

Siemens AG Attn. Thorsten Liebig Information and Communication Mobile Wireless Modules Siemensdamm 50 13629 Berlin

Germany

Torsten Lohoff 31.01.2005 Phone +49 (0) 2102 749 306 Fax +49 (0) 2102 749 350

FCC ID QIPCT75 - predictions for Maximum Permissable Exposure

Dear Mr. Liebig,

please find our Maximum Permissable Exposure calculations for the GSM module $\mathsf{MC75}$.

Best Regards

Torsten Lohoff

Maximum Permissable Exposure

(as specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissable Exposure (MPE), Limits for General Population/Uncontrolled Exposure)

Frequency range (MHz)	Power density (mW/cm2)
300 - 1,500	f/1500
1,500 - 100,000	1.0

Calculations 850 MHz band

Maximum peak output power at antenna input terminal: 31.5 dBm (1.41 W) (see 7 layers test report 4_SIE_0504_GSM_FCCc - FCC ID QIPCT75)

Prediction distance R:

20 cm

Prediction frequency:

836,4 MHz

MPE limit S:

0.5576 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P*G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to to the center of radiation of the antenna)

Maximum allowable antenna gain: 2.98 dBi

Prediction

The maximum allowed MPE value of 0.5576 mW/cm²will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 2,98 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 2,98 dBi.

Calculations 1900 MHz band

Maximum peak output power at antenna input terminal: 28.6 dBm (0,7244 W) (see 7 layers test report 4_SIE_0504_GSM_FCCa - FCC ID QIPCT75)

Prediction distance R:

20 cm

Prediction frequency:

1880 MHz

MPE limit S:

1 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P*G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to to the center of radiation of the antenna)

Maximum allowable antenna gain: 8.41 dBi

Prediction

The maximum allowed MPE value of 1 mW/cm² will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 8,41 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 8,41 dBi.