

RADIO TEST REPORT

No. 500209R1-3

EQUIPMENT UNDER TEST

Equipment:

S1500 TagMaster Reader

Type / model:

S1566/00

Manufacturer:

TagMaster AB

Tested by request of:

TagMaster AB

SUMMARY

The equipment complies with the requirements of the following standards:

FCC, Part 15, Subpart B (2004) and Subpart C (2004); RSS-210, Issue 6 (September 2005); RSS-Gen, Issue 1 (September 2005).

Industry Canada listed test facility No. IC 3481

Date of issue: October 14, 2005

Tested by:

Bayhanop

Vladimir Bazhanov

Approved by:

ho ohousen

Lars-Olov Johansson

This report may not be reproduced other than in full, except with the prior written approval by SEMKO.

CONTENTS

	Page
1. Client information	3
Equipment under test (EUT) 2.1 Identification of the EUT according to the manufacturer/client declarati 2.2 Additional software information about the EUT 2.3 Peripheral equipment	on 3 4 4
3. Test specifications	5 5 5
4. Test summary	6
5. Radiated spurious emissions	
Appendix I – Photos of the EUT	18

1. CLIENT INFORMATION

The EUT has been tested by request of

Company:

TagMaster AB

ELECTRUM 410 SE-164 40 Kista

Sweden

Name of contact:

Mr. Mikael Willgert

2. EQUIPMENT UNDER TEST (EUT)

2.1 Identification of the EUT according to the manufacturer/client declaration

Equipment:

S1500 TagMaster Reader

Type/Model:

\$1566/00

Brand name:

TagMaster

Serial number:

03 50 18341

Manufacturer:

TagMaster AB

Rating/Supplying voltage:

12 V / 24 V DC

Rating RF output power:

10 mW and 500 mW e.i.r.p.

Antenna gain:

7 dBi

External antenna connector:

No

Operating temperature range:

-20 to +60 °C

Frequency range:

2400 - 2483,5 MHz and 2446 - 2454 MHz

Number of channels:

401

Channel separation:

200 kHz

Modulation characteristics:

FHSS

Stand by mode supported:

No

2.2 Additional software information about the EUT

During the tests the EUT supported the following software:

Software

Version

Comment

Read Range

0.9.7

Frequency and output power control

2.3 Peripheral equipment

Peripheral equipment is defined as equipment needed for correct operation of the EUT during the tests, but not included as a part of the testing and evaluation of the EUT.

Equipment

Laptop PC

Manufacturer / Type

Serial number

AC/DC adapter

FW7207/24

Toshiba PP348E-4PU86-SE

Z0108561G

2.4 Modifications during the test

No modifications have been made during the tests.

3. TEST SPECIFICATIONS

3.1 Standards

FCC 47 CFR part 15 (2004) Subpart B – Unintentional radiators FCC 47 CFR part 15 (2004) Subpart C – Intentional Radiators; §15.247 Operation within the bands 902-928 MHz, 2400 – 2483.5 MHz and 5725 – 5850 MHz.

Measurements methods according to ANSI C63.4-2003

RSS-210, Issue 6 (September 2005): Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment.

RSS-Gen, Issue 1 (September 2005): General Requirements and Information for the Certification of Radiocommunication Equipment.

3.2 Additions, deviations and exclusions from standards

Just radiated spurious emissions test has been performed for 500 mW output power level.

No other additions, deviations or exclusions have been made from standards.

3.3 Test set-up

Measurement set-up for the out-of-band spurious emissions test is described in corresponding section.

3.4 Operating environment

If not additionally specified, the tests were performed under the following environmental conditions:

Air temperature:

21 - 22 °C

Relative humidity:

23 - 30 %

4. TEST SUMMARY

The results in this report apply only to the sample tested.

FCC reference	Industry Canada reference	Test	Result	Note
15.247(b)	A2.9(1)	Peak output power	NT	1)
15.247(a)	A8.1(1)	20 dB Bandwidth	NT	1)
15.247(a)	A8.1(2)	Carrier frequency separation	NT	1)
15.247(a)	A8.1(4)	Number of hopping frequencies (channels)	NT	1)
15.247(a)	A8.1(4)	Time of occupancy (dwell time)	NT	1)
15.247	A8.1	Band edge compliance	NT	1)
15.247(d)	2.7, A2.9(1), A8.5	Out of band spurious emissions, radiated	Pass	1), 3)
15.247(d)	2.7, A8.5	Out of band spurious emissions, conducted	NA	1)
15B	6 (a)(Table1)	Out of band spurious emissions, radiated	NA	2)
15B	7.2.2 (Table 2)	Conducted emission at AC port	NT	2)

NT = Not Tested NA = Not Applicable

Notes:

- 1). Industry Canada reference: RSS-210, Issue 6 (September 2005)
- 2). Industry Canada reference: RSS-Gen, Issue 1 (September 2005)
- 3). The measured result is below the upper limit, but by a margin less than half of the uncertainty interval; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance is more probable than non-compliance.

S113 04-07 Nockeby Tr. 238824/Mc

5. RADIATED SPURIOUS EMISSIONS

5.1 Measurement uncertainty

Radiated disturbance electric field intensity, 30-1000 MHz: $\pm 4,6$ dB Radiated disturbance electric field intensity, 1000-18000 MHz: $\pm 6,0$ dB

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997. The measurement uncertainty is given with a confidence of 95%.

5.2 Test equipment

Equipment	Manufacturer	Type	SEMKO No.
Test site: Semi-anechoic shield	30300		
Software:	Rohde & Schwarz	ES-K1, V1.60	
Measurement receiver:	Rohde & Schwarz	ESAI	2973/2974
Antenna amplifier: Antenna, bilog:	SEMKO Chase	CBL6111A	7992/7993 8578
Test site: Bluetooth anechoic s	12285		
Software: Signal analyser:	Rohde & Schwarz Rohde & Schwarz	ES-K1, V1.70 FSIQ 40	40023
Preamplifier:	MITEQ	AFS6/AFS44	12335
Antennas: Double Ridge Guide Horn: Horn antenna: Horn antenna:	EMCO EMCO EMCO	3115 3160-08 3160-09	4936 30099 30101
High pass filter Band rejection filter Transformer	K & L K & L Tufvassons	4410-X4500/18000-0 6N45-2450/T 100-0/0 AFM-1500	5133 12389 30317

5.3 Measurement set-up

Test site: Semi-anechoic shielded chamber (30 – 1000 MHz)

The radiated disturbance electric field intensity was measured in a semi-anechoic chamber at a distance of 10 m and the EUT was placed on a non-metallic table, 0,8 m above the reference ground plane. The specified test mode was enabled. Test set-up photos are given below.

An overview sweep with peak detection of the electric field intensity was performed with the measurement receiver in max-hold and with the antenna placed 1,5 m, 2,5 m and 3,5 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with quasi-peak detector were carried out.

The EUT was supplied with 120 V AC (60 Hz) during the test.

Test set-up photos:

Test site: Bluetooth anechoic shielded chamber (1 – 26 GHz)

In the Bluetooth anechoic chamber the EUT was placed on a non-metallic table, 1,4 m above the floor. The radiated disturbance electric field intensity was measured at a distance of 3 m. The specified test mode was enabled.

An overview sweep with peak detection of the electric field intensity was performed with the spectrum analyser in max-hold and with the antenna placed 1,4 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with peak and average detectors were carried out.

The EUT was supplied by 120 V AC (60 Hz) during the test.

S113 04-07 Nockeby Tr. 238824/Mc

Test set-up photo:

5.4 Test protocol

Semi-anechoic shielded chamber

Date of test: January 5, 2005

30 - 1000 MHz, max peak at a distance of 10 m on the lower TX channel

30 - 1000 MHz, max peak at a distance of 10 m on the upper TX channel

Bluetooth anechoic shielded chamber

Date of test: June 7, 2005

1000 – 4500 MHz, max peak at a distance of 3 m on the lower TX channel. Carrier is attenuated by 20 dB and by band rejection filter K&L 6N45-2450/T 100-0/0

4000 – 13000 MHz, max peak at a distance of 3 m on the lower TX channel. Emissions below 4000 MHz are attenuated by high-pass filter K&L 4410-X4500/18000-0

13 - 18 GHz, max peak at a distance of 3 m on the lower TX channel

18 - 26 GHz, max peak at a distance of 3 m on the lower TX channel

1000 – 4500 MHz, max peak at a distance of 3 m on the middle TX channel. Carrier is attenuated by 20 dB and by band rejection filter K&L 6N45-2450/T 100-0/0

4000 – 13000 MHz, max peak at a distance of 3 m on the middle TX channel. Emissions below 4000 MHz are attenuated by high-pass filter K&L 4410-X4500/18000-0

13 – 18 GHz, max peak at a distance of 3 m on the middle TX channel

18 - 26 GHz, max peak at a distance of 3 m on the middle TX channel

1000 – 4500 MHz, max peak at a distance of 3 m on the upper TX channel. Carrier is attenuated by 20 dB and by band rejection filter K&L 6N45-2450/T 100-0/0

4000-13000 MHz, max peak at a distance of 3 m on the upper TX channel. Emissions below 4000 MHz are attenuated by high-pass filter K&L 4410-X4500/18000-0

13 - 18 GHz, max peak at a distance of 3 m on the upper TX channel

18 - 26 GHz, max peak at a distance of 3 m on the upper TX channel

Data summary

Field strength of spurious emissions						
Frequency	RBW	Measured Limit		Note		
		lev				
		Peak	QP/AV	Peak	QP/AV	
[MHz]	[kHz]	[dB(μV/m)]	$[dB(\mu V/m)]$	[dB(μV/m)]	_[dB(μV/m)]	
30 – 88	120	< 13			29,5	10 m distance
88 – 216	120	< 10	-		33	Noise floor
216 – 960	120	< 28	-	-	35,6	Noise floor
960 – 1000	120	< 28	1		43,5	Noise floor
4804	1000	55	52 *	74	54	3 m distance
4884	1000	52	48	74	54	
4964	1000	49	-	74	54	"
7206	1000	51		74	54	"
7326	1000	53	44	74	54	ii .
7446	1000	55	50	74	54	(f
9608	1000	55	43	74	54	и
9768	1000	55	46	74	54	ш
9928	1000	57	51	74	54	tt
12010	1000	55	43	74	54	ŧŧ
12210	1000	55	42	74	54	ct .
12410	1000	54	42	74	54	(f
13000 – 18000	1000	< 48	_	74	54	Noise floor
18000 – 26000	1000	< 53	_	74	54	Noise floor

^{*} See Note 3) in Section 4, Test Summary.

The limit at 10 m test distance was calculated using an inverse linear extrapolation factor 20 dB/decade.

Example calculation:

Measured level [dB μ V/m] = Analyser reading [dB μ V] + cable loss [dB] – preamplifier gain [dB] + antenna factor [1/m]

APPENDIX I - PHOTOS OF THE EUT

General view

Back side

