

InterLab FCC Measurement/Technical Report on

IMIB Bluetooth – WLAN transceiver

Report Reference: MDE_Siem_0617_FCCab

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany email: <u>info@7Layers.de</u>

Note:

Akkreditierungs Rat DAT-P-192/99-01

Deutscher

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AGAufsichtBorsigstrasse 11Chairma40880 Ratingen, GermanyMarkusPhone: +49 (0) 2102 749 0VorstanFax: +49 (0) 2102 749 350Dr. Hanwww.7Layers.comRené SoInterLab® is a registered trademark of 7 layers AG

Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT Nr: DE 203159652 TAX No. 147/5869/0385

Table of Contents

3 4 5
_
5 5 5 5
6
6 6
7
7 8 8 8 8
9
9 11
14
16
19
20
20 21

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Unintentional Radiator (Class B digital device)

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-07 Edition) and 15 (10-1-07 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart A General
- § 15.31 Measurement standards
- § 15.33 Frequency range of radiated measurements
- Part 15, Subpart B Unintentional Radiators
- § 15.101 Equipment authorization of unintentional radiators
- § 15.107 Conducted limits
- § 15.109 Radiated emission limits

Note: None.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

1

0.2 Measurement Summary

FCC Part 15, Su	bpart B	§ 15.107	
Conducted Emiss	ions (AC power line))	
The measuremen	t was performed ac	cording to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	AC Port (power line)	passed
FCC Part 15, Su	bpart B	§ 15.109	
Spurious Radiate			
The measuremen	t was performed ac	cording to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
	·		1.00 1.00
n/a: not applica n/p: not perfor			
in pri not perior	and a		
	7 la 408	ayers AG, Borsigstr. 11 380 Ratingen, Germany one +49 (0)2102 749 0	
Responsible for Accreditation Scope:	B. Ret.	Responsible for Test Report:	Madrile

1 Administrative Data

1.1 Testing Laboratory

7 Layers AG

Address

Borsigstr. 11 40880 Ratingen Germany

Dipl.-Ing. Robert Machulec

2008-07-17 to 2008-08-05

2008-08-07

Siemens AG

Germany

Markus Rödle

Siemensallee 84 76187 Karlsruhe

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:- Deutscher Akkreditierungs RatDAR-Registration no. DAT-P-192/99-01

Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell DiplIng. Andreas Petz
Report Template Version:	2008-07-15

1.2 Project Data

Responsible for testing and report:

Date of Test(s): Date of Report:

1.3 Applicant Data

Company Name:

Address:

Contact Person:

1.4 Manufacturer Data

Company Name:	Siemens AG, IA AS Industrial Automation Systems, Electronic Works Karlsruhe
Address:	Gleiwitzer Straße 555 90475 Nürnberg Germany

2 Product labelling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test
Type Designation:
Kind of Device:
(optional)
Voltage Type:
Voltage level:

Bluetooth and WLAN Transceiver IMIB Integrated Measurement Interface Box for car diagnostic AC 115 V

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 μ s. The maximum dwell time on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds.

WLAN Transceiver operating in the 2.4 GHz ISM band using Direct Sequence Spread Spectrum (DSSS) Modulation. The EUT supports the modes 802.11b (maximum data rate 11Mbps), 802.11g (maximum data rate 54Mbps) and 802.11n (maximum data rate = two times 54Mbps = 108Mbps distributed on two transmit antennas)

WLAN 5 GHz high performance RLAN equipment that is intended to operate in the frequency ranges 5 150 MHz to 5 350 MHz and 5 725 MHz to 5 825 MHz. The EUT supports the modes 802.11a (maximum data rate 54Mbps and 802.11n (maximum data rate = two times 54Mbps = 108Mbps distributed on two transmit antennas)

The EUT provides the following ports:

Ports Enclosure AC Port (power line) Sensor ports

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 01123b01) Remark: none	IMIB	IMIB	PT0504	V1.0a	V1.0	2008-07-17

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	AC/DC adapter	VAN90A-195A- 0A / A5E01212097	ES 02	-	-	_
AE2	Pressure sensor	310CR0100V4 SZ000 / A5E01034079	ES 03	-	STUM2012- 0017-15A-08	-
AE3	Trigger pliers	Triggerzange BMW GT1 MT- VF / A5E00205403	AS 01	-	-	-
AE4	Temperature sensor	Temperature sensor as probes / A5E01034091	ES 02	-	-	-

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A + AE1 + AE2 +	EUT with connected power supply and sensors for car
	AE3 + AE4	diagnostic

3.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	EUT transmits on 2480 MHz (Bluetooth)	Bluetooth: Loopback mode, max output power
	and on 5190 MHz (WLAN, 802.11n)	WLAN: local TX mode, max output power
op-mode 2	EUT transmits on 2480 MHz (Bluetooth)	Bluetooth: Loopback mode, max output power
	and on 5795 MHz (WLAN, 802.11n)	WLAN: local TX mode, max output power

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-07 Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHz
- IF–Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.107

Frequency Range (MHz)	QP Limit (dBµV)	AV Limit (dBµV)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	37 %

Op. Mode	Setup	Port	
op-mode 2	Setup_01	AC Port (power line)	

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
N	205	62.80	0.6	QP value
N	305	55.00	5.1	QP value
N	505	47.30	8.7	QP value
N	600	38.20	17.8	QP value
N	920	50.00	6.0	QP value
L1	1.015	38.50	17.5	QP value
N	1.300	40.70	15.3	QP value
L1	1.370	48.20	7.8	QP value
N	1.410	37.10	18.9	QP value
N	1.505	30.80	25.2	QP value
N	200	46.10	7.5	AV value
N	300	23.90	26.4	AV value
N	405	23.00	24.7	AV value
N	505	27.10	18.9	AV value
N	605	25.00	21.0	AV value
N	705	15.80	30.2	AV value
N	905	18.30	27.7	AV value
N	1.005	22.50	23.5	AV value
Ν	1.305	15.90	30.1	AV value
N	1.410	17.80	28.2	AV value

Remark: Please see annex for the measurement plot.

4.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 2	passed

4.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-07 Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.2.1 Test Description

Measurement below 1 GHz:

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. **Step 1**: Preliminary scan (test to identify the highest amplitudes relative to the limit) Intention of this step is, to determine the radiated EMI-profile of the EUT. Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs
- Turntable angle range: -180° to 180°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2:

A further measurement will be performed on the frequencies determined in step 1. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100ms
- Turntable angle range: -22.5° to + 22.5° around the determined value
- Height variation range: -0.25m to + 0.25m around the determined value

Step 4: Final measurement (with QP detector)

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)
- Measured frequencies: in step 3 determined frequencies
- IF Bandwidth: 120 kHz

- Measuring time: 1 s

Measurement above 1 GHz:

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse-linear-distance-squared for the power density measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 as described

before, are omitted. Step 1 was performed at one height of the receiving antenna only. Detector: Peak, Average (simultaneously)

RBW = VBW = 1 MHz; above 7 GHz 100 kHz

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits Frequency Range (MHz): Class B Limit (dBµV/m)

Frequency Range (MHz)	Class B Limit (dBµV/m)
30 – 88	40.0
88 – 216	43.5
216 – 960	46.0
above 960	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.2.3 Test Protocol

Temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	37 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari- sation	Frequency MHz		rected va dBµV/m		Limit dBµV/ m	Limit dBµV⁄ m	Limit dBµV⁄ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical +	45.480	35.20			40			4.8	
horizontal	46.980	34.50			40			5.5	
	60.360	25.10			40			14.9	
	60.540	25.30			40			14.7	
	61.080	27.30			40			12.7	
	62.100	24.80			40			15.2	
	62.880	26.50			40			13.5	
	63.660	26.60			40			13.4	
	78.120	35.00			40			5.0	
	85.500	22.40			40			17.6	

Remark: Please see annex for the measurement plot. The measurement was performed up to 1GHz.

4.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 1	passed

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Digital Radio	CMD 55	831050/020	Rohde & Schwarz	01.12.05	01.12.08
Communication Tester					
Signalling Unit for	PTW60	100004	Rohde & Schwarz	-	-
Bluetooth					
Universal Radio	CMU200	102366	Rohde & Schwarz	22.09.07	22.09.09
Communication Tester					

EMI Test System

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Comparison Noise Emitter	CNE III	99/016	York	-	-
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz	06.12.07	06.12.09
Signal Generator	SMR 20	846834/008	Rohde & Schwarz	05.12.07	05.12.09
AC Power Source	6404	64040000B04	Croma ATE INC.	01.06.08	N/A the parameters will be checked before testing

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel	-	-
Biconical dipole	VUBA 9117	9117108	Schwarzbeck	02.07.03	02.07.08
Broadband Amplifier 18MHz-26GHz	JS4- 18002600 -32	849785	Miteq	06.02.08	06.08.08
Broadband Amplifier 30MHz-18GHz	JS4- 00101800 -35	896037	Miteq	06.02.08	06.08.08
Broadband Amplifier 45MHz-27GHz	JS4- 00102600 -42	619368	Miteq	06.02.08	06.08.08
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 W38.01-2	Kabel Kusch	06.02.08	06.08.08
Cable "ESI to Horn Antenna"	UFB311A UFB293C	W18.02-2 W38.02-2	Rosenberger- Microcoax	06.02.08	06.08.08
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz	12.05.06	12.05.08
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz	20.01.04	N/A – spare antenna
High Pass Filter	5HC3500/ 12750- 1.2-KK	200035008	Trilithic	06.02.08	06.08.08
High Pass Filter	5HC2700/ 12750- 1.5-KK	9942012	Trilithic	06.02.08	06.08.08
High Pass Filter	4HC1600/ 12750- 1.5-KK	9942011	Trilithic	06.02.08	06.08.08
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz	17.05.06	17.05.09
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz	19.08.02	N/A – only used for pre-testing
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO	06.02.08	06.08.08

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Cable "LISN to ESI"	RG214	W18.03+W48. 03	Huber+Suhner	06.02.08	06.08.08
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz	01.11.05	01.11.08
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz	-	-

Auxiliary Test Equipment – calibration not applicable; spare equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Broadband Resist.	1506A /	LM390	Weinschel	-	-
Power Divider N	93459				
Broadband Resist.	1515 /	LN673	Weinschel	-	-
Power Divider SMA	93459				
Digital Multimeter 01	Voltcraft	IJ096055	Conrad	-	-
	M-3860M				
Digital Multimeter 02	Voltcraft	IJ095955	Conrad	-	-
	M-3860M				
Digital Oscilloscope	TDS 784C	B021311	Tektronix	-	-
Fibre optic link	FO RS232	181-018	Pontis	-	-
Satellite	Link				
Fibre optic link	FO RS232	182-018	Pontis	-	-
Transceiver	Link				
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz	-	-
Generator					
Notch Filter ultra	WRCA800	24	Wainwright	-	-
stable	/960-6E				
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz	-	-
kHz to 3 GHz					
Temperature Chamber	VT 4002	585660021500	Vötsch	-	-
		10			
Temperature Chamber	KWP	592260121900	Weiss	-	-
	120/70	10			
ThermoHygro	Opus10	7482	Lufft Mess- und	-	-
Datalogger 03	THI		Regeltechnik		
	(8152.00)		GmbH		

Anechoic Chamber – calibration not applicable

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Air Compressor (pneumatic)			Atlas Copco	-	-
Controller	CO 2000	CO2000/328/1 2470406/L	Innco innovative constructions GmbH	-	-
EMC Camera	CE-CAM/1		CE-SYS	-	-
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi	-	-
Filter ISDN	B84312- C110-E1		Siemens & Matsushita	-	-
Filter telephone systems / modem	B84312- C40-B1		Siemens & Matsushita	-	-
Filter Universal 1A	B84312- C30-H3		Siemens & Matsushita	-	-
Fully/Semi AE Chamber	10.58x6.3 8x6		Frankonia	-	-
Turntable	DS 420S	420/573/99	HD GmbH, H.Deisel	-	-
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H.Deisel	-	-

6 Photo Report

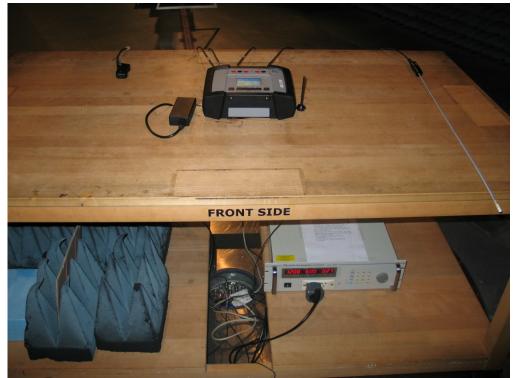


Photo 1: Test setup for radiated measurement

Photo 2: Test setup for conducted measurement

Photo 3: EUT front side

Photo 4: EUT rear side

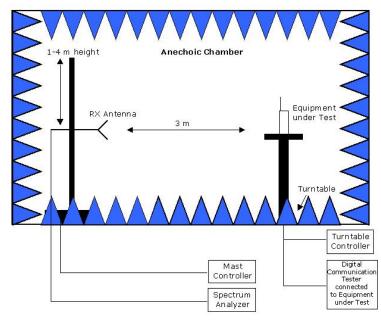
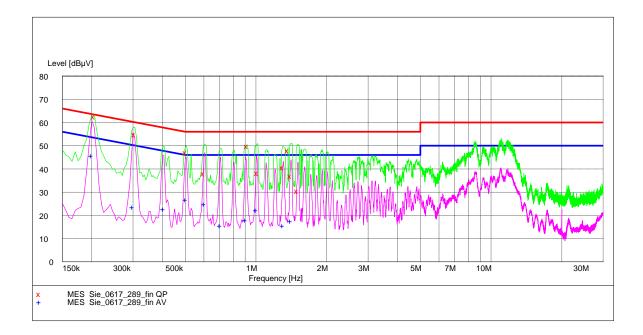


Photo 5: EUT connectors

7 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

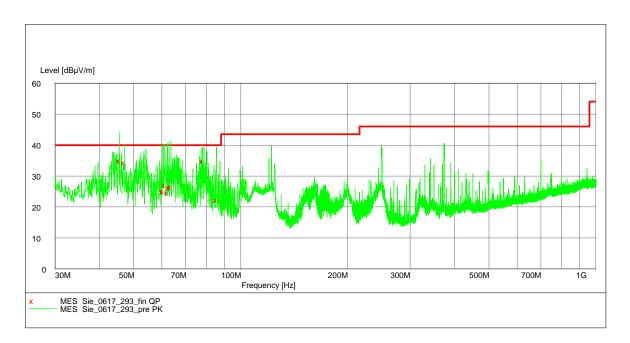


8 Annex measurement plots

8.1 AC Mains conducted

Op. Mode

op-mode 2



8.2 Radiated Emissions

Op. Mode

op-mode 1

