| Pulse On Time (T <sub>on</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (µs)                             | (µs)                                              |                | Factor (dB)           |
| 248.536                          | 357.188                                           | 69.581         | 1.6                   |

| Spect     | um       |           |            |           |               |           |               |            |              | B           |
|-----------|----------|-----------|------------|-----------|---------------|-----------|---------------|------------|--------------|-------------|
| Ref Le    | vel      | 55.00 dBr | n Offset 2 | 5.80 dB 🖷 | RBW 28 M      | Hz        |               |            |              | `           |
| Att       |          | 40 d      | B 🖶 SWT    | 490 µs    | VBW 28 M      | Hz        |               |            |              |             |
| SGL       |          |           |            |           |               |           |               |            |              |             |
| 1Pk Cli   | W        |           |            |           |               |           |               |            |              |             |
| 50 dBm-   | _        |           |            |           |               |           | M1[1]         |            |              | 14.71 dB    |
|           |          |           | I I        |           |               |           |               |            |              | 22.029 µ    |
| 40 dBm    | +        |           | +          |           |               |           | D2[1]         |            |              | 3.52 0      |
|           |          |           | I I        |           |               |           | 1             | 1          | 1            | 210.000     |
| 30 dBm-   | -        |           |            |           |               |           | -             |            |              | -           |
| 20 dBm    |          | ر میلی    | man        | and dist. | an an and     | 1.03      |               |            | a loud a the | 4.1.1.1     |
| 20 0011   | <i>.</i> | 14 4 B 4  | adda Albaa | sheat he  | be Marth 1. H | The state |               |            | en un rand   | and the sea |
| 10 dBm·   | -        |           |            |           |               |           | _             | _          |              |             |
|           |          |           |            |           |               |           |               | 1.1        |              |             |
| 0 d3m-    | +        |           | <u> </u>   |           |               |           | of sub-strain | dur mer un |              | -           |
| 10 db-    |          |           |            |           |               |           |               |            |              |             |
| -10 GBM   | -        |           |            |           |               |           |               |            |              |             |
| -20 dBm   | _        |           |            |           |               |           |               |            |              |             |
|           |          |           |            |           |               |           |               |            |              |             |
| -30 dBm   | +        |           | +          |           |               |           |               |            |              |             |
|           |          |           |            |           |               |           |               |            |              |             |
| -40 dBm   | +        |           |            |           |               |           |               |            |              |             |
| CF 5.26   | 6 GHz    |           |            |           | 691           | pts       |               |            |              | 49.0 µs/    |
| Marker    |          |           |            |           |               |           |               |            |              |             |
| Type      | Ref      | Trc       | X-value    |           | Y-value       | 1         | unction       | Fu         | unction Resu | lt          |
| M1        |          | 1         | 22.02      | 9 µs      | 14.71 dB      | m         |               |            |              |             |
| D2        | M1       | 1         | 248.53     | 16 µs     | 3.52 0        | IB .      |               |            |              |             |
| 03        | ml       | 1         | 357.18     | io ha i   | 2.12 0        | 1D        |               |            |              |             |
|           |          | Л         |            |           |               |           | Ready         |            | 4/0          | 240,000     |
|           |          |           |            |           |               |           |               |            |              |             |
| 1909763   |          |           |            |           |               |           |               |            |              |             |
| ate: 24.F | EB.20    | 20 07:54: | 37         |           |               |           |               |            |              |             |
|           |          |           |            |           |               |           |               |            |              |             |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 180.0                            | 288.696                                           | 62.349         | 2.1                   |

| Spectrum                   |                       |                   | Ē                                                                                                               |
|----------------------------|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 55.00 dBm Offse  | t 26.80 dB 😑 RBW 28 M | 1Hz               |                                                                                                                 |
| Att 40 d8 = SWT            | 350 µs VBW 28 M       | AH2               |                                                                                                                 |
| SGL                        |                       |                   |                                                                                                                 |
| 1Pk Clrw                   |                       |                   |                                                                                                                 |
| 50 d8m                     |                       | M1[1]             | 15.18 dBm                                                                                                       |
|                            |                       |                   | 49.783 µs                                                                                                       |
| 40 dBm                     |                       | D2[1]             | 4.53 dB                                                                                                         |
|                            |                       |                   | 180.000 µs                                                                                                      |
| 30 dBm-                    |                       |                   |                                                                                                                 |
| 20 d9m                     | a data data battar    |                   |                                                                                                                 |
| 20 deni                    | a haadan handah       | Menan Armade Mart | D3                                                                                                              |
| 10 dBm                     |                       |                   | Ĩ                                                                                                               |
| a hard of                  |                       |                   | Lill a liter market street                                                                                      |
| 101-23-142- LAKAN          | +                     | 647,440           | ender and the second |
|                            |                       |                   |                                                                                                                 |
| -10 dBm-                   |                       |                   |                                                                                                                 |
| -20 d8m                    |                       |                   |                                                                                                                 |
| 20 0011                    |                       |                   |                                                                                                                 |
| -30 dBm                    |                       |                   |                                                                                                                 |
|                            |                       |                   |                                                                                                                 |
| -40 dBm                    |                       |                   |                                                                                                                 |
| CF 5.26 GHz                | 691                   | pts               | 35.0 µs/                                                                                                        |
| Marker                     |                       |                   |                                                                                                                 |
| Type Ref Trc X-val         | ue Y-value            | Function          | Function Result                                                                                                 |
| M1 1 4                     | 9.783 µs 15.18 d      | im                |                                                                                                                 |
| D2 M1 1                    | 180.0 µs 4.53         | dB                |                                                                                                                 |
| D3 M1 1 28                 | 8.696 µs   0.64       | dB                |                                                                                                                 |
|                            |                       | Ready             | 4/0                                                                                                             |
|                            |                       |                   | 100                                                                                                             |
| 11909763                   |                       |                   |                                                                                                                 |
| Date: 24.FEB.2020 08:00:00 |                       |                   |                                                                                                                 |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 163.478                          | 245.435                                           | 66.607         | 1.8                   |





| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 680.87                           | 818.55                                            | 83.18          | 0.8                   |

| Spectrum           | -<br>J      |                 |                |              |                  |                    | Q              | ₫  |
|--------------------|-------------|-----------------|----------------|--------------|------------------|--------------------|----------------|----|
| Ref Level          | 55.00 dBm   | Offset          | 26.80 dB (     | RBW 28 MH    | z                |                    | ,              | _  |
| 🛛 Att              | 40 d8       | e swt           | 1 ms           | VBW 28 MH    | z                |                    |                |    |
| SGL                |             |                 |                |              |                  |                    |                | _  |
| 1Pk Clrw           |             |                 |                |              |                  |                    |                |    |
| 50 dBm             |             |                 |                |              | M1[1]            |                    | 17.06 dB       | lm |
|                    |             |                 |                |              | 00[1]            |                    | 125.51         | μs |
| 40 dBm             |             | <u> </u>        |                | + +          | 02[1]            |                    | 600.07         | 05 |
|                    |             |                 |                |              | 1                | 1                  |                | "  |
| 30 dBm             |             |                 |                |              |                  |                    |                | -  |
| 20 dBm-            |             |                 |                |              |                  |                    | 12 12          | _  |
| 20 00.00           | Without     | - Carlow Carlow | and the second | deserve also | man and a second | - Ar Alexandra (Ar |                | m  |
| 10 dBm-            | -           | <u> </u>        |                |              |                  |                    |                | _  |
| والاستعادة والم    | J           |                 |                |              |                  |                    | and barrens    |    |
| 0 dam              | *           |                 |                |              |                  |                    | Shirt Har Prov | -  |
| -10 d8m            |             |                 |                |              |                  |                    |                | _  |
| -10 00111          |             |                 |                |              |                  |                    |                |    |
| -20 dBm-           |             | <u> </u>        |                | + +          |                  | _                  |                | -  |
|                    |             |                 |                | 1 I          |                  |                    |                |    |
| -30 dBm-           |             |                 |                |              |                  |                    |                | -  |
| -40 dam            |             |                 |                |              |                  |                    |                |    |
| -40 00111          |             |                 |                |              |                  |                    |                |    |
| CF 5.26 GH         | z           |                 |                | 691 p        | ts               |                    | 100.0 µs,      | 4  |
| Marker<br>Tuno Det | Teol        | V-unlui         |                | Y-uslue.     | Eurotian         | L For              | action Docult  |    |
| M1                 | 1           | 12              | 5.51 us        | 17.06 dBm    | Function         | Fu                 | iction result  | -  |
| D2 M               | 1 1         | 680             | 0.87 µs        | 1.54 dB      |                  |                    |                |    |
| D3 M               | 1 1         | 818             | 8.55 µs        | 0.48 dB      |                  |                    |                |    |
|                    | Y           |                 |                |              | Ready            |                    | 4/0 24002000   |    |
|                    |             |                 |                |              |                  |                    |                | 13 |
| 11909763           |             |                 |                |              |                  |                    |                |    |
| Date: 24.FEB.2     | 020 08:26:1 | 6               |                |              |                  |                    |                |    |
|                    |             |                 |                |              |                  |                    |                |    |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 255.362                          | 436.232                                           | 58.538         | 2.3                   |

| Spectrum         | ٦          |                |            |                     |            |       |            |          |            | q           | Ð        |
|------------------|------------|----------------|------------|---------------------|------------|-------|------------|----------|------------|-------------|----------|
| Ref Level 55     | .00 dBm    | Offset         | 26.80 dB   | RBW 281             | ٩Hz        |       |            |          |            | `           | -        |
| Att              | 40 d8      | swt            | 600 µs     | VBW 281             | MHz        |       |            |          |            |             |          |
| SGL              |            |                |            |                     |            |       |            |          |            |             |          |
| 91Pk Clrw        |            |                |            |                     |            |       |            |          |            |             |          |
| S0.d8m           |            |                |            |                     |            | M     | [1]        |          |            | 15.98 dB    | m        |
| 50 GDIII         |            |                |            |                     |            |       |            |          |            | 49.855      | μ        |
| 40 dBm           |            |                |            |                     | -          | D2    | [1]        |          |            | 2.40 (      | de       |
|                  |            |                |            |                     |            |       |            |          | 1          | 255.362     | μ        |
| 30 dBm           |            |                |            |                     | +          |       |            |          | +          |             | -        |
|                  |            |                |            |                     |            |       |            |          |            |             |          |
| 20 dBm           | spileten a | the should app | -11-1-1100 | an all and a second | <b>K</b> - | -     |            | -        | - Santa    | Allentering | 14       |
| 10 dbm           |            |                |            |                     |            |       |            |          | I          |             |          |
| TO OBIII         |            |                |            |                     | Π.         |       |            |          |            |             |          |
| 6 the second     |            |                |            |                     | 1          | under | elenal and | and some | AN .       | _           | _        |
|                  |            |                |            |                     |            |       |            |          |            |             |          |
| -10 dBm          |            |                |            |                     | +          |       |            |          | +          |             | -        |
|                  |            |                |            |                     |            |       |            |          |            |             |          |
| -20 dBm          |            |                |            |                     | $\vdash$   |       |            | -        |            |             | -        |
| andb arc         |            |                |            |                     |            |       |            |          |            |             |          |
| -30 08/11        |            |                |            |                     | Г          |       |            |          |            |             |          |
| -40 d8m          |            |                |            |                     | 1          |       |            | _        |            | _           | _        |
|                  |            |                |            | 601                 | L.         |       |            |          |            | 60.0.00     | -        |
| CF 5.26 GHZ      |            |                |            | 691                 | t pts      |       |            |          |            | 60.0 µs,    | <u>/</u> |
| Tyne   Ref   1   | Tec        | X-value        |            | Y-value             | 1          | Eunct | ion        | Eu       | nction Res | ult         | 7        |
| M1               | 1          | 49.            | 855 us     | 15.98 d             | Bm         | rance | 1011       | Fu       | incool Res | unt         | -        |
| D2 M1            | 1          | 255.           | 362 µs     | 2.40                | dB         |       |            |          |            |             | -        |
| D3 M1            | 1          | 436.           | 232 µs     | 1.48                | dB         |       |            |          |            |             |          |
| 1                |            |                |            |                     | 1          |       | and a l    |          | 449        | 24.02.2028  | m        |
|                  |            |                |            |                     |            | 1     |            |          |            |             |          |
| 11909763         |            |                |            |                     |            |       |            |          |            |             |          |
| ate: 24 FEB 2020 | 08:29:5    | R              |            |                     |            |       |            |          |            |             |          |
| a b-b-2020       | *******    | *              |            |                     |            |       |            |          |            |             |          |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (Τ <sub>ΟΝ</sub> +Τ <sub>ΟFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (μs)                                              |                | Factor (dB)           |
| 203.768                          | 279.275                                           | 72.963         | 1.4                   |

| Spectrum        |            |            |            |                 |         |                 |              |              | ₫          |
|-----------------|------------|------------|------------|-----------------|---------|-----------------|--------------|--------------|------------|
| Ref Level       | 55.00 dBm  | Offset     | 26.80 dB 😑 | RBW 28 M        | Hz      |                 |              |              |            |
| Att             | 40 dB      | SWT        | 400 µs     | <b>VBW</b> 28 M | Hz      |                 |              |              |            |
| SGL             |            |            |            |                 |         |                 |              |              |            |
| 1Pk Clrw        |            |            |            |                 |         |                 |              |              |            |
| S0 dBm          |            |            |            |                 | M       | 1[1]            |              |              | 15.45 dBm  |
| 50 GDIII        |            |            |            |                 |         |                 |              |              | 37.681 µs  |
| 40 dBm          |            |            |            |                 | D       | 2[1]            |              |              | 0.12 dB    |
|                 |            |            |            |                 |         |                 |              |              | 203.768 µs |
| 30 dBm          |            |            |            |                 |         |                 |              |              |            |
|                 |            |            |            |                 |         |                 |              |              |            |
| 20 dBm          | Million    | hala/444/4 | Hou hadd   | <b>Market</b>   | Withhat | 2               | D            | and the work | Malignan   |
| to day          |            |            |            |                 |         | t i             | 1 1          | 1            | [ ••• ·    |
| 10 dBm-         |            |            |            |                 |         |                 |              |              |            |
| 10 March 10     |            |            |            |                 |         | La philader Mil | Jone March 1 |              |            |
|                 |            |            |            |                 |         |                 |              |              |            |
| -10 dBm         |            |            |            |                 |         |                 |              |              |            |
|                 |            |            |            |                 |         |                 |              |              |            |
| -20 dBm         |            |            |            |                 |         |                 |              |              |            |
|                 |            |            |            |                 |         |                 |              |              |            |
| -30 dBm-        |            |            |            |                 |         |                 |              |              |            |
| dem             |            |            |            |                 |         |                 |              |              |            |
|                 |            |            |            |                 |         |                 |              |              |            |
| CF 5.26 GHz     |            |            |            | 691             | pts     |                 |              |              | 40.0 µs/   |
| Marker          | - 1        |            |            |                 | 1 -     |                 | -            |              |            |
| Type Ref        | Trc        | X-value    | 601 us     | Y-value         | Func    | tion            | Fun          | ction Result | <u> </u>   |
| D2 M1           | 1          | 203        | 748 us     | 15.95 08        | m<br>iB |                 |              |              |            |
| D3 M1           | 1          | 203.       | 275 us     | 0.12 0          | iB      |                 |              |              |            |
|                 | Y          |            |            |                 | _       |                 |              | 4.40         |            |
| L               |            |            |            |                 |         | CONST.          |              | eyes         |            |
| 11000782        |            |            |            |                 |         |                 |              |              |            |
| 11000100        |            |            |            |                 |         |                 |              |              |            |
| Date: 24.FEB.20 | 20 08:31:5 | 6          |            |                 |         |                 |              |              |            |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>off</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 152.029                          | 233.623                                           | 65.075         | 1.9                   |

| Spectrum                 |                                |             |          |                       | E          |
|--------------------------|--------------------------------|-------------|----------|-----------------------|------------|
| Ref Level 55.00 de       | 3m Offset 26.80 dB             | RBW 28 MHz  |          |                       |            |
| Att 40                   | d8 🖶 SWT 300 µs                | VBW 28 MHz  |          |                       |            |
| SGL                      |                                |             |          |                       |            |
| 1Pk Clrw                 |                                |             |          |                       |            |
| S0.dBm                   |                                |             | M1[1]    |                       | 15.46 dBm  |
| 00 0011                  |                                |             |          |                       | 31.594 µs  |
| 40 dBm                   |                                |             | D2[1]    |                       | 4.40 dB    |
|                          |                                |             |          | 1 1                   | 152.029 µs |
| 30 dBm                   |                                |             |          |                       |            |
|                          |                                |             | 02       |                       |            |
| 20 dBm                   | an and the state of the second | May Million | 1944 WY  |                       | 03         |
| 10 dbm                   |                                |             |          |                       | f          |
| 10 0800                  |                                |             |          |                       |            |
| O'USHILL W               |                                |             | ليرهموا  | الصرفيك بمنه ليتأخروه | 4.14       |
|                          |                                |             |          |                       |            |
| -10 dBm                  |                                |             |          |                       | _          |
|                          |                                |             |          |                       |            |
| -20 dBm                  |                                |             |          |                       |            |
| on dam                   |                                |             |          |                       |            |
| -30 GBm                  |                                |             |          |                       |            |
| -40 d8m                  |                                |             |          |                       |            |
| 05 5 06 045              |                                | 601 mtc     |          |                       | 20.0.05/   |
| Nasker                   |                                | 041 brs     |          |                       | 30.0 µ\$7  |
| Tune Ref Tro             | V-value                        | Y-yaluo     | Eunction | Eunction              | Pocult     |
| M1 1                     | 31.594 us                      | 15.46 dBm   | Function | Function              | Nesun      |
| D2 M1 1                  | 152.029 µs                     | 4.40 dB     |          |                       |            |
| D3 M1 1                  | 233.623 µs                     | 0.39 dB     |          |                       |            |
| Υ Υ                      |                                |             | Develop  | 449                   | 24.02.2126 |
|                          |                                |             | j.       |                       |            |
| 11909763                 |                                |             |          |                       |            |
| Date: 24 FEB 2020, 08:33 | 14                             |             |          |                       |            |
| Dare. 24.7 CO.2020 00.00 |                                |             |          |                       |            |



| Pulse On Time (T <sub>on</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>off</sub> ) | e Period (T <sub>ON</sub> +T <sub>OFF</sub> ) |     |
|----------------------------------|---------------------------------------------------|-----------------------------------------------|-----|
| (µs)                             | (µs)                                              | (μs) Duty Cycle (%)                           |     |
| 116.377                          | 215.797                                           | 53.929                                        | 2.7 |

| Spectrum                 |                               |            |                 |                          | ₫            |
|--------------------------|-------------------------------|------------|-----------------|--------------------------|--------------|
| Ref Level 55.00 de       | m Offset 26.80 dB             | RBW 28 MHz |                 |                          |              |
| Att 40                   | d8 🖶 SWT 300 µs               | VBW 28 MHz |                 |                          |              |
| SGL                      |                               |            |                 |                          |              |
| 1Pk Clrw                 |                               |            |                 |                          |              |
| 50 dBm                   |                               |            | M1[1]           |                          | 14.89 dBm    |
| 50 dBm                   |                               |            |                 |                          | 32.464 µs    |
| 40 dBm                   |                               |            | D2[1]           |                          | 2.07 dB      |
| TO GOIN                  |                               |            |                 |                          | 116.377 µs   |
| 30 dBm-                  |                               | +          |                 |                          |              |
|                          |                               |            |                 |                          |              |
| 20 dBm 11                | A way the part of the parties | Margaret . |                 | 02                       | Bud and Hall |
|                          | I al add to the               |            |                 | 2                        | diama an     |
| 10 dBm-                  |                               |            |                 |                          |              |
| 4 stable desce           |                               | 1.1        | alout a day     | RINA A REAL PROPERTY AND |              |
| ip/dawi-e                |                               |            | and de la de la | A Longerthe Party        |              |
| 10 dBm                   |                               |            |                 |                          |              |
| -10 0500                 |                               |            |                 |                          |              |
| -20 dBm                  |                               |            |                 |                          |              |
|                          |                               |            |                 |                          |              |
| -30 dBm                  |                               |            |                 |                          |              |
|                          |                               |            |                 |                          |              |
| -40 dBm                  | +                             | + +        |                 |                          |              |
| CF 5.26 GHz              |                               | 691 pts    |                 |                          | 30.0 us/     |
| Marker                   |                               |            |                 |                          |              |
| Type   Ref   Trc         | X-value                       | Y-value    | Function        | Function Res             | ult l        |
| M1 1                     | 32.464 µs                     | 14.89 d8m  |                 |                          |              |
| D2 M1 1                  | 116.377 µs                    | 2.07 dB    |                 |                          |              |
| D3 M1 1                  | 215.797 µs                    | 0.22 dB    |                 |                          |              |
| n n                      |                               |            | Ready           | 449                      | 24.02.2026   |
|                          |                               |            | j.              |                          |              |
| 11909763                 |                               |            |                 |                          |              |
| Date: 24 EED 2020, 09-26 | -99                           |            |                 |                          |              |
| Dele. 24.FEB.2020 08.33  |                               |            |                 |                          |              |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>off</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 108.043                          | 179.493                                           | 60.193         | 2.2                   |

| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The second secon |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 55.00 dBm Offset 26.80 dB  RBW 28 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Att 40 dB e SWT 250 µs VBW 28 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e 1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50 dBm M1[1] 15.11 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40 dBm D2[1] 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 108.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a particular the strange of the second s                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| called a state of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 5.26 GHz 691 pts 25.0 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type Ref Trc X-value Y-value Function Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1 1 26.304 µs 15.11 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D2 M1 1 108.043 µs 0.33 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U3  M1  1  179.493 µ\$   0.47 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ready AMA 24.82.2029 estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11909763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) | Period (T <sub>ON</sub> +T <sub>OFF</sub> ) |     |
|----------------------------------|---------------------------------------------------|---------------------------------------------|-----|
| (μs)                             | (µs)                                              | (μs) Duty Cycle (%)                         |     |
| 187.174                          | 314.275                                           | 59.557                                      | 2.3 |

| Spectrum                  |                                                                                                                |                 |          |                             | Ē          |
|---------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|------------|
| Ref Level 55.00 dBn       | Offset 26.80 dB                                                                                                | RBW 28 MHz      |          |                             |            |
| Att 40 d8                 | 8 🖶 SWT 350 µs                                                                                                 | VBW 28 MHz      |          |                             |            |
| SGL                       |                                                                                                                |                 |          |                             |            |
| 1Pk Clrw                  |                                                                                                                |                 |          |                             |            |
| 50 dBm-                   |                                                                                                                |                 | M1[1]    |                             | 13.55 dBm  |
|                           |                                                                                                                |                 | D2[1]    |                             | 0.100 µS   |
| 40 dBm                    |                                                                                                                | + +             | 02[1]    |                             | 187.174 us |
| 30 dBm-                   |                                                                                                                |                 |          |                             |            |
|                           |                                                                                                                |                 |          |                             |            |
| 20.dBm                    | بعرابية المرابع                                                                                                | La La La La     | .02      |                             | an dela    |
| Kuth March Marson         | and all all and a second s | anno la annarla | 12       |                             | 3 ray M    |
| 10 dBm                    |                                                                                                                |                 |          |                             |            |
| d d8m                     |                                                                                                                |                 | - bound  | بمحمها فموسية الطبيط الدقاء | Andreal    |
|                           |                                                                                                                |                 |          |                             |            |
| -10 dBm-                  |                                                                                                                | +               |          |                             | _          |
|                           |                                                                                                                |                 |          |                             |            |
| -20 dBm-                  |                                                                                                                |                 |          |                             |            |
| -30 d8m                   |                                                                                                                |                 |          |                             |            |
|                           |                                                                                                                |                 |          |                             |            |
| -40 dBm-                  |                                                                                                                |                 |          |                             | _          |
| CF 5.27 GHz               |                                                                                                                | 691 pts         |          |                             | 35.0 µs/   |
| Marker                    |                                                                                                                |                 |          |                             |            |
| Type Ref Trc              | X-value                                                                                                        | Y-value         | Function | Function R                  | esult      |
| M1 1                      | 8.188 µs                                                                                                       | 13.55 dBm       |          |                             |            |
| D2 M1 1                   | 187.174 µs                                                                                                     | 1.57 dB         |          |                             |            |
| 03 M1 1                   | 314.275 µs                                                                                                     | -0.49 dB        |          |                             |            |
|                           |                                                                                                                |                 | Peady    | 440                         | 24022026   |
|                           |                                                                                                                |                 |          |                             |            |
| 11909763                  |                                                                                                                |                 |          |                             |            |
| Date: 24.FEB.2020 09:03:3 | 19                                                                                                             |                 |          |                             |            |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 139.493                          | 256.957                                           | 54.287         | 2.7                   |

| Spectrum                  |                            |                |                                                                                                                 |                      | Ē             |
|---------------------------|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|----------------------|---------------|
| Ref Level 55.00 d         | Bm Offset 26.80 d          | 8 🖷 RBW 28 MHz |                                                                                                                 |                      |               |
| Att 40                    | dB 🖶 SWT 350 µ             | s VBW 28 MHz   |                                                                                                                 |                      |               |
| SGL                       |                            |                |                                                                                                                 |                      |               |
| 1Pk Clrw                  |                            |                |                                                                                                                 |                      |               |
| S0.d8m                    |                            |                | M1[1]                                                                                                           |                      | 13.16 dBm     |
| 00 0011                   |                            |                |                                                                                                                 |                      | 27.464 µs     |
| 40 dBm                    |                            |                | D2[1]                                                                                                           |                      | 1.30 dB       |
|                           |                            |                | 1                                                                                                               | 1 1                  | 139.493 hz    |
| 30 dBm                    |                            |                |                                                                                                                 |                      |               |
| on dam                    |                            |                |                                                                                                                 |                      |               |
| 20 dBm M1                 | an all share water a daned | ray walk?      |                                                                                                                 | 03                   | al alproved   |
| 10 dBm                    | Alman to Add               | . udda.l.bu.y  |                                                                                                                 | 4                    | a comunitario |
| or 1.                     |                            |                |                                                                                                                 |                      |               |
| lo/bşitri- <sub>byl</sub> |                            | 440            | wind the state of the second secon | in the following the | -             |
|                           |                            |                |                                                                                                                 |                      |               |
| -10 dBm-                  |                            |                |                                                                                                                 |                      |               |
| -20 dBm                   |                            |                |                                                                                                                 |                      |               |
| 20 0011                   |                            |                |                                                                                                                 |                      |               |
| -30 dBm                   |                            |                |                                                                                                                 |                      |               |
|                           |                            |                |                                                                                                                 |                      |               |
| -40 dBm                   |                            |                |                                                                                                                 |                      |               |
| CF 5.27 GHz               |                            | 691 pts        |                                                                                                                 |                      | 35.0 µs/      |
| Marker                    |                            |                |                                                                                                                 |                      |               |
| Type Ref Trc              | X-value                    | Y-value        | Function                                                                                                        | Function Re:         | sult          |
| M1 1                      | 27.464 µs                  | 13.16 dBm      |                                                                                                                 |                      |               |
| D2 M1 1                   | 139.493 µs                 | 1.30 dB        |                                                                                                                 |                      |               |
| 03 M1 1                   | 250.957 µs                 | -0.14 dB       |                                                                                                                 |                      |               |
|                           |                            |                | Ready                                                                                                           | 4/0                  |               |
|                           |                            |                |                                                                                                                 |                      |               |
| 11909763                  |                            |                |                                                                                                                 |                      |               |
| Date: 24.FEB.2020 09:0    | 4:36                       |                |                                                                                                                 |                      |               |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) |        | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|--------|-----------------------|
| (μs)                             | (µs) Duty Cycle (%)                               |        | Factor (dB)           |
| 112.101                          | 219.928                                           | 50.972 | 2.9                   |

| Spectrum                 |                   |             |                        |                           | ⊴∎            |
|--------------------------|-------------------|-------------|------------------------|---------------------------|---------------|
| Ref Level 55.00 dBr      | m Offset 26.80 dB | BW 28 MHz   |                        |                           |               |
| ● Att 40 d               | 8 e SWT 350 µs    | VBW 28 MHz  |                        |                           |               |
| SGL                      |                   |             |                        |                           |               |
| 1Pk Clrw                 |                   |             |                        |                           |               |
| 50 dBm                   |                   |             | M1[1]                  |                           | 13.77 dBm     |
| 50 GBIII                 |                   |             |                        |                           | 67.536 µs     |
| 40 dBm                   |                   |             | D2[1]                  |                           | 0.86 dB       |
|                          |                   |             |                        |                           | 112.101 µs    |
| 30 dBm                   |                   |             |                        |                           |               |
|                          |                   |             |                        |                           |               |
| 20 dBm                   | B. J. Market      | 1           |                        | 02.6                      | and a such to |
| 10.40                    | torn Mondal Malan | Wallmounds. |                        | partie                    | Antoniana     |
| 10 d8m                   |                   |             |                        |                           |               |
| 16 Barber muradita       |                   |             | فعأش جنيعة القافريجقيع | المق المتعدية بمريضا والم |               |
|                          |                   |             |                        |                           |               |
| -10 dBm                  |                   |             |                        |                           |               |
|                          |                   |             |                        |                           |               |
| -20 dBm                  |                   |             |                        |                           |               |
| an da u                  |                   |             |                        |                           |               |
| -30 dBm                  |                   |             |                        |                           |               |
| -40 d8m                  |                   |             |                        |                           |               |
|                          |                   |             |                        |                           |               |
| CF 5.27 GHz              |                   | 691 pts     |                        |                           | 35.0 µs/      |
| Marker                   |                   |             | I                      |                           |               |
| Type Ref Trc             | X-value           | Y-value     | Function               | Function Res              | Fult          |
| D2 M1 1                  | 112 101 US        | 13.77 GBM   |                        |                           |               |
| D3 M1 1                  | 219.928 µs        | 0.03 dB     |                        |                           |               |
| Y                        | 220/960 pp        | 5.00 00     |                        | 440                       | 24022024      |
|                          |                   |             | , search               |                           |               |
| 11000703                 |                   |             |                        |                           |               |
|                          |                   |             |                        |                           |               |
| Date: 24.FEB.2020 09:05: | 26                |             |                        |                           |               |



| Pulse On Time (Τ <sub>οΝ</sub> ) | me (T <sub>ON</sub> ) Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) Duty Cycle (%) |        | Duty Cycle Correction |
|----------------------------------|----------------------------------------------------------------------------------------|--------|-----------------------|
| (μs)                             | (μs)                                                                                   |        | Factor (dB)           |
| 99.478                           | 209.159                                                                                | 47.561 | 3.2                   |

| Spect      | rum      |           |                    |            |           |            |               |             |              | E          |
|------------|----------|-----------|--------------------|------------|-----------|------------|---------------|-------------|--------------|------------|
| Ref L      | evel     | 55.00 dBr | m Offset           | 26.80 dB 🗧 | RBW 28 M  | Ηz         |               |             |              | `          |
| 🛛 Att      |          | 40 d      | 8 🖷 SWT            | 460 µs     | VBW 28 M  | Ηz         |               |             |              |            |
| SGL        |          |           |                    |            |           |            |               |             |              |            |
| ●1Pk Cl    | rw       |           |                    |            |           |            |               |             |              |            |
| 50 dBm     | _        |           |                    |            |           | M          | 1[1]          |             |              | 13.43 dB   |
|            |          |           |                    |            |           |            |               |             |              | 138.449 µ  |
| 40 dBm     | +        |           |                    |            |           | D          | 2[1]          |             |              | 00.470     |
|            |          |           |                    |            |           |            | 1             | 1           | 1            | 1          |
| 30 dBm     | -        |           |                    |            |           |            |               |             |              |            |
| 20 dBm     |          |           |                    |            |           |            |               |             |              |            |
| Inolu      | al L     |           | N N                | 1 way all  | Lample    | R2         |               | D3,         | Autor        | Hundry     |
| 10 dBm     | <u> </u> |           |                    | 1.11       |           | *          |               | f           |              |            |
|            | Ц.       | . ا       |                    |            |           | Lordales   | a lucia       | a him and   |              |            |
| 0 d8m-     | -        | - Altern  | - tertarite of the |            | <u> </u>  | office the | ad the second | he hard the |              |            |
| -10 dBr    |          |           |                    |            |           |            |               |             |              |            |
| -10 000    | ' T      |           |                    |            |           |            |               |             |              |            |
| -20 dBn    | +        |           |                    |            |           |            |               |             |              |            |
|            |          |           |                    |            |           |            |               |             |              |            |
| -30 dBn    | `+       |           |                    |            |           |            |               |             |              |            |
| -40 day    |          |           |                    |            |           |            |               |             |              |            |
| -40 001    | <u> </u> |           |                    |            |           |            |               |             |              |            |
| CF 5.2     | 7 GHz    |           |                    |            | 691       | ots        |               |             |              | 46.0 µs/   |
| Marker     | Dof      | Teo       | V-ualue            |            | V.ualue   | - Euro     | tion          | 5.          | nation Bocui | •          |
| M1         | Ref      | 1         | 138.               | 449 LIS    | 13.43 dBr | n Func     | uon           | FU          | nction Resu  | it.        |
| D2         | M1       | 1         | 99.                | 478 µs     | 0.51 d    | В          |               |             |              |            |
| D3         | M1       | 1         | 209.               | 159 µs     | -0.22 d   | В          |               |             |              |            |
|            |          | Y         |                    |            |           |            | a sila        |             | 449          | 24.02.2028 |
|            |          | ·         |                    |            |           |            |               |             |              |            |
| 11909763   |          |           |                    |            |           |            |               |             |              |            |
| Date: 24.F | EB.20    | 20 09:10: | 20                 |            |           |            |               |             |              |            |
|            |          |           |                    |            |           |            |               |             |              |            |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |  |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|--|
| (μs)                             | (µs)                                              |                | Factor (dB)           |  |
| 196.73                           | 286.73                                            | 68.61          | 1.6                   |  |





| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse On Time (T <sub>ON</sub> ) Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) |        | Duty Cycle Correction |  |
|----------------------------------|------------------------------------------------------------------------------------|--------|-----------------------|--|
| (μs)                             | (μs) (μs)                                                                          |        | Factor (dB)           |  |
| 143.261                          | 212.826                                                                            | 67.314 | 1.7                   |  |

| Spectru       | m            |          |            |                 |           |                    |                  |             | ∎          |
|---------------|--------------|----------|------------|-----------------|-----------|--------------------|------------------|-------------|------------|
| RefLev        | el 55.00 de  | m Offset | 26.80 dB 🖷 | RBW 28 N        | Hz        |                    |                  |             |            |
| Att           | 40           | d8 😐 SWT | 350 µs     | <b>VBW</b> 28 N | Hz        |                    |                  |             |            |
| SGL           |              |          |            |                 |           |                    |                  |             |            |
| 1Pk Clrw      |              |          |            |                 |           |                    |                  |             |            |
| 50 d8m        |              |          |            |                 | M         | 1[1]               |                  |             | 13.95 dBm  |
| 50 GDIII      |              |          |            |                 |           |                    |                  |             | 58.406 µs  |
| 40 dBm-       |              |          |            |                 | D         | 2[1]               |                  |             | 1.81 dB    |
|               |              |          |            |                 |           |                    |                  |             | t43.261 μs |
| 30 dBm-       | +            |          |            |                 |           |                    |                  |             |            |
|               |              |          |            |                 |           |                    |                  |             |            |
| 20 dBm-       | M1           | And it.  | dantara    | dia to a        | Author 02 |                    | _                | BLA IN      | atour      |
| 10 dBm        |              | man hall | awards     | (Antonand       | 10.00     |                    | DPM              | - wardle    | ann lante  |
| TO OBIII-     |              |          |            |                 |           |                    | 1. Ĭ             |             |            |
| 12 00 marts   | hluible      |          |            |                 | 4         | <u>م را الارام</u> | ليعاوم الإطلاعية |             |            |
|               |              |          |            |                 |           |                    |                  |             |            |
| -10 dBm-      |              |          |            |                 |           | <u> </u>           |                  |             |            |
|               |              |          |            |                 |           |                    |                  |             |            |
| -20 dBm-      |              |          |            |                 |           | -                  |                  |             |            |
| on dam        |              |          |            |                 |           |                    |                  |             |            |
| -30 GBm       |              |          |            |                 |           |                    |                  |             |            |
| -40 dBm-      |              |          |            |                 |           | L                  |                  |             |            |
| 05 5 03 0     |              |          |            |                 |           |                    |                  |             | 05.0       |
| CF 5.27 C     | afiz         |          |            | 041             | pts       |                    |                  |             | 33.0 ps/   |
| Tune          | of Tec       | V-value  |            | Y-ualuo         | Euro      | tion               | Euro             | tion Pocult |            |
| M1            | 1            | 58.      | 406 us     | 13.95 d8        | m         | CIGIT              | Fun              | cion Result |            |
| D2            | M1 1         | 143.     | 261 µs     | 1.81            | jB.       |                    |                  |             |            |
| D3            | M1 1         | 212.     | 826 µs     | -0.23           | đB        |                    |                  |             |            |
|               | N I          |          |            |                 |           | and a              | (11111)          | 449         | 4022026    |
|               |              |          |            |                 |           |                    |                  | -           | 135050 /// |
| 11909763      |              |          |            |                 |           |                    |                  |             |            |
| Date: 24 FEE  | 3 2020 08-52 | -57      |            |                 |           |                    |                  |             |            |
| Jane, 24, FEE | 0.2020 00.02 |          |            |                 |           |                    |                  |             |            |



| Pulse On Time (T <sub>ON</sub> ) Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> )<br>(μs) (μs) |         | Duty Cycle (%) | Duty Cycle Correction<br>Factor (dB) |
|-------------------------------------------------------------------------------------------------|---------|----------------|--------------------------------------|
| 119.42                                                                                          | 202.174 | 59.068         | 2.3                                  |

| Spectrum                 |                                                    |            |                |             |                          | ⊲∎         |
|--------------------------|----------------------------------------------------|------------|----------------|-------------|--------------------------|------------|
| Ref Level 55.00 dBr      | m Offset 26.80 dB                                  | RBW 28 MHz |                |             |                          |            |
| ● Att 40 d               | 8 🖶 SWT 350 µs                                     | VBW 28 MHz |                |             |                          |            |
| SGL                      |                                                    |            |                |             |                          |            |
| 1Pk Clrw                 |                                                    |            |                |             |                          |            |
| 50 dBm-                  |                                                    | +          | M1[1]          |             | 13.8                     | 9 dBm      |
|                          |                                                    |            | D2[1]          |             | 44.2                     | 203 µs     |
| 40 dBm                   |                                                    | + + +      | 02[1]          |             | 119.4                    | 120 µs     |
| 20.40-                   |                                                    |            |                |             | 1                        |            |
| 30 dBm                   |                                                    |            |                |             |                          |            |
| 20 dBm                   |                                                    |            |                |             |                          |            |
| Ture V                   | 4. Article And | Whend 2    |                | 13 mar pril | A schold a grad a grad a | phillips . |
| 10 dBm                   |                                                    |            |                | - ·         |                          |            |
| port we have             |                                                    | and a lot  | RIAL TOURS AND | -           |                          |            |
| O CBA                    |                                                    |            |                |             |                          |            |
| -10 dBm                  |                                                    |            |                |             |                          |            |
|                          |                                                    |            |                |             |                          |            |
| -20 dBm-                 |                                                    | + +        |                | -           |                          |            |
| co. dau                  |                                                    |            |                |             |                          |            |
| -30 08/11                |                                                    |            |                |             |                          |            |
| -40 dBm                  |                                                    | +          |                |             |                          |            |
| CE 5 27 GHz              |                                                    | 691 nts    |                |             | 35.0                     | 1.1157     |
| Marker                   |                                                    | 091 pts    |                |             | 55.                      | 1997       |
| Type Ref Trc             | X-value                                            | Y-value    | Function       | Fund        | tion Result              | - 1        |
| M1 1                     | 44.203 µs                                          | 13.89 dBm  |                |             |                          |            |
| D2 M1 1                  | 119.42 µs                                          | 0.68 dB    |                |             |                          |            |
| D3 M1 1                  | 202.174 µs                                         | 0.36 dB    |                |             |                          |            |
|                          |                                                    |            | Ready          | (IIIIII)    | 4/0                      | ×**        |
|                          |                                                    |            | -              |             |                          | /10        |
| 11909763                 |                                                    |            |                |             |                          |            |
| Date: 24.FEB.2020 08:54: | 03                                                 |            |                |             |                          |            |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 103.478                          | 175.797                                           | 58.862         | 2.3                   |

| Spectr      | um     | ٦        |            |              |        |               |      |           |                       |            | Í          |     |
|-------------|--------|----------|------------|--------------|--------|---------------|------|-----------|-----------------------|------------|------------|-----|
| Ref Le      | vel 5  | 5.00 dBm | Offset     | 26.80 dB     | RBW 2  | 8 MHz         |      |           |                       |            |            | -   |
| Att         |        | 40 d8    | ■ SWT      | 250 µs       | VBW 2  | 8 MHz         |      |           |                       |            |            |     |
| SGL         |        |          |            |              |        |               |      |           |                       |            |            |     |
| 1Pk Clr     | w      |          |            |              |        |               |      |           |                       |            |            |     |
| S0 dBm-     |        |          |            |              |        |               | M    | 1[1]      |                       |            | 12.99 d    | Bm  |
| 50 GDIII    |        |          |            |              |        |               |      |           |                       |            | 36.594     | ŀμs |
| 40 dBm-     | _      |          |            |              |        | $\rightarrow$ | D    | 2[1]      |                       |            | 1.29       | dB  |
|             |        |          |            |              |        |               |      |           |                       | 1          | 103.478    | ιµs |
| 30 dBm-     | +      |          |            |              |        | +             |      |           |                       |            | +          | -   |
|             |        |          |            |              |        |               |      |           |                       |            |            |     |
| 20 dBm-     | +      | M1       | JUL N      | and the      |        |               | . 62 |           |                       | 0.0        | . dd t     | 1   |
| 10 dBm      |        | herent   | Mal how    | Local Astron | manul  | 111           | 44   |           |                       | and and    |            | 5   |
| TO OBUI-    |        |          |            |              |        |               |      |           |                       |            |            |     |
| N.com       | 414.10 | 1        |            |              |        |               | 144  | يتتماس أط | المونزار تهييا بالمار | hingh      |            | _   |
| and.        | 11     | -        |            |              |        |               | - T  | A         |                       |            |            |     |
| -10 dBm     | +      |          |            |              |        | +             |      | <u> </u>  |                       |            |            | -   |
|             |        |          |            |              |        |               |      |           |                       |            |            |     |
| -20 dBm     | +      |          |            |              | -      | +             |      | -         |                       | -          | -          | -   |
| 20 dam      |        |          |            |              |        |               |      |           |                       |            |            |     |
| -30 GBm     |        |          |            |              |        |               |      |           |                       |            |            |     |
| -40 dBm     | _      |          |            |              | _      |               |      | L         | _                     |            | _          | _   |
| 05.5.07     | 011-   |          |            |              | ,      | 01            |      |           |                       |            | 05.0       | - / |
| CF 5.27     | GHZ    |          |            |              | 6      | at bta        |      |           |                       |            | 25.0 µ     | 5/  |
| Type        | Ref    | Trc      | X-value    |              | Y-yalu | e             | Fund | tion      | Fu                    | nction Res | ult        |     |
| M1          | 1.001  | 1        | 36.        | 594 µs       | 12.99  | d8m           |      |           | 14                    |            |            | -   |
| D2          | M1     | 1        | 103.478 µs |              | 1.3    | 29 dB         |      |           |                       |            |            |     |
| D3          | M1     | 1        | 175.       | 797 µs       | -0.3   | 26 dB         |      |           |                       |            |            |     |
|             |        |          |            |              |        | -             | _    | and a     |                       | 449        | 24.02.2028 | -   |
| L           |        |          |            |              |        |               | ,    |           |                       |            |            |     |
| 11909763    |        |          |            |              |        |               |      |           |                       |            |            |     |
| Date: 24 Fi | B 202  | 0.08564  | 4          |              |        |               |      |           |                       |            |            |     |
|             |        |          | -          |              |        |               |      |           |                       |            |            |     |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |  |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|--|
| (μs)                             | (µs)                                              |                | Factor (dB)           |  |
| 182.67                           | 356.62                                            | 51.223         | 2.9                   |  |

| Spectrum 🐐              |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ₫                                         |
|-------------------------|--------------------|----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Ref Level 55.00 d       | Bm Offset 26.80 d8 | 6 🖷 RBW 28 MHz |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Att 40                  | d8 😑 SWT 700 µs    | VBW 28 MHz     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| SGL                     |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| 1Pk Clrw                |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| S0.d8m                  |                    |                | M1[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.68 dBm                                 |
| 30 0011                 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 286.57 µs                                 |
| 40 dBm                  |                    |                | D2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44 dB                                   |
|                         |                    |                | 1         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 182.67 µs                                 |
| 30 dBm                  |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
|                         |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| 20 dBm-                 |                    | 611            | 1         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| mannerplanetude         | 4                  | pontalion      | man       | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 and the                                 |
| TO OBIII                |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| 0 d8m                   | have had a         | hun            |           | hill here and a group of the second se | de la |
|                         |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| -10 dBm                 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                         |
|                         |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| -20 dBm                 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| angle and               |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| -30 08m                 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| -40 d8m                 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| 05.5.00.001-            |                    | (0)            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.0                                      |
| CF 5.29 GHZ             |                    | 691 pts        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.0 µs7                                  |
|                         | Y-ualua            | Y-uslue        | Eurotian  | Eurotion Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eult I                                    |
| M1 1                    | 286.57 us          | 12.68 dBm      | Function  | Punction Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | suit                                      |
| D2 M1 1                 | 182.67 µs          | 0.44 dB        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| D3 M1 1                 | 356.62 µs          | -0.12 dB       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| N I                     |                    |                | Den aufor | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.02.2020                                |
|                         |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| 11909763                |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Date: 24 FEB 2020 09 1  | 6.45               |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Jane: 24.1 LO.2020 00.1 |                    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |



| Pulse On Time (T <sub>on</sub> ) | Pulse On Time (T <sub>ON</sub> ) Pulse Period (T <sub>ON</sub> +T <sub>OFF</sub> ) |        | Duty Cycle Correction |  |
|----------------------------------|------------------------------------------------------------------------------------|--------|-----------------------|--|
| (µs)                             | (μs) (μs)                                                                          |        | Factor (dB)           |  |
| 132.96                           | 261.26                                                                             | 50.892 | 2.9                   |  |

| Spectr      | um     | Γ           |        |                 |      |               |         |         |                      |            |            | Ē        |
|-------------|--------|-------------|--------|-----------------|------|---------------|---------|---------|----------------------|------------|------------|----------|
| Ref Le      | vel 5  | 5.00 dBm    | Offset | 26.80 dB        | RBW  | 28 MHz        |         |         |                      |            |            | <u> </u> |
| Att         |        | 40 dB       | SWT    | 700 µs          | VBW  | 28 MHz        |         |         |                      |            |            |          |
| SGL         |        |             |        |                 |      |               |         |         |                      |            |            |          |
| ●1Pk Clr    | w      |             |        |                 |      |               |         |         |                      |            |            |          |
| S0 d8m-     |        |             |        |                 |      |               | M       | 1[1]    |                      |            | 12.21 (    | 18m      |
| 30 0011     |        |             |        |                 |      |               |         |         |                      |            | 336.2      | 8 µs     |
| 40 dBm-     | -      |             |        |                 | -    | $\rightarrow$ | D       | 2[1]    |                      |            | 0.23       | 3 dB     |
|             |        |             |        |                 |      |               |         | 1       | 1                    |            | 132.9      | o µs     |
| 30 dBm-     | +      |             |        |                 | +    |               |         |         | +                    |            | +          | -        |
|             |        |             |        |                 |      |               |         |         |                      |            |            |          |
| 20 dBm-     |        |             |        |                 | +    | M1 .          |         | ~~~     |                      |            | _          | _        |
| 10 dame     | MM     | np-acilephi | where  |                 |      | X-M           | Whenthe | manut   |                      | 03         | h proprie  | ANN N    |
| TO OPIN-    |        |             |        |                 |      |               |         |         |                      |            |            |          |
| obam        |        |             | W      | of Although the | YWY  | No.           |         | LI.     | and the state of the | south N    | -          | _        |
|             |        |             |        |                 |      |               |         |         |                      |            |            |          |
| -10 dBm     | +      |             |        | -               | +    | +             |         |         |                      | -          | +          | -        |
|             |        |             |        |                 |      |               |         |         |                      |            |            |          |
| -20 dBm     | -      |             |        |                 |      |               |         |         |                      |            |            | _        |
| -so dam     |        |             |        |                 |      |               |         |         |                      |            |            |          |
| -30 0600    |        |             |        |                 |      |               |         |         |                      |            |            |          |
| -40 dBm     | +      |             |        |                 |      | _             |         |         |                      |            |            | _        |
| CE 5 26     | CHA    |             |        |                 |      | 601 mt        |         |         |                      |            | 70.0       | r /      |
| Marker      | 0/12   |             |        |                 |      | 091 pt        | ,       |         |                      |            | 70.01      | ~        |
| Tyne        | Ref    | Trc         | X-valu | •               | Y-ya | lue           | Euno    | tion    | Fun                  | ction Resu | ult        |          |
| M1          |        | 1           | 33     | 5.28 µs         | 12.  | 21 dBm        |         |         | 1 417                |            |            | -        |
| D2          | M1     | 1           | 13     | 2.96 µs         |      | 0.23 dB       |         |         |                      |            |            |          |
| D3          | M1     | 1           | 26     | 1.26 µs         | -    | 0.58 dB       |         |         |                      |            |            |          |
|             |        | (           |        |                 |      |               |         | e a div | (111111)             | 449        | 24.02.2026 |          |
|             |        |             |        |                 |      | -             | _       |         |                      | _          |            |          |
| 11909763    |        |             |        |                 |      |               |         |         |                      |            |            |          |
| Date: 24 Fi | EB.202 | 0 09:17:3   | 8      |                 |      |               |         |         |                      |            |            |          |
|             |        |             | -      |                 |      |               |         |         |                      |            |            |          |



| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (T <sub>on</sub> +T <sub>oFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (µs)                                              |                | Factor (dB)           |
| 75.319                           | 202.13                                            | 37.263         | 4.3                   |

| Spectrum                  |                       |              |                |           | ∎              |
|---------------------------|-----------------------|--------------|----------------|-----------|----------------|
| Ref Level 55.00 dBm       | Offset 26.80 dB       | RBW 28 MHz   |                |           |                |
| Att 40 d8                 | s 🖶 SWT 500 µs        | VBW 28 MHz   |                |           |                |
| SGL                       | -                     |              |                |           |                |
| 1Pk Clrw                  |                       |              |                |           |                |
| S0 dBm                    |                       |              | M1[1]          |           | 10.75 dBm      |
|                           |                       |              |                |           | 195.696 µs     |
| 40 dBm                    |                       |              | D2[1]          |           | 0.27 dB        |
|                           |                       |              | 1              | 1 1       | 73.319 µs      |
| 30 dBm-                   |                       |              |                |           |                |
| 20. dBm                   |                       |              |                |           |                |
| 20 dBm                    | N                     | 0 III al. I. |                | 08.14     | dial in a      |
| 10 den 40 411             |                       | M-MANNAM     | M <u></u>      | - fri     | - ABULAN SULAN |
|                           | and the second s      |              | alat days      |           |                |
| 0 d8m                     | mouto sectiv relation | 0            | and the second | norwalary | - Wells        |
|                           |                       |              |                |           |                |
| -10 dBm-                  |                       |              |                |           |                |
| -20 dBm                   |                       |              |                |           |                |
|                           |                       |              |                |           |                |
| -30 dBm                   |                       |              |                |           |                |
|                           |                       |              |                |           |                |
| -40 dBm                   |                       |              |                |           |                |
| CF 5.29 GHz               | •                     | 691 pts      |                |           | 50.0 µs/       |
| Marker                    |                       |              |                |           |                |
| Type Ref Trc              | X-value               | Y-value      | Function       | Function  | Result         |
| M1 1                      | 195.696 µs            | 10.75 dBm    |                |           |                |
| D2 M1 1                   | 75.319 µs             | 0.27 dB      |                |           |                |
| US M1 1                   | 202.13 µs             | 1.37 dB      |                |           |                |
|                           |                       |              | Ready          | 4/0       | 24.022.026     |
|                           |                       |              |                |           |                |
| 11909763                  |                       |              |                |           |                |
| Date: 24.FEB.2020 09:19:3 | 0                     |              |                |           |                |



| Pulse On Time (T <sub>on</sub> ) | Pulse Period (Τ <sub>ΟΝ</sub> +Τ <sub>ΟFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (µs)                             | (μs)                                              |                | Factor (dB)           |
| 63.725                           | 135.899                                           | 46.891         | 3.3                   |





| Pulse On Time (Τ <sub>οΝ</sub> ) | Pulse Period (Τ <sub>ΟΝ</sub> +Τ <sub>ΟFF</sub> ) | Duty Cycle (%) | Duty Cycle Correction |
|----------------------------------|---------------------------------------------------|----------------|-----------------------|
| (μs)                             | (μs)                                              |                | Factor (dB)           |
| 54.783                           | 164.928                                           | 33.216         | 4.8                   |

| Spectrum                 |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E          |
|--------------------------|-------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Ref Level 55.00 dBm Offs | et 28.60 dß 😑 RBW 28 MH                               | Z        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>   |
| Att 40 dB 🖶 SWT          | 400 µs VBW 28 MH                                      | z        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| SGL                      |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 1Pk Clrw                 |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 50 dBm                   |                                                       | D3[1]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.45 dB    |
| 30 3011                  |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 164.928 µs |
| 40 dBm                   |                                                       | M1[1]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.34 dBm   |
|                          |                                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.464 µ   |
| 30 dBm                   |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                          |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 20 dBm                   |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 10 dBm                   | 2                                                     | Buckling | Lust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Manderal   |
| hundralle                | a market the second state                             |          | بالإربان بالمسال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 0 dem                    | keen waarda waa ka k | w// ``   | included by the second of the |            |
|                          |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| -10 dBm                  |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 00 dbm                   |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| -20 GBIII                |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| -30 dBm                  |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                          |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| -40 dBm                  |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| CF 5.29 GHz              | 691 p                                                 | ts       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0 µs/   |
| Marker                   |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Type Ref Trc X-va        | lue Y-value                                           | Function | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| M1 1                     | 52.464 µs 9.34 dBm                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| D2 M1 1                  | 54.783 µs 0.85 dB                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| D3 M1 1 1                | 64.928 µs   0.45 dB                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Y                        |                                                       | Ready    | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.02.2028  |
|                          |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 1909763                  |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                          |                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |



#### 5.2.4. Transmitter Maximum Conducted Output Power

#### Test Summary:

| Test Engineer:             | Krume Ivanov & Sercan Usta | Test Dates: | 15 February 2020 to<br>17 February 2020 |
|----------------------------|----------------------------|-------------|-----------------------------------------|
| Test Sample Serial Number: | 192.168.0.65               |             |                                         |
| Test Site Identification   | SR 9                       |             |                                         |

| FCC Reference:    | Part 15.407(a)(2)                                                |
|-------------------|------------------------------------------------------------------|
| Test Method Used: | KDB 789033 D02 Section II.E.2.d)<br>KDB 662911 D01 Section E) 1) |

#### **Environmental Conditions:**

| Temperature (°C):      | 20 to 27 |
|------------------------|----------|
| Relative Humidity (%): | 24 to 38 |

#### Notes:

- For conducted power tests where the duty cycle is <98%, the measurements were performed in accordance with FCC KDB 789033 II.E.2.d) Method SA-2. The signal analyser's integration function was used to integrate across the 99% emission bandwidth. The resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. An RMS detector was used and sweep time was set to auto and 300 traces performed. The span was set to encompass the entire 99% occupied bandwidth. The channel power results are recorded in the tables below.
- The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors which is compensated by adding reference level offset of 26.80 dB@ 5.25-5.35 GHz to each of the conducted plots.
- 3. For MIMO, power was measured across relevant ports and then combined using the measure-and-sum technique stated in FCC KDB 662911 D01 Section E)1).
- 4. In accordance with 15.407(a)(2) maximum conducted output power shall not exceed shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth (MHz) .
- 5. In accordance with KDB 789033 D02 Section II.E.2.d) (x) alternative method, power is computed by integrating the spectrum across the entire 99% occupied bandwidth.
- 6. Relevant 99% occupied bandwidth results for all tested modes are achieved on the company server and available for inspection if required.
- For all data rates the EUT was transmitting at <98% duty cycle, the calculated duty cycle in section 5.2.3 was added to the measured power in order to compute the average power during the actual transmission time.
- 8. The EUT antennas have a directional gain of > 6 dBi.
- In accordance with 15.407(a)(2), transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power limits shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 10. In accordance with FCC KDB 662911 F)2)f)(i), the array gain for 802.11 devices with NANT ≤4 is 0 dB. No array gain has been to the measurements in this section.
- 11. Therefore for 9 dBi Antenna, reduced maximum conducted output power limits are as follows:
  - o the limit of 250 mW ≈ 24 dB has been reduced by 3 dB to 21 dBm

or

- the limit of 11 dBm + 10 log B has been reduced by 3 dB to 8 dBm + 10 log B
- 12. Therefore for 9 dBi Antenna the lesser of above limits has been applied.



#### Transmitter Maximum Conducted Output Power (continued)

#### Test setup:





# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / SISO / Port 1 / PWL 17 / 9 dBi Antenna

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 12.1                    | 1.8                              | 13.9                                     | 21          | 7.1         | Complied |
| Middle  | 12.0                    | 1.8                              | 13.8                                     | 21          | 7.2         | Complied |
| Top-1   | 11.9                    | 1.8                              | 13.7                                     | 21          | 7.3         | Complied |

## De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 13.9                                     | 9                                    | 22.9       | 30                              | 7.1         | Complied |
| Middle  | 13.8                                     | 9                                    | 22.8       | 30                              | 7.2         | Complied |
| Top-1   | 13.7                                     | 9                                    | 22.7       | 30                              | 7.3         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 48Mbit / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 5.5                     | 1.8                              | 7.3                                      | 21          | 13.7        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 7.3                                      | 9                                    | 16.3       | 30                              | 13.7        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Top Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / SISO / Port 1 / PWL 17 / 9 dBi Antenna

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 11.9                    | 1.8                              | 13.7                                     | 21          | 7.3         | Complied |
| Middle  | 11.7                    | 1.8                              | 13.5                                     | 21          | 7.5         | Complied |
| Top-1   | 11.7                    | 1.8                              | 13.5                                     | 21          | 7.5         | Complied |

## De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 13.7                                     | 9                                    | 22.7       | 30                              | 7.3         | Complied |
| Middle  | 13.5                                     | 9                                    | 22.5       | 30                              | 7.5         | Complied |
| Top-1   | 13.5                                     | 9                                    | 22.5       | 30                              | 7.5         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 54Mbit / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 5.1                     | 1.8                              | 6.9                                      | 21          | 14.1        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 6.9                                      | 9                                    | 15.9       | 30                              | 14.1        | Complied |



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 54Mbit / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS2 / SISO / Port 1 / PWL 17 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 13.3                    | 1.0                              | 14.3                                     | 21          | 6.7         | Complied |
| Middle  | 13.1                    | 1.0                              | 14.1                                     | 21          | 6.9         | Complied |
| Top-1   | 13.0                    | 1.0                              | 14.0                                     | 21          | 7.0         | Complied |

## De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 14.3                                     | 9                                    | 23.3       | 30                              | 6.7         | Complied |
| Middle  | 14.1                                     | 9                                    | 23.1       | 30                              | 6.9         | Complied |
| Top-1   | 14.0                                     | 9                                    | 23.0       | 30                              | 7.0         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS2 / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS2 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 8.7                     | 1.0                              | 9.7                                      | 21          | 11.3        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 9.7                                      | 9                                    | 18.7       | 30                              | 11.3        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS2 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Top Channel


## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS6 / SISO / Port 1 / PWL 17 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 12.1                    | 2.1                              | 14.2                                     | 21          | 6.8         | Complied |
| Middle  | 11.9                    | 2.1                              | 14.0                                     | 21          | 7.0         | Complied |
| Top-1   | 11.8                    | 2.1                              | 13.9                                     | 21          | 7.1         | Complied |

### **De Facto EIRP Limit Comparison**

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 14.2                                     | 9                                    | 23.2       | 30                              | 6.8         | Complied |
| Middle  | 14.0                                     | 9                                    | 23.0       | 30                              | 7.0         | Complied |
| Top-1   | 13.9                                     | 9                                    | 22.9       | 30                              | 7.1         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS6 / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS6 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 7.7                     | 2.1                              | 9.8                                      | 21          | 11.2        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 9.8                                      | 9                                    | 18.8       | 30                              | 11.2        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS6 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Top Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS2 / SISO / Port 1 / PWL 17 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 13.2                    | 2.3                              | 15.5                                     | 21          | 5.5         | Complied |
| Middle  | 13.1                    | 2.3                              | 15.4                                     | 21          | 5.6         | Complied |
| Top-1   | 12.5                    | 2.3                              | 14.8                                     | 21          | 6.2         | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 15.5                                     | 9                                    | 24.5       | 30                              | 5.5         | Complied |
| Middle  | 15.4                                     | 9                                    | 24.4       | 30                              | 5.6         | Complied |
| Top-1   | 14.8                                     | 9                                    | 23.8       | 30                              | 6.2         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT20 / MCS2 / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS2 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 8.6                     | 2.3                              | 10.9                                     | 21          | 10.1        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 10.9                                     | 9                                    | 19.9       | 30                              | 10.1        | Complied |



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS2 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1</u>



Top Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT20 / MCS6 / SISO / Port 1 / PWL 17 / 9 dBi Antenna

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 12.1                    | 2.7                              | 14.8                                     | 21          | 6.2         | Complied |
| Middle  | 11.9                    | 2.7                              | 14.6                                     | 21          | 6.4         | Complied |
| Top-1   | 11.0                    | 2.7                              | 13.7                                     | 21          | 7.3         | Complied |

# De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 14.8                                     | 9                                    | 23.8       | 30                              | 6.2         | Complied |
| Middle  | 14.6                                     | 9                                    | 23.6       | 30                              | 6.4         | Complied |
| Top-1   | 13.7                                     | 9                                    | 22.7       | 30                              | 7.3         | Complied |

# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT20 / MCS6 / SISO / Port 1 / PWL 17 / 9 dBi Antenna Port 1



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS6 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Тор     | 7.7                     | 2.7                              | 10.4                                     | 21          | 10.6        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 10.4                                     | 9                                    | 19.4       | 30                              | 10.6        | Complied |



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS6 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT40 / MCS3 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 7.1                     | 2.3                              | 9.4                                      | 21          | 11.6        | Complied |
| Тор     | 7.3                     | 2.3                              | 9.6                                      | 21          | 11.4        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 9.4                                      | 9                                    | 18.4       | 30                              | 11.6        | Complied |
| Тор     | 9.6                                      | 9                                    | 18.6       | 30                              | 11.4        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT40 / MCS3 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Bottom Channel



Top Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT40 / MCS4 / SISO / Port 1 / PWL 12 / 9 dBi Antenna

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 6.5                     | 2.7                              | 9.2                                      | 21          | 11.8        | Complied |
| Тор     | 6.7                     | 2.7                              | 9.4                                      | 21          | 11.6        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 9.2                                      | 9                                    | 18.2       | 30                              | 11.8        | Complied |
| Тор     | 9.4                                      | 9                                    | 18.4       | 30                              | 11.6        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT40 / MCS4 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Bottom Channel



**Top Channel** 



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT40 / MCS3 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 7.5                     | 1.6                              | 9.1                                      | 21          | 11.9        | Complied |
| Тор     | 7.4                     | 1.6                              | 9.0                                      | 21          | 12.0        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 9.1                                      | 9                                    | 18.1       | 30                              | 11.9        | Complied |
| Тор     | 9.0                                      | 9                                    | 18.0       | 30                              | 12.0        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT40 / MCS3 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Bottom Channel



Top Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT40 / MCS4 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Bottom  | 7.0                     | 1.7                              | 8.7                                      | 21          | 12.3        | Complied |
| Тор     | 6.8                     | 1.7                              | 8.5                                      | 21          | 12.5        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 8.7                                      | 9                                    | 17.7       | 30                              | 12.3        | Complied |
| Тор     | 8.5                                      | 9                                    | 17.5       | 30                              | 12.5        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT40 / MCS4 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Bottom Channel



Top Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT80 / MCS1 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Single  | 7.7                     | 2.9                              | 10.6                                     | 21          | 10.4        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Single  | 10.6                                     | 9                                    | 19.6       | 30                              | 10.4        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT80 / MCS1 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Single Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT80 / MCS8 / SISO / Port 1 / PWL 12 / 9 dBi Antenna</u>

| Channel | Conducted<br>Power(dBm) | Duty Cycle<br>Correction<br>(dB) | Corrected<br>Conducted<br>Power<br>(dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-------------------------|----------------------------------|------------------------------------------|-------------|-------------|----------|
| Single  | 4.8                     | 3.3                              | 8.1                                      | 21          | 12.9        | Complied |

### De Facto EIRP Limit Comparison

| Channel | Corrected<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Single  | 8.1                                      | 9                                    | 17.1       | 30                              | 12.9        | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT80 / MCS8 / SISO / Port 1 / PWL 12 / 9 dBi Antenna Port 1



Single Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 10.6                                  | 1.8                              | 12.4                                               | 10.8                                  | 1.8                              | 12.6                                               |
| Middle  | 10.5                                  | 1.8                              | 12.3                                               | 10.7                                  | 1.8                              | 12.5                                               |
| Top-1   | 9.6                                   | 1.8                              | 11.4                                               | 9.7                                   | 1.8                              | 11.5                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.4                                           | 12.6                                           | 15.5                                                | 21                                | 5.5         | Complied |
| Middle  | 12.3                                           | 12.5                                           | 15.4                                                | 21                                | 5.6         | Complied |
| Top-1   | 11.4                                           | 11.5                                           | 14.5                                                | 21                                | 6.5         | Complied |

### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 15.5                                                | 9                                    | 24.5       | 30                              | 5.5         | Complied |
| Middle  | 15.4                                                | 9                                    | 24.4       | 30                              | 5.6         | Complied |
| Top-1   | 14.5                                                | 9                                    | 23.5       | 30                              | 6.5         | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1



**Bottom Channel** 





### Result: Pass



Middle Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2



**Bottom Channel** 





### Result: Pass



Middle Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 4.9                                   | 1.8                              | 6.7                                                | 5.2                                   | 1.8                              | 7.0                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 6.7                                            | 7.0                                            | 9.9                                                 | 21                                | 11.1        | Complied |

#### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 9.9                                                 | 9                                    | 18.9       | 30                              | 11.1        | Complied |



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



Top Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 48Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 10.4                                  | 1.8                              | 12.2                                               | 10.7                                  | 1.8                              | 12.5                                               |
| Middle  | 10.3                                  | 1.8                              | 12.1                                               | 10.6                                  | 1.8                              | 12.4                                               |
| Top-1   | 9.3                                   | 1.8                              | 11.1                                               | 9.5                                   | 1.8                              | 11.3                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.2                                           | 12.5                                           | 15.4                                                | 21                                | 5.6         | Complied |
| Middle  | 12.1                                           | 12.4                                           | 15.3                                                | 21                                | 5.7         | Complied |
| Top-1   | 11.1                                           | 11.3                                           | 14.2                                                | 21                                | 6.8         | Complied |

### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 15.4                                                | 9                                    | 24.4       | 30                              | 5.6         | Complied |
| Middle  | 15.3                                                | 9                                    | 24.3       | 30                              | 5.7         | Complied |
| Top-1   | 14.2                                                | 9                                    | 23.2       | 30                              | 6.8         | Complied |



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2



**Bottom Channel** 





#### **Result: Pass**



Middle Channel



# Transmitter Maximum Conducted Output Power (continued) Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 4.6                                   | 1.8                              | 6.4                                                | 5.0                                   | 1.8                              | 6.8                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 6.4                                            | 6.8                                            | 9.6                                                 | 21                                | 11.4        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 9.6                                                 | 9                                    | 18.6       | 30                              | 11.4        | Complied |



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



Top Channel



# <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11a / 20 MHz / 54Mbit / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel


## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna</u>

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 12.3                                  | 0.6                              | 12.9                                               | 12.6                                  | 0.6                              | 13.2                                               |
| Middle  | 11.9                                  | 0.6                              | 12.5                                               | 12.2                                  | 0.6                              | 12.8                                               |
| Top-1   | 12.2                                  | 0.6                              | 12.8                                               | 12.6                                  | 0.6                              | 13.2                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.9                                           | 13.2                                           | 16.1                                                | 21                                | 4.9         | Complied |
| Middle  | 12.5                                           | 12.8                                           | 15.7                                                | 21                                | 5.3         | Complied |
| Top-1   | 12.8                                           | 13.2                                           | 16.0                                                | 21                                | 5.0         | Complied |

#### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 16.1                                                | 9                                    | 25.1       | 30                              | 4.9         | Complied |
| Middle  | 15.7                                                | 9                                    | 24.7       | 30                              | 5.3         | Complied |
| Top-1   | 16.0                                                | 9                                    | 25.0       | 30                              | 5.0         | Complied |



## Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**





## Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2



**Bottom Channel** 





#### **Result: Pass**





#### Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 7.6                                   | 0.6                              | 8.2                                                | 7.6                                   | 0.6                              | 8.2                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 8.2                                            | 8.2                                            | 11.2                                                | 21                                | 9.8         | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 11.2                                                | 9                                    | 20.2       | 30                              | 9.8         | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna</u>

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 11.0                                  | 1.6                              | 12.6                                               | 11.3                                  | 1.6                              | 12.9                                               |
| Middle  | 10.1                                  | 1.6                              | 11.7                                               | 10.4                                  | 1.6                              | 12.0                                               |
| Top-1   | 11.0                                  | 1.6                              | 12.6                                               | 11.3                                  | 1.6                              | 12.9                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.6                                           | 12.9                                           | 15.8                                                | 21                                | 5.2         | Complied |
| Middle  | 11.7                                           | 12.0                                           | 14.9                                                | 21                                | 6.1         | Complied |
| Top-1   | 12.6                                           | 12.9                                           | 15.8                                                | 21                                | 5.2         | Complied |

### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 15.8                                                | 9                                    | 24.8       | 30                              | 5.2         | Complied |
| Middle  | 14.9                                                | 9                                    | 23.9       | 30                              | 6.1         | Complied |
| Top-1   | 15.8                                                | 9                                    | 24.8       | 30                              | 5.2         | Complied |



## Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1



**Bottom Channel** 





#### **Result: Pass**





## Transmitter Maximum Conducted Output Power (continued) Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**





#### Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 6.1                                   | 1.6                              | 7.7                                                | 6.7                                   | 1.6                              | 8.3                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 7.7                                            | 8.3                                            | 11.0                                                | 21                                | 10.0        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 11.0                                                | 9                                    | 20.0       | 30                              | 10.0        | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11n / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel



## Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 12.0                                  | 0.8                              | 12.8                                               | 12.3                                  | 0.8                              | 13.1                                               |
| Middle  | 11.8                                  | 0.8                              | 12.6                                               | 12.2                                  | 0.8                              | 13.0                                               |
| Top-1   | 11.7                                  | 0.8                              | 12.5                                               | 12.1                                  | 0.8                              | 12.9                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.8                                           | 13.1                                           | 16.0                                                | 20.9                              | 4.9         | Complied |
| Middle  | 12.6                                           | 13.0                                           | 15.8                                                | 20.9                              | 5.1         | Complied |
| Top-1   | 12.5                                           | 12.9                                           | 15.7                                                | 20.9                              | 5.2         | Complied |

#### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 16.0                                                | 9                                    | 25.0       | 29.9                            | 4.9         | Complied |
| Middle  | 15.8                                                | 9                                    | 24.8       | 29.9                            | 5.1         | Complied |
| Top-1   | 15.7                                                | 9                                    | 24.7       | 29.9                            | 5.2         | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1</u>



#### **Bottom Channel**



Top-1 Channel

#### Result: Pass





## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2</u>



#### **Bottom Channel**



**Top-1 Channel** 

#### Result: Pass





## <u>Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna</u>

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 6.8                                   | 0.8                              | 7.6                                                | 6.7                                   | 0.8                              | 7.5                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 7.6                                            | 7.5                                            | 10.6                                                | 20.9                              | 10.3        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 10.6                                                | 9                                    | 19.6       | 29.9                            | 10.3        | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



**Top Channel** 



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS0 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel



## Transmitter Maximum Conducted Output Power (continued) Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 10.2                                  | 1.9                              | 12.1                                               | 10.4                                  | 1.9                              | 12.3                                               |
| Middle  | 10.0                                  | 1.9                              | 11.9                                               | 10.3                                  | 1.9                              | 12.2                                               |
| Top-1   | 9.9                                   | 1.9                              | 11.8                                               | 10.2                                  | 1.9                              | 12.1                                               |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 12.1                                           | 12.3                                           | 15.2                                                | 21                                | 5.8         | Complied |
| Middle  | 11.9                                           | 12.2                                           | 15.1                                                | 21                                | 5.9         | Complied |
| Top-1   | 11.8                                           | 12.1                                           | 15.0                                                | 21                                | 6.0         | Complied |

#### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 15.2                                                | 9                                    | 24.2       | 30                              | 5.8         | Complied |
| Middle  | 15.1                                                | 9                                    | 24.1       | 30                              | 5.9         | Complied |
| Top-1   | 15.0                                                | 9                                    | 24.0       | 30                              | 6.0         | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 1</u>



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**





## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 18 / 9 dBi Antenna / Port 2</u>



**Bottom Channel** 



Top-1 Channel

#### **Result: Pass**





## Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Тор     | 4.2                                   | 1.9                              | 6.1                                                | 4.6                                   | 1.9                              | 6.5                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Тор     | 6.1                                            | 6.5                                            | 9.3                                                 | 21                                | 11.7        | Complied |

#### **De Facto EIRP Limit Comparison**

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Тор     | 9.3                                                 | 9                                    | 18.3       | 30                              | 11.7        | Complied |



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 1</u>



Top Channel



## <u>Transmitter Maximum Conducted Output Power (continued)</u> <u>Results: 802.11ac / HT20 / MCS4 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna / Port 2</u>



Top Channel



## <u>Results: 802.11n / HT40 / MCS7 / MIMO / Port 1+2 / PWL 12 / 9 dBi Antenna</u>

| Channel | Port 1<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 1<br>Corrected<br>Conducted<br>Power<br>(dBm) | Port 2<br>Conducted<br>Power<br>(dBm) | Duty Cycle<br>Correction<br>(dB) | Port 2<br>Corrected<br>Conducted<br>Power<br>(dBm) |
|---------|---------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| Bottom  | 3.1                                   | 3.2                              | 6.3                                                | 3.7                                   | 3.2                              | 6.9                                                |
| Тор     | 3.0                                   | 3.2                              | 6.2                                                | 3.7                                   | 3.2                              | 6.9                                                |

| Channel | Corrected<br>Conducted<br>Power Port<br>1(dBm) | Corrected<br>Conducted<br>Power Port<br>2(dBm) | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power Limit<br>(dBm) | Margin (dB) | Result   |
|---------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------|----------|
| Bottom  | 6.3                                            | 6.9                                            | 9.6                                                 | 21                                | 11.4        | Complied |
| Тор     | 6.2                                            | 6.9                                            | 9.6                                                 | 21                                | 11.4        | Complied |

#### De Facto EIRP Limit Comparison

| Channel | Port 1+2<br>Combined<br>Conducted<br>Power<br>(dBm) | Directional<br>Antenna<br>Gain (dBi) | EIRP (dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin (dB) | Result   |
|---------|-----------------------------------------------------|--------------------------------------|------------|---------------------------------|-------------|----------|
| Bottom  | 9.6                                                 | 9                                    | 18.6       | 30                              | 11.4        | Complied |
| Тор     | 9.6                                                 | 9                                    | 18.6       | 30                              | 11.4        | Complied |

