 9 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

9 Operation description

9.1 EUT details

Inductive System, Vehicle Immobilizer

9.2 EUT configuration

See Annex no. 5 (Functional description, User Manual)

9.3 EUT measurement description

The **5WY7976** was tested in a typical fashion. During primary emission tests there had been examined all orthogonal adjustments of the EUT. In the final measurement there was chosen the adjustment in which there had been established before the highest level.

Tel.: +49 2207-9689-0 Fax: +49 2207 9689-20 e-mail: manfred.dudde@t-online.de http://www.dudde.com

Page 10 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

10.1 Antenna Requirement

10.1.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31 (d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

10.1.2 Result

The equipment meets the requirements			no	n.a.
			•	
Further test results are attached	yes	no	page no:	

n.a x see page no. 19

m. dudde hochfrequenz-technik Rottland 5a D-51429 Bergisch Gladbach

 Tel.: +49 2207-9689-0
 Fax: +49 2207 9689-20

 e-mail: manfred.dudde@t-online.de
 http://www.dudde.com

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

10.2 Radiated emission

10.2.1 Regulation

Test Requirement: FCC CFR47, Part 15B Test Procedure: ANSI C63.4:1992

15.109(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurements distance (meters)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

- (c) In the emission tables above, the tighter limits applies at the band edges. Section 15.33 and 15.35 which specify the frequency range over which radiated emissions are to be measured and the detector functions and other measurement standards apply.
- (f) For a receiver which employs terminals for the connection of an external receiving antenna, the receiver shall be tested to demonstrate compliance with the provisions of this Section with an antenna connected to the antenna terminals unless the antenna conducted power is measured as specified in Section 15.111(a). If a permanently attached receiving antenna is used, the receiver shall be tested to demonstrate compliance with the provisions of this Section.

Test Requirement: FCC CFR47, Part 15C Test Procedure: ANSI C63.4:1992

Section 15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

(b) In the emission table above, the tighter limit applies at the band edges.

D-51429 Bergisch Gladbach Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted

emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions

shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

- (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

10.2.2 Test equipment

Type	Manufacturer/	Serial no.	Last calibration	Next calibration
	Model no.			
Receiver	Hewlett Packard	3528U00990	2006/03	2008/03
	Spectrum Analyzer			
(9 kHz –26.5 GHz)	8593E (171)			
Pre-amplifier	Hewlett Packard	1726A00705	2006/03	2008/03
(100kHz - 1.3GHz)	8447 E (166a)			
Magnetic antenna	Schwarzbeck		2004/04	2008/04
(9.0-30 MHz)	FMZB 1516 (23)			
Bilog antenna	CHASE	1517	2004/04	2008/04
(30-1000 MHz)	CBL611A (167)			
Horn antenna	Schwarzbeck	236	1998/01	2008/01
(0.86-8.5 GHz)	BBHA 9120 A (284)			

FCC ID: M3N5WY7976

Date of issue: 2007-11-16

10.2.3 Test procedures

The EUT and this peripheral (when additional equipment exist) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations. ANSI C63.4: 1992 Section 8 "Radiated Emissions Testing"

Radiated emissions test characteristics		
Frequency range	30 MHz - 4,000 MHz	
Test distance	10m, 3 m*	
Test instrumentation resolution bandwidth	9 kHz (20 kHz – 30 MHz)	
	120 kHz (30 MHz - 1,000 MHz)	
	1 MHz (1000 MHz - 12,000 MHz)	
Receive antenna height	1 m (20 kHz – 30 MHz)	
Receive antenna polarization	0° - 90° (20 kHz – 30 MHz)	
Receive antenna scan height	1 m - 4 m (30 MHz - 12,000 MHz)	
Receive antenna polarization	vertical/horizontal (30 MHz - 12,000 MHz)	

^{*} According to Section 15.31 (f)(1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

10.2.4 Calculation of field strength Section 15.209 below 30 MHz

The Receiver reading gives not directly the field strength result in (dBµV/m). The antenna factors of the loop antenna and cable losses must be added to find the correct result.

For frequencies below 30 MHz and for an test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40 dB/decade (inverse linear distance for field strength measurements).

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of an Pre-amplifier)

Receiver Level : Receiver reading without correction factors

: Loop Antenna factor + cable loss Correction Factor

 $FS = 40.7 - 40 = 0.7 \text{ [dB}\mu\text{V/m]}$

Level in μ V/m Common Antilogarithm (0.7/20) = 1.1

10.2.5 Calculation of field strength Section 15.209 above 30 MHz

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of an Pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of an Pre-amplifier)

Receiver Level : Receiver reading without correction factors

: Antenna factor + cable loss **Correction Factor**

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f)(1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com

FCC ID: M3N5WY7976

Date of issue: 2007-11-16

10.2.6 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of an Pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of an Pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB(1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m. The 35.91dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f)(1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

10.2.7 Calculation of Average Correction Factor

The average correction factor is computed by analyzing the "worst case" on time in any 100msec time period and using the formula: Corrections Factor + 20*Iog (worst case on time/100msec) Analysis of the remote transmitter worst case on time in any 100msec time period is an on time of 50msec, there for the correction factor is 20*Iog(50/100) = -6 dB. The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

Tel.: +49 2207-9689-0 Fax: +49 2207 9689-20 e-mail: manfred.dudde@t-online.de http://www.dudde.com

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

f (MHz)	Bandwidth (kHz),	Noted receiver	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Polarisation EUT /
	Type of detector	level dBµV	m	dB	factor dB	dBμV/m	dBμV/m	dBμV/m	antenna orientation
0.1200	QPK/0.2kHz	< 4.0	10	20.2	-59.1	-34.90	26.0 @ 300	80.90	V, H/0-360
0.5000	QPK/0.2kHz	< 4.0	10	20.2	-19.1	5.10	33.6 @ 30	28.5	V, H/0-360
1.5000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	24.1 @ 30	19.00	V, H/0-360
3.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360
5.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360
8.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360
10.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360
20.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360
30.0000	QPK/9kHz	< 4.0	10	20.2	-19.1	5.10	29.5 @ 30	24.4	V, H/0-360

Remark: *\ Noise level of the measuring instrument \leq 4.0dB μ V @ 10m distance (0.009 MHz -30 MHz) Remark: *Peak Limit according to Section 15.35 (b).

The equipment meets the requirements		yes	no	n.a.
Further test results are attached	yes	no	page no:	

4 dB

n.a x see page no. 19

Measurement uncertainty

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

(kHz)/Type of detector	Noted receiver level dBµV	Test distance m	Correction factor dB	Distance extrapol. factor dB	AV Correction factor	Level corrected dBµV/m	Limit	Margin dBµV/m	Polaris. EUT / antenna	Antenn height
of detector										cm
100, QPK	≤ 3.5	3	-2.60	0	0	0.90	40.00	39.10	H,V/H,V	100-400
100, QPK	≤ 3.5	3	-10.80	0	0	-7.30	40.00	47.30	H,V/H,V	100-400
100, QPK	≤3.5	3	-10.30	0	0	-6.80	43.50	50.30	H,V/H,V	100-400
100, QPK	≤3.5	3	8.50	0	0	12.00	43.50	31.50	H,V/H,V	100-400
1000, AV	≤ 4.5	3	3.80	0	0	8.30	54.00	45.70	H,V/H,V	100-400
1000, AV	≤ 10	3	8.00	0	0	18.00	54.00	36.00	H,V/H,V	100-40
1000, AV	≤ 10	3	8.40* ⁶	0	0	18.40	54.00	35.60	H,V/H,V	100-400
1000, AV	≤ 10	3	9.10* ⁶	0	0	19.40	54.00	34.60	H,V/H,V	100-40
1000, AV	≤ 14	3	12.9* ⁶ 0	0	0	26.90	54.00	27.10	H,V/H,V	100-40
1000, AV	≤ 14	3	14.80* ⁶	0	0	28.80	54.00	25.20	H,V/H,V	100-40
1000, AV	≤ 14	3	16.00* ⁶	0	0	30.00	54.00	24.00	H,V/H,V	100-40
1000, AV	≤ 14	3	18.25* ⁶	0	0	32.25	54.00	21.75	H,V/H,V	100-40
	100, QPK 100, QPK 100, QPK 100, QPK 1000, AV 1000, AV 1000, AV 1000, AV 1000, AV	$\begin{array}{c cccc} & dB\mu V \\ \hline 100, QPK & \leq 3.5 \\ \hline 1000, AV & \leq 4.5 \\ \hline 1000, AV & \leq 10 \\ \hline 1000, AV & \leq 10 \\ \hline 1000, AV & \leq 10 \\ \hline 1000, AV & \leq 14 \\ \hline 1000, AV & \leq 14 \\ \hline 1000, AV & \leq 14 \\ \hline \end{array}$	dBμV m 100 , QPK ≤ 3.5 3 100 , AV ≤ 4.5 3 1000 , AV ≤ 10 3 1000 , AV ≤ 14 3	dB μ VmdB100, QPK ≤ 3.5 3-2.60100, QPK ≤ 3.5 3-10.80100, QPK ≤ 3.5 3-10.30100, QPK ≤ 3.5 38.501000, AV ≤ 4.5 33.801000, AV ≤ 10 38.001000, AV ≤ 10 38.40*61000, AV ≤ 10 39.10*61000, AV ≤ 14 312.9*601000, AV ≤ 14 314.80*61000, AV ≤ 14 316.00*6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dBμV m dB dB dB dB μV/m dBμV/m dBμV/m dBμV/m 100, QPK ≤ 3.5 3 -2.60 0 0 0.90 40.00 39.10 100, QPK ≤ 3.5 3 -10.80 0 0 -7.30 40.00 47.30 100, QPK ≤ 3.5 3 -10.30 0 0 -6.80 43.50 50.30 100, QPK ≤ 3.5 3 8.50 0 0 12.00 43.50 31.50 1000, AV ≤ 4.5 3 3.80 0 0 8.30 54.00 45.70 1000, AV ≤ 10 3 8.00 0 0 18.00 54.00 36.00 1000, AV ≤ 10 3 8.40*6 0 0 18.40 54.00 35.60 1000, AV ≤ 10 3 9.10*6 0 0 26.90 54.00 27.10 1000, AV ≤ 14 3	dBμV m dB dB dB dBμV/m dBμV/m

* Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor noise level of the measuring instrument \le 3.5dB\(\mu\)V @ 3m distance (30 - 1,000 MHz)

Remark: $*^2$ noise floor noise level of the measuring instrument $\leq 4.5 \text{ dB}\mu\text{V}$ @ 3m distance (1,000 – 2,000 MHz)

Remark: *3 noise floor noise level of the measuring instrument $\leq 10 \text{ dB}\mu\text{V}$ @ 3m distance (2,000 – 5,500 MHz)

Remark: $*^4$ noise floor noise level of the measuring instrument ≤ 14 dB μ V @ 3m distance (5,500 – 14,500 MHz)

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: *6 for using a pre-amplifier in the range between 4.0 GHz and 18.0 GHz

The equipment meets the requirements	yes	no	n.a.	
Further test results are attached	yes	no	page no	•

n.a x see page no. 19

e-mail: manfred.dudde@t-online.de

http://www.dudde.com

Vers. no. 1.06

Date of issue: 2007-11-16

FCC ID: M3N5WY7976

INTENTIONAL RADIATOR SPURIOUS RADIATION (Section 15.209(a)) Polarisation Bandwidth Noted Test Distance Correction Level Limit Margin EUT receiver (MHz) (kHz), distance extrapol. corrected factor level Type factor antenna dB dBμV/m of detector m dB dBuV/m dBμV/m orientation $dB\mu V$ V / 0° 0.1342 OPK/0.2kHz 37.1 10 20.2 -59.1 -1.8 AV25.0 @ 300 26.8 0.2684 QPK/0.2kHz < 4.0 10 20.2 -59.1 < -34.9 AV19.0 @ 300 53.9 V, H/0-360° < -34.9 AV15.4 @ 300 50.3 0.4026 QPK/0.2kHz < 4.0 10 20.2 -59.1 V. H/0-360° QPK/9kHz 10 20.2 -19.1 < 5.1 AV33.0 @ 30 27.9 0.5368 < 4.0 V, H/0-360° QPK/9kHz. < 5.1 0.6710 < 4.0 20.2 -19.1 AV31.1 @ 30 26.0 10 V, H/0-360° QPK/9kHz 10 20.2 -19.1 < 5.1 AV29.5 @ 30 24.4 0.8052 < 4.0 V, H/0-360° < 5.1 0.9394 QPK/9kHz 20.2 AV28.1 @ 30 < 4.0 10 -19.1 V, H/0-360° 23.0 QPK/9kHz 20.2 -19.1 < 5.1 AV27.0 @ 30 1.0736 10 < 4.0 21.9 V, H/0-360° OPK/9kHz. 10 20.2 -19.1 < 5.1 AV25.9 @ 30 1.2078 < 4.0 V, H/0-360° 20.8

Remark: *\(^1\) noise floor noise level of the measuring instrument \(\leq 4.0dB\muV \) (@ 10m distance (0.009 - 30 MHz) noise level of the measuring instrument \(\leq 6.5dB\muV \) (@ 3m distance (30 - 1,000 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (1,000 - 2,000 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (@ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \(\leq 1.0dB\muV \) (% (% \leq 1.0dB\

-19.1

< 5.1

4 dB

AV25.0 @ 30

199

V. H/0-360°

20.2

The equipment meets the requirements	yes	ne	n.a.	
Further test results are attached	yes	no	page no	:

n.a x see page no. 19

QPK/9kHz

Measurement uncertainty

1.3420

< 4.0

10

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de Page 19 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976

Date of issue: 2007-11-16

11 Additional information to this test report

Remarks

not applicable, because EUT is directly battery powered

n.a.¹ not applicable, because antenna is part of the PCB n.a.²

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com

Page 20 of 20

Test report no. 07004436 EUT: **5WY7976**

FCC ID: M3N5WY7976 Date of issue: 2007-11-16

End of test report

e-mail: manfred.dudde@t-online.de