Section 7 - Energy Distribution and Control

7. General Description

The energy distribution circuits on the transmitter can be configured on the following possibilities:

- $208 \mathrm{~V}_{\mathrm{AC}}-220 \mathrm{~V}_{\mathrm{AC}}-240 \mathrm{~V}_{\mathrm{AC}}$ mono-phase.
- $208 \mathrm{~V}_{\mathrm{AC}}-220 \mathrm{~V}_{\mathrm{AC}}-240 \mathrm{~V}_{\mathrm{AC}}$ bi-phase.
- $208 \mathrm{~V}_{\mathrm{AC}}-220 \mathrm{~V}_{\mathrm{AC}}-240 \mathrm{~V}_{\mathrm{AC}}$ three-phase.
- $360 \mathrm{~V}_{\mathrm{AC}}$ three-phase.

Fig.7.1: Energy Distribution - Bipolar Main Breaker on left, manual starter on the center and module 4147 - battery charger.

In all versions above, the NEUTRAL wire is present, however not always connected and so no need to integrate it within the grounding system of the station. It is however MANDATORY to connect the neutral cable on the 208 Vac mono-phase, and 360 Vac three-phase.

WARNING: Do not operate without the GROUND connection. The absence of grounding is risky for personnel SAFE, equipment reliability besides jeopardize the quality of the DTV transmission.

7.1. Energy AC Mains Connection

Fig.7.2: Typical 3 wires bi-phase AC energy source connection diagram

Fig. 7.3: Bi-phases type energy ADVANCE TV LINE internal up-front connection diagram, no isolation powertransformer required.

