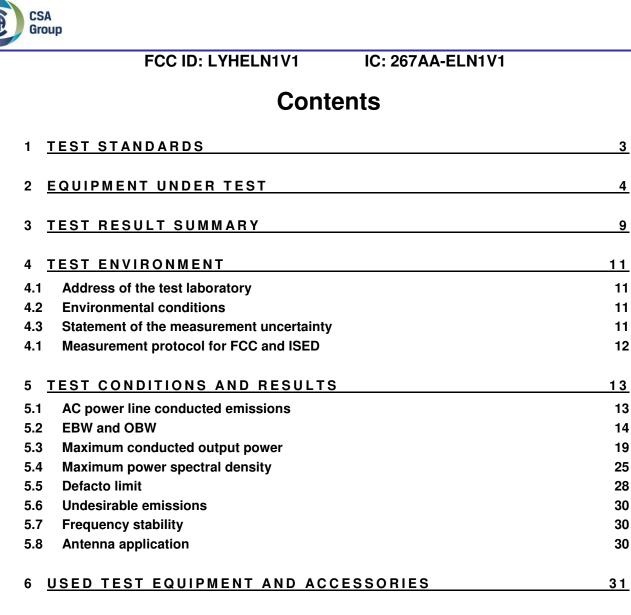


EMI-TEST REPORT

- FCC Part 15.407, 5150-5250 MHz, indoor, RSS247 -


Type / Model Name	: SCALANCE W700 / ELN						
Product Description	: Industrial WLAN access point						
Applicant	: Siemens AG, Industrial Automation Division						
Address	: Gleiwitzer Strasse 555						
	90475 NUERNBERG, GERMANY						
Manufacturer Address	Siemens AG, Sensors & Communication Oestliche Rheinbrueckenstrasse 50 76187 KARLSRUHE, GERMANY						
Licence holder	: Siemens AG, Industrial Automation Division						
Address	: Gleiwitzer Strasse 555						
	90475 NUERNBERG, GERMANY						
Test Result according to the stallisted in clause 1 test standards:	Indards POSITIVE						

Test Report No. :	T40580-03-01HS	18. May 2016
	140300-00-01110	Date of issue

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440 File No. T40580-03-01HS, page 1 of 31

ATTACHMENT A as separate supplement

IC: 267AA-ELN1V1

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart Part 15, Subpart A, Section 15.31	a A - General (September 2015) Measurement standards
Part 15, Subpart A, Section 15.33	Frequency range of radiated measurements
Part 15, Subpart A, Section 15.35	Measurement detector functions and bandwidths
FCC Rules and Regulations Part 15, Subpart Part 15, Subpart C, Section 15.203	t C - Intentional Radiators (September 2015) Antenna requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.205	Restricted bands of operation
Part 15, Subpart C, Section 15.207	Conducted limits
Part 15, Subpart C, Section 15.209	Radiated emission limits, general requirements
Part 15, Subpart C, Section 15.212	Modular transmitters
FCC Rules and Regulations Part 15, Subpart	E – Unlicensed National Information Infrastructure Devices (December 2015)
Part 15, Subpart E, Section 15.407	Operation within the bands 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, 5.47 - 5.725 GHz and 5.725 - 5.85 GHz
ANSI C63.10: 2013	Testing Unlicensed Wireless Devices
ETSI TR 100 028 V1.3.1: 2001-03	Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Uncertainties in the Measurement of Mobile Radio Equipment Characteristics—Part 1 and Part 2
KDB 789033 D02 v01r02	Guidance for compliance Testing of U-NII devices, April 8, 2016.

File No. T40580-03-01HS, page 3 of 31

IC: 267AA-ELN1V1

2 EQUIPMENT UNDER TEST

2.1 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

2.2 General remarks:

The EUT is fully tested and approved according the "old Rules". This test report shall show the further compliance to the "new Rules" under the premise that no operating parameter of the EUT are changed (No change in output power). Spurious emissions stay the same as under the "old Rules" and are already documented with the test report T35625-05-04HS by mikes testing partners. Therefore, the output power and the PSD are re-measured under the "new rules".

2.3 Equipment category

WLAN - AP

2.4 Short description of the equipment under test (EUT)

The EUT is a 1-Port WLAN-access point for cap rail applications. The EUT provides a menu to choose the channel for data transmission, the connected antenna and the length of the antenna cable. The AP is compatible with 802.11a/b/g, 802.11n Standard. It supports the 2.4 GHz and 5 GHz frequency band.

Number of tested samples:	1
Serial number:	VPH1126493
Firmware version:	V5.2.0

EUT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

2.5 Variants of the EUT

Variant	Device-Name	WLAN-Interfaces	LAN connector	Antenna Ports	Order numbers
1/01		1	D 145	1	6GK5721-1FC00-xxxx
V01	ELN-W1-RJ-E1	I	RJ45	I	6GK5722-1FC00-xxxx 6GK5761-1FC00-xxxx

2.6 Operation frequency and channel plan

The operating frequency is 5150 MHz to 5250 MHz.

Channel plan:

Channel plan WLAN Standard 802.11a/n, HT20:

Channel	Frequency (MHz)
36	5180
40	5200
44	5220
48	5240

IC: 267AA-ELN1V1

HT40 mode:

Channel	Frequency (MHz)	Channel	Frequency (MHz)			
36up	5190	40down	5190			
44up	5230	48down	5230			
Note: The marked frequencies are determined for final testing.						

d frequencies are determined for final testing.

2.7 Transmit operating modes

The module use OFDM modulation and is capable to provide following data rates:

- 54, 48, 36, 24, 18, 12, 9, 6 Mbps - 802.11a
- 802.11n HT20, MCS 0 - 15
- 802.11n HT40, MCS 0 - 15

HT20

MCS parameters for mandatory 20 MHz, NSS = 1, NES = 1

MOG	1100							Data rate (Mb/s)	
MCS Index	Modulation	R	N _{BPSCS} (i _{SS})	N _{SD}	NSP	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI (see NOTE)
0	BPSK	1/2	1	52	4	52	26	6.5	7.2
1	QPSK	1/2	2	52	4	104	52	13.0	14.4
2	QPSK	3/4	2	52	4	104	78	19.5	21.7
3	16-QAM	1/2	4	52	4	208	104	26.0	28.9
4	16-QAM	3/4	4	52	4	208	156	39.0	43.3
5	64-QAM	2/3	б	52	4	312	208	52.0	57.8
6	64-QAM	3/4	б	52	4	312	234	58.5	65.0
7	64-QAM	5/6	б	52	4	312	260	65.0	72.2
NOTE-S	NOTE—Support of 400 ns GI is optional on transmit and receive.								

MCS parameters for optional 20 MHz, NSS = 2, NES = 1, EQM

100								Data rate (Mb/s)	
MCS Index	Modulation	R	N _{BPSCS} (iss)	N _{SD}	NSP	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI (see NOTE)
8	BPSK	1/2	1	52	4	104	52	13.0	14.4
9	QPSK	1/2	2	52	4	208	104	26.0	28.9
10	QPSK	3/4	2	52	4	208	156	39.0	43.3
11	16-QAM	1/2	4	52	4	416	208	52.0	57.8
12	16-QAM	3/4	4	52	4	416	312	78.0	86.7
13	64-QAM	2/3	6	52	4	624	416	104.0	115.6
14	64-QAM	3/4	6	52	4	624	468	117.0	130.0
15	64-QAM	5/6	6	52	4	624	520	130.0	144.4
NOTE-T	NOTE—The 400 ns GI rate values are rounded to 1 decimal place.								

IC: 267AA-ELN1V1

HT40

MCS parameters for optional 40 MHz, NSS = 1, NES = 1

MCS	MCS						N _{DBPS}	Data rate (Mb/s)	
Index	Modulation	R	N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}		800 ns GI	400 ns GI
0	BPSK	1/2	1	108	б	108	54	13.5	15.0
1	QPSK	1/2	2	108	б	216	108	27.0	30.0
2	QPSK	3/4	2	108	б	216	162	40.5	45.0
3	16-QAM	1/2	4	108	б	432	216	54.0	60.0
4	16-QAM	3/4	4	108	б	432	324	81.0	90.0
5	64-QAM	2/3	6	108	6	648	432	108.0	120.0
б	64-QAM	3/4	6	108	б	648	486	121.5	135.0
7	64-QAM	5/6	6	108	6	648	540	135.0	150.0

MCS parameters for optional 40 MHz, NSS = 2, NES = 1, EQM

MCS	Modulation	odulation R	N (3.)	N	N N	N	N	Data rate (Mb/s)	
Index	Modulation	ĸ	N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI
8	BPSK	1/2	1	108	б	216	108	27.0	30.0
9	QPSK	1/2	2	108	б	432	216	54.0	60.0
10	QPSK	3/4	2	108	б	432	324	81.0	90.0
11	16-QAM	1/2	4	108	б	864	432	108.0	120.0
12	16-QAM	3/4	4	108	6	864	648	162.0	180.0
13	64-QAM	2/3	6	108	6	1296	864	216.0	240.0
14	64-QAM	3/4	6	108	б	1296	972	243.0	270.0
15	64-QAM	5/6	6	108	б	1296	1080	270.0	300.0

Symbol	Explanation
N _{SS}	Number of spatial streams
R	Coding rate
NBPSC	Number of coded bits per single carrier (total across spatial streams)
$N_{BPSCS}(i_{SS})$	Number of coded bits per single carrier for each spatial stream, $i_{\rm SS}=1,,N_{\rm SS}$
N_{SD}	Number of complex data numbers per spatial stream per OFDM symbol
NSP	Number of pilot values per OFDM symbol
N _{CBPS}	Number of coded bits per OFDM symbol
N _{DBPS}	Number of data bits per OFDM symbol
N_{ES}	Number of BCC encoders for the DATA field
NTBPS	Total bits per subcarrier

CSA Group

IC: 267AA-ELN1V1

2.8 Antenna

Antennas intended for use are classified into 3 gain groups: Antennas 0 to 6 dBi

- Antenna gain group 1:
- Antenna gain group 2: _
- Antennas 6 to 9 dBi Antennas 9 to 14 dBi
- Antenna gain group 3:

Number	Manufacturer Number	Characteristic	Model number	Connector	Frequency	Gain 5GHz	Cable	effective Gain	Group
Number		Onaracteristic		Connector	(GHz)	(dBi)	loss (dB)	5 GHz (dBi)	Group
1	6GK5793-8DK00-0AA0	Directed	ANT 793-8DK	2xN-female	5 GHz	23	8.8	14.2	9-14 dBi
2	6GK5793-8DJ00-0AA0	Directed	ANT 793-8DJ	2xN-female	5 GHz	18	4.4	13.6	9-14 dBi
3	6GK5793-8DL00-0AA0	Directed	ANT793-8DL	2xN-female	2.4 + 5	14	0	14	9-14 dBi
4	6GK5793-8DP00-0AA0	Directed	ANT793-8DP	N-female	5 GHz	13.5	0	13.5	9-14 dBi
5	6GK5795-6DC00-0AA0	Wide angle	ANT 795-6DC	N-female	2.4 + 5 GHz	9	0	9	6-9 dBi
6	6GK5793-6DG00-0AA0	Wide angle	ANT793-6DG	2xN-female	5 GHz	9	0	9	6-9 dBi
7	6GK5795-6MN10-0AA6	Omni	ANT 795-6MN	N-female	2.4 + 5 GHz	8	0	8	6-9 dBi
8	6GK5795-6MP00-0AA0	Omni	ANT795-6MP	N-female	2.4 + 5 GHz	7	0	7	6-9 dBi
9	6GK5896-6MM00-0AA0	Omni	ANT896-6MM	QMA-female	2.4 + 5 GHz	7	0	7	6-9 dBi
10	6GK5 793-4MN00-0AA6	Omni	ANT 793-4MN	N-female	5 GHz	6	0	6	0-6 dBi
11	6GK5795-4MD00-0AA3	Omni	ANT795-4MD	N-male	2.4 + 5 GHz	5	0	5	0-6 dBi
12	6GK5795-4MC00-0AA3	Omni	ANT795-4MC	N-male	2.4 + 5 GHz	5	0	5	0-6 dBi
13	6GK5795-4MA00-0AA3	Omni	ANT 795-4MA	R-SMA male	2.4 + 5 GHz	5	0	5	0-6 dBi
14	6GK5793-6MN00-0AA6	Omni	ANT 793-6MN	N-female	5 GHz	5	0	5	0-6 dBi
15	6GK5795-4MX00-0AA0	Omni	ANT795-4MX	N-male	2.4 + 5 GHz	2	0	2	0-6 dBi
16	6XV1875-2D	Omni	IWLAN Rcoax 1/2"	N-female	5 GHz	0	0	0	0-6 dBi

Note: The directed antenna number 2 may be used only with minimum 5 m antenna cable, Type 6XV 1875-5CH50 with cable loss 4.4 dB at 5.7 GHz.

The directed antenna number 1 may be used only with minimum 10 m antenna cable, Type 6XV 1875-5CN10 with cable loss 8.8 dB at 5.7 GHz.

2.9 Power supply system utilised

Power supply voltage, Vnom : 100 - 120 VAC

2.10 Peripheral devices and interface cables

The following peripheral devices and interface cables are connected during the measurements:

-	LAN cable, 3m	Model : CAT5
-	Power supply cable, 1m	Model : Self-made
-		Model :

2.11 Determination of worst case conditions for final measurement

Measurements are made in all three orthogonal axes and the settings of the EUT are changed to locate at which position and at what setting of the EUT produce the maximum of the emissions. The tests are carried out in the following frequency band:

5150 - 5250 MHz

Preliminary tests are performed to find the worst-case mode from all possible combinations between available modulations and data rates. The maximum output power depends on used data rate. The EUT is controlled for several tests with special test software used for testing only where continuous signals are needed. For the tests, a max possible duty cycle (x) is set.

File No. **T40580-03-01HS**, page **7** of 31

FCC ID: LYHELN1V1 IC

IC: 267AA-ELN1V1

Following channels and test modes are selected for the final test as listed below:

WLAN	Available channel	Tested channels	Power setting	Modulation	Modulation type	Data rate
802.11a	36 to 48	36, 44, 48	P20, P14, P9	OFDM	BPSK	6 Mbps
802.11n; HT20	36 to 48	36, 44, 48	P20, P14, P9	OFDM	BPSK	MCS0 (BW=20 MHz)
802.11n; HT40	36up to 44up	36up, 44up	P20, P14, P9	OFDM	BPSK	MCS8 (BW=40 MHz)

- TX continuous mode, 802.11a

- TX continuous mode, 802.11n

2.11.1 Test jig

No test jig is used.

2.11.2 Test software

Test software is used to set TX continuous in device service mode. Power, channel and modulation (data rate) setting is done via network interface which is available for professional settings.

IC: 267AA-ELN1V1

3 TEST RESULT SUMMARY

UNII device using the operating band 5150 MHz - 5250 MHz:

FCC Rule Part (new rules)	FCC Rule Part (old rules)	Description	Result
15.407(b)(6)	15.207(a)	AC power line conducted emissions	Not tested
15.407(a)(5)	15.407(a)	EBW 26 dB	passed
15.407(a)(1)	15.407(a)	Maximum conducted output power	passed
15.407(a)(1)	15.407(a)	Maximum conducted PSD	passed
15.407(b)(1)	15.407(b)	Undesirable emissions	Not tested
15.407(b)(7)	15.205(a)	Emissions in restricted bands	Not tested
15.407(a)	15.407(a)	Antenna requirement	passed
15.407(g)	15.407(g)	Frequency stability	Not tested

RSS Rule Part (new rules)	RSS Rule Part (old rules)	Description	Result
RSS-Gen, 8.8	RSS Gen, 7.2.4.	AC power line conducted emissions	Not tested
RSS247, 6.2.1(1)	RSS210, A9.2	Maximum conducted output power	passed
RSS247, 6.2.1(2)	RSS210, A9.2	Unwanted emission, radiated	Not tested
RSS-Gen, 8.9	RSS-Gen, 7.2.2	Unwanted emissions in restricted bands	Not tested
RSS247, 6.2.1(1)	RSS210, A9.2	Maximum power spectral density	passed
RSS-Gen, 6.10	RSS-Gen, 4.5	Pulsed operation	Not tested
RSS-Gen, 6.6	RSS-Gen, 7.1.2	Antenna requirement	passed
RSS-Gen, 6.11	RSS-Gen, 7.2.6	Transmitter frequency stability	Not tested
RSS-Gen, 6.6	RSS210, A9.2	99 % Bandwidth	passed
RSS 102, 2.5.2	RSS 102, 2.5.2	MPE	Not tested

The mentioned new RSS Rule Parts in the above table are related to: RSS Gen, Issue 4, November 2014 RSS 247, Issue 1, May 2015 RSS 102, Issue 4, March 2015

The mentioned old RSS Rule Parts in the above table are related to: RSS Gen, Issue 3, December 2010 RSS 210, Issue 8, December 2010 RSS 102, Issue 4, March 2010

IC: 267AA-ELN1V1

3.1 Final assessment

The equipment under test fulfills the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample

: acc. to storage records

Testing commenced on

: 13 April 2016

Testing concluded on

: 02 May 2016

Checked by:

K. Gegez

Klaus Gegenfurtner I confirm the correctness and Integrity of this document 2016.05.18 11:38:27 +02'00'

Klaus Gegenfurtner Teamleader Radio Tested by:

Um/

Hermann Smetana I am the author of this document 2016.05.18 10:25:54 +02'00'

Hermann Smetana Radio Team

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440 File No. T40580-03-01HS, page 10 of 31

IC: 267AA-ELN1V1

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement, the environmental conditions were within the listed ranges:

 Temperature:
 15-35 °C

 Humidity:
 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 % The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 / 11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, CSA Group Bayern GmbH, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement uncertainty table					
Measurement output power, conducted	±1.5 dB				
Measurement PSD, conducted	±1.5 dB				
Measurement spurious emissions, conducted	±3.0 dB				
Measurement spurious emissions, radiated	±6.0 dB				
Measurement frequency	±1 x 10 ⁻⁶				

IC: 267AA-ELN1V1

4.1 Measurement protocol for FCC and ISED

4.1.1 General information

4.1.1.1 <u>Test methodology</u>

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The open area test site is a listed under the Canadian Test-Sites File-No:

IC 3009A-1

In compliance with RSS 247 testing for RSS compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

4.1.1.2 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left without termination. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.1.1.3 Details of test procedures

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.10 - "American national standard of procedures for compliance testing of unlicensed wireless devices". In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

FCC ID: LYHELN1V1 IC: 267AA-ELN1V1

5 TEST CONDITIONS AND RESULTS

5.1 AC power line conducted emissions

For test instruments and accessories used, see section 6 Part A 4.

5.1.1 Description of the test location

Test location: NONE

Remarks: This measurement is already documented in the test report T35625-00-04HS.

IC: 267AA-ELN1V1

5.2 EBW and OBW

For test instruments and accessories used see section 6 Part MB.

5.2.1 Description of the test location

Test location: AREA 4

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15E, Section 15.407(a)(5):

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less.

5.2.4 Description of Measurement

The bandwidth is measured conducted using a spectrum analyser and following the procedures according the OET 789033, item C. The spectrum analyser function "n-dB-down" is used to determine the bandwidth. For the OBW the analyser function "OBW" is used to determine the bandwidth. The procedures according the OET 789033, item D are followed in this case.

Spectrum analyser settings occupied bandwidth: For 20 MHz channels: RBW: 200 kHz, VBW: 1 MHz, Detector

VBW: 2 MHz,

Detector: Peak, Detector: Peak, Trace mode: max hold;

Trace mode: max hold;

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

For 40 MHz channels:

RBW: 500 kHz,

File No. T40580-03-01HS, page 14 of 31

IC: 267AA-ELN1V1

5.2.5 Test result

802.11a mode			
Channel	Centre frequency	26 dB bandwidth	99% OBW
	(MHz)		(MHz)
CH36	CH36 5180		17.244
CH40 5200		22.190	17.211
CH48 5240		22.530	17.189

802.11n mode, HT 20, Port1:

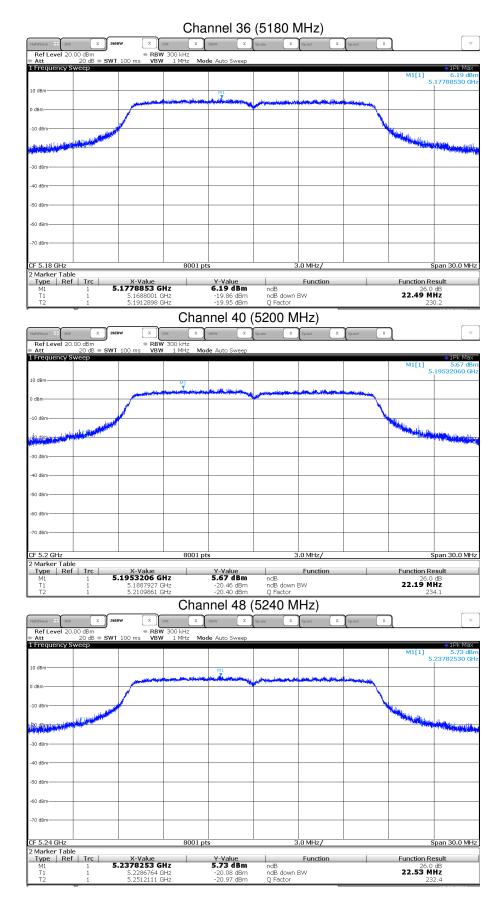
002.111111000			
Channel	Centre frequency	26 dB bandwidth	99% OBW
	(MHz)	(MHz)	(MHz)
CH36	5180	22.900	18.238
CH40	5200	22.690	18.201
CH48 5240		22.800	18.138

802.11n mode, HT 40, Port1:

Channel	Centre frequency	26 dB bandwidth	99% OBW
	(MHz)	(MHz)	(MHz)
CH36up	5190	45.910	36.567
CH44up	5230	43.950	36.432

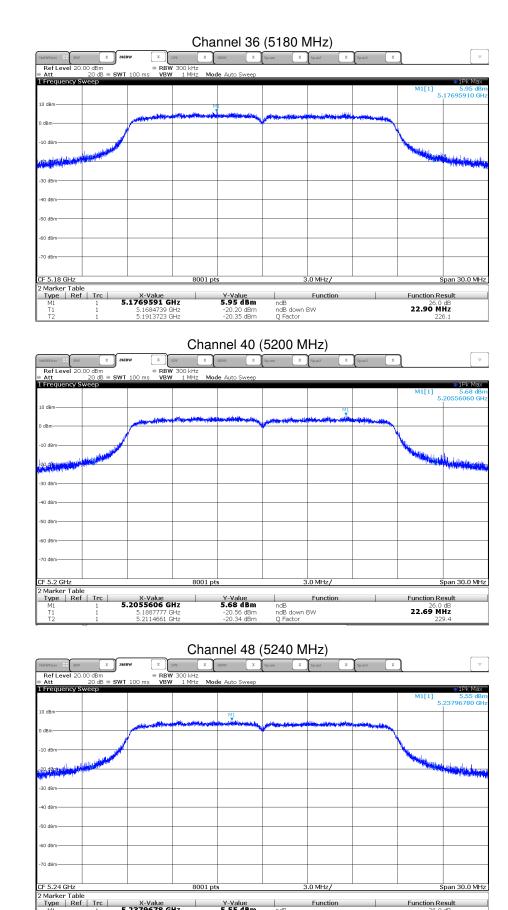
Remarks:

s: For detailed test results please see the following test protocols. No limit is defined for EBW and


OBW.

IC: 267AA-ELN1V1

5.2.6 Test protocol EBW 26dB


File No. T40580-03-01HS, page 16 of 31

HT20:

FCC ID: LYHELN1V1

IC: 267AA-ELN1V1

ndB ndB down BW Q Factor

Y-Value 5.55 dBm

-20.60 dBr -20.59 dBr

X-Value 5.2379678 GHz

5.2285977 GHz 5.2514023 GHz

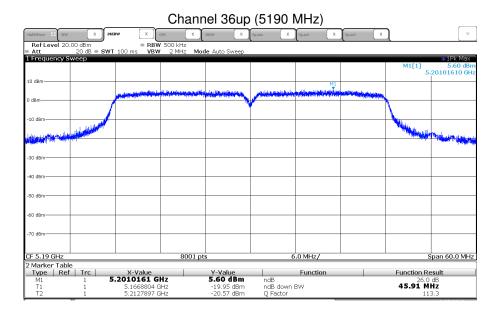
Function

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440

File No. T40580-03-01HS, page 17 of 31

Function Result

22.80 MHz


Rev. No. 4.0, 2016-03-27

IC: 267AA-ELN1V1

CSA Group

Channel 44up (5230 MHz)

MultiView 🔠 BW	X 266	8W X	IPC X	ови 🗶	Sp.um X	Sp.m2 X	Sp.m3	ן	_ ▽
Ref Level 20. Att			500 kHz	a Auto Curren					
Att 1 Frequency S	20 dB SWT weep	IUU ms VBW	2 MHz Moo	e Auto Sweep					1Pk Max
								M1[1]	6.24 dBm
								5.	21947130 GHz
10 dBm			MI						
			والغابين فأكافحون أدور فبأو يساعه	alley in the second second	and which the state of the second	a the state of the	And the state of the		
0 dBm	-	A CONTRACTOR OF					a standard a		
								<u>۱</u>	
-10 dBm								- North	
	and the second second							The second se	
THE REAL PROPERTY OF	A DATE OF THE OWNER							NA SHE	Multur
Billion Barrier									A STREET
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-00 0011									
-70 dBm									
-70 ubiii									
CF 5.23 GHz			8001 pt	s	6	.0 MHz/		5	pan 60.0 MHz
2 Marker Tabl									
Type Ref		X-Value .2194713 GI		Y-Value 6.24 dBm	ndB	Function		Function Re	
M1 T1	1 3	5.2080427 G		-19.96 dBm	ndB ndB down I	BW		26.0 43.95 M	ab Hz
T2	î	5.2519948 G		-19.88 dBm	Q Factor			11	

IC: 267AA-ELN1V1

5.3 Maximum conducted output power

For test instruments and accessories used see section 6 Part CPC 3.

5.3.1 Description of the test location

Test location: AREA 4

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15E, Section 15.407(a)(1)(ii): For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

According to ISED RSS247 6.2.1 (1):

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

5.3.4 Description of Measurement

The maximum conducted output power is measured using a spectrum analyser with the function "integrated band power measurement" following the procedure set out in KDB 789033 D02, item C f) Method SA-3. The EUT is set in TX continuous mode while measuring. The resulting values are listed in the following tables.

Spectrum analyser settings: RBW: 1 MHz, VBW: 3 MHz, Number of points: 6401, Sweep time: see table,

Detector: RMS (power averaging), Trace mode: max hold; Band power function;

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440 File No. T40580-03-01HS, page 19 of 31

IC: 267AA-ELN1V1

Modulation	Burst time T	Sweep points	Max sweep time analyser
	(ms)		(s)
802.11a	2.031	6401	13.0
802.11n, HT20	0.893	6401	5.7
802.11n, HT40	0.321	6401	2.1

5.3.5 Test result

Raw data as representative for all one Port measurements, used for 802.11a:

	A1 [P9]	A1 [P14]	A1 [P20]
	(dBm)	(dBm)	(dBm)
	_	-	
CH36	4.22	10.87	13.23
CH40	4.10	11.62	13.22
CH48	3.75	10.71	12.86

Calculation of the total output power:

802.11a, 6 Mbps, 1TX		Test results conducted				
Port 1	A [P9] (dBm)	A [P14] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)	
Lowest frequency: CH36						
T _{nom} V _{nom}	8.1	11.9	14.2	30.0	-15.8	
Middle frequency: CH40						
T _{nom} V _{nom}	8.0	12.6	14.2	30.0	-15.8	
Highest frequency: CH48						
T _{nom} V _{nom}	7.7	11.7	13.9	30.0	-16.1	

Note. An insertion loss of 1.0 dB at 5200 MHz for measurement cable at P14 and P20 is taken into account. An insertion loss of 3.9 dB at P9 for measurement cable and switch is taken into account.

HT20, MCS0, 1TX		Test results conducted				
			100			
Port 1		A [P9] (dBm)	A [P14] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)
Lowest frequency: CH	-136	(0211)	(0.811)	((()))	(0211)	(0.2)
T _{nom}	V _{nom}	8.1	12.1	13.6	30.0	-16.4
Middle frequency: CH	140					
T _{nom}	V _{nom}	7.9	11.8	13.8	30.0	-16.2
Highest frequency: CH						
T _{nom}	V _{nom}	7.5	11.2	13.5	30.0	-16.5

HT40, MCS8, 1TX	Test results conducted					
Port 1	A [P9] (dBm)	A [P14] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)	
Lowest frequency: CH36up						
T _{nom} V _{nom}	6.2	10.5	12.5	30.0	-17.5	
Highest frequency: CH44up						
T _{nom} V _{nom}	6.1	10.6	12.7	30.0	-17.3	

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440

File No. T40580-03-01HS, page 20 of 31

Rev. No. 4.0, 2016-03-27

FCC ID: LYHELN1V1 IC: 267AA-ELN1V1

Maximum conducted power limit according to FCC Part 15E, Section 15.407(a):

Frequency	Maximum conducted power limit				
(MHz)	(dBm)	(Watt)			
5150 - 5250	30	1.0			

5.3.6 Calculation of the maximum EIRP

Calculation of maximum EIRP									
Port 1	P set	P set Ant gain Amax EIRPmax Limit Margin							
802.11a		(dBi)	(dBm)	(dBm)	(dBm)	(dB)			
Antenna group 1	P20	6	14.2	20.2	22.4	-2.2			
Antenna group 2	P14	9	12.6	21.6	22.4	-0.7			
Antenna group 3	P9	14.2	8.1	22.3	22.4	0.0			

Calculation of maximum EIRP									
Port 1	P set	set Ant gain Amax EIRPmax Limit Margin							
802.11n, HT20		(dBi)	(dBm)	(dBm)	(dBm)	(dB)			
Antenna group 1	P20	6	13.8	19.8	22.6	-2.8			
Antenna group 2	P14	9	12.1	21.1	22.6	-1.5			
Antenna group 3	P9	14.2	8.1	22.3	22.6	-0.3			

Calculation of maximum EIRP									
Port 1	P set	Piset Antigain Amax EIRPmax Limit Margir							
802.11n, HT40		(dBi)	(dBm)	(dBm)	(dBm)	(dB)			
Antenna group 1	P20	6	12.7	18.7	23.0	-4.3			
Antenna group 2	P14	9	10.6	19.6	23.0	-3.4			
Antenna group 3	P9	14.2	6.2	20.4	23.0	-2.6			

Maximum EIRP power limit according to RSS247, 6.2.1(1):

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz.

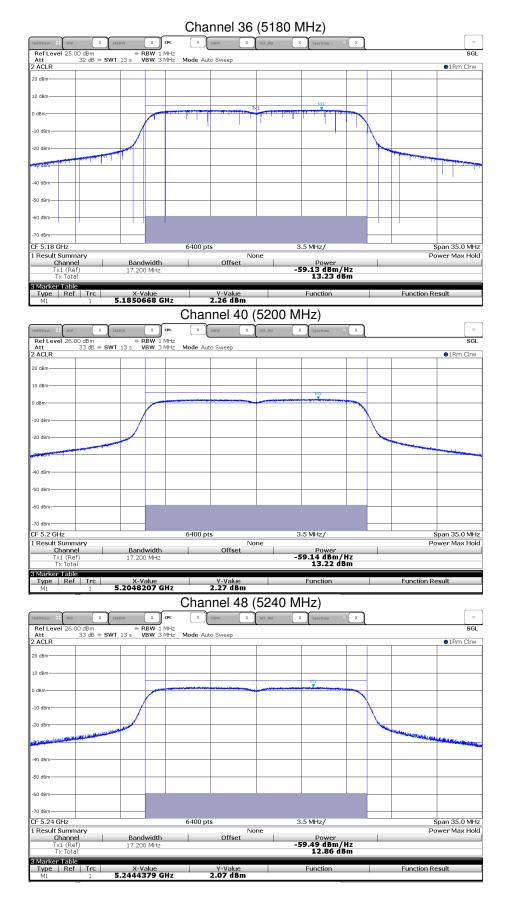
Frequency	EIRP limit					
(MHz)		(dBm)	(dBm)			
	Legacy, 10 + 10log(B)	22.4	23			
5150-5250	HT20, 10 + 10log(B)	22.6	23			
	HT40, 10 + 10log(B)	25.6	23			

Note: For application under RSS247 indoor use is permitted only.

The requirements are **FULFILLED**.

Remarks:

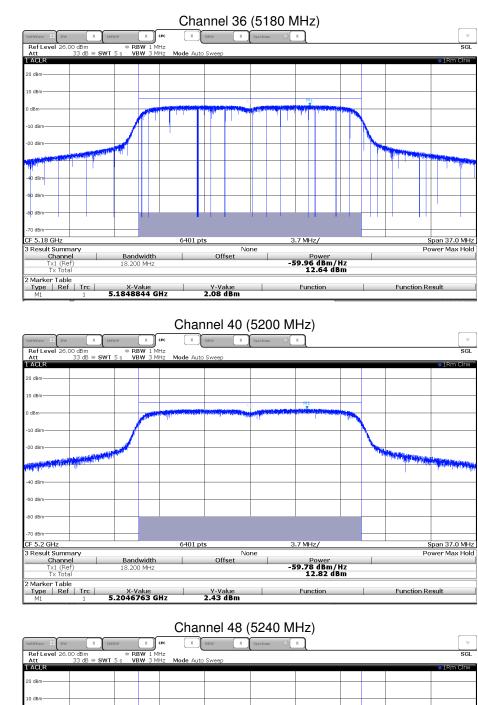
For detailed test results please see the following test protocols.

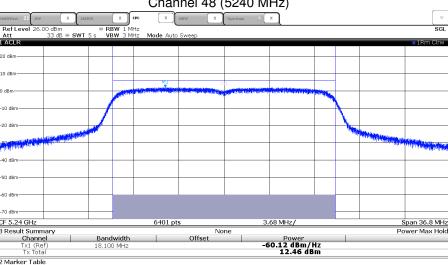

File No. T40580-03-01HS, page 21 of 31

IC: 267AA-ELN1V1

5.3.7 Test protocol maximum conducted output power

801.11a, P20:


File No. T40580-03-01HS, page 22 of 31



HT20, P20:

FCC ID: LYHELN1V1

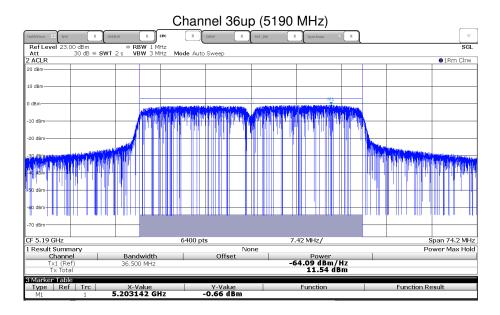
IC: 267AA-ELN1V1

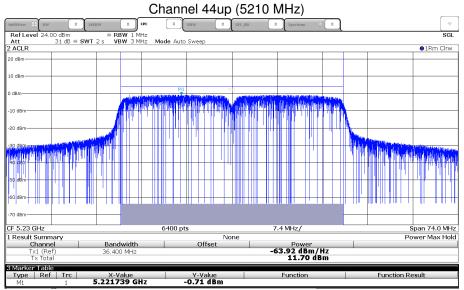
Y-Value 2.00 dBm Function

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

 Type
 Ref
 Trc
 X-Value

 M1
 1
 5.2352167 GHz


File No. T40580-03-01HS, page 23 of 31


Function Result

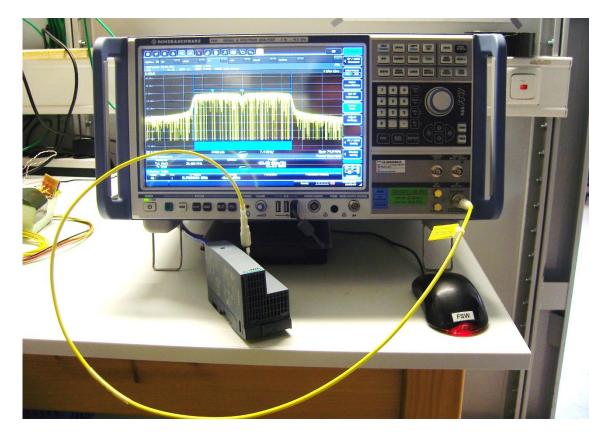
IC: 267AA-ELN1V1

HT40, P20:

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440

File No. T40580-03-01HS, page 24 of 31

IC: 267AA-ELN1V1


5.4 Maximum power spectral density

For test instruments and accessories used see section 6 Part CPC 3.

5.4.1 Description of the test location

Test location: AREA 4

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15E, Section 15.407(a)(1i):

In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISED RSS247 6.2.1 (1): The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

5.4.4 Description of Measurement

The maximum conducted PSD is measured using a spectrum analyser with the function "integrated band power measurement" following the procedure set out in KDB 789033 D02, item F. Therefore, the PSD is measured the same way. The "integrated band power measurement" is related to PSD (dBm/Hz). The EUT is set in TX continuous mode while measuring. The values are corrected with the conversion factor Hz to 1 MHz, 60.0 dB. The resulting values are listed in the following tables. The insertion loss of measurement cable is taken into account with 1.0 dB at 5.2 GHz.

FCC ID: LYHELN1V1 IC: 267AA-ELN1V1

Spectrum analyser settings:

RBW: 1 MHz, VBW: 3 MHz, Detector: RMS (powe Number of points: 6401, Sweep time: see table, Band power function;

Detector: RMS (power averaging), Trace mode: max hold; Band power function;

Modulation	Burst time T	Sweep points	Max sweep time analyser
	(ms)		(s)
802.11a	2.031	6401	13.0
802.11n, HT20	0.893	6401	5.7
802.11n, HT40	0.321	6401	2.1

5.4.5 Test result

Raw data as representative for all one Port measurements, used for 802.11a:

PD1 [P9]	PD1 [P14]	PD1 [P20]
(dBm/Hz)	(dBm/Hz)	(dBm/Hz)
-68.23	-61.49	-59.13
-68.25	-60.73	-59.14
-68.60	-61.64	-59.49
	(dBm/Hz) -68.23 -68.25	(dBm/Hz) (dBm/Hz) -68.23 -61.49 -68.25 -60.73

Calculation of the total PSD:

802.11a, 6 Mbps, 1	тх	Test results conducted				
Port 1		PD [P9]	PD [P14]	PD [P20]	Limit	Margin
FULL		(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dB)
Lowest frequency:	CH36					
T _{nom}	V _{nom}	-4.3	-0.5	1.9	10.0	-8.1
Middle frequency:	CH40					
T _{nom}	V _{nom}	-4.4	0.3	1.9	10.0	-8.1
Highest frequency:	CH48					
T _{nom}	V _{nom}	-4.7	-0.6	1.5	10.0	-8.5

Note. An insertion loss of 1.0 dB at 5200 MHz for measurement cable at P14 and P20 is taken into account. An insertion loss of 3.9 dB at P9 for measurement cable and switch is taken into account.

HT20, MCS0, 1TX		Test results conducted				
			Test		eu	
Port 1		PD [P9]	PD [P14]	PD [P20]	Limit	Margin
FULL		(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dB)
Lowest frequency:	CH36					
T _{nom}	V _{nom}	-4.5	-0.5	1.0	10.0	-9.0
Middle frequency:	CH40					
T _{nom}	V _{nom}	-4.7	-0.8	1.2	10.0	-8.8
Highest frequency:	CH48					
T _{nom}	V _{nom}	-5.0	-1.4	0.9	10.0	-9.1

HT40, MCS8, 1TX	Test results conducted							
Port 1	PD [P9] PD [P14] PD [P20] Limit Margir (dBm/MHz) (dBm/MHz) (dBm/MHz) (dBm/MHz) (dBm/MHz)							
Lowest frequency: CH36up								
T _{nom} V _{nom}	-9.5	-5.1	-3.1	10.0	-13.1			
Middle frequency: CH44up								
T _{nom} V _{nom}	-9.5	-5.0	-2.9	10.0	-12.9			

CSA Group Bayern GmbH Ohmstrasse 1-4 • 94342 STRASSKIRCHEN • GERMANY Tel.: +49(0)9424-94810 • Fax: +49(0)9424-9481440

File No. T40580-03-01HS, page 26 of 31

Rev. No. 4.0, 2016-03-27

FCC ID: LYHELN1V1 IC: 267AA-ELN1V1

Maximum power spectral density limit according to FCC Part 15E, Section 15.407(a)(1i):

Frequency	Maximum power spectral density limit
(MHz)	(dBm/MHz)
5150 - 5250	17.0

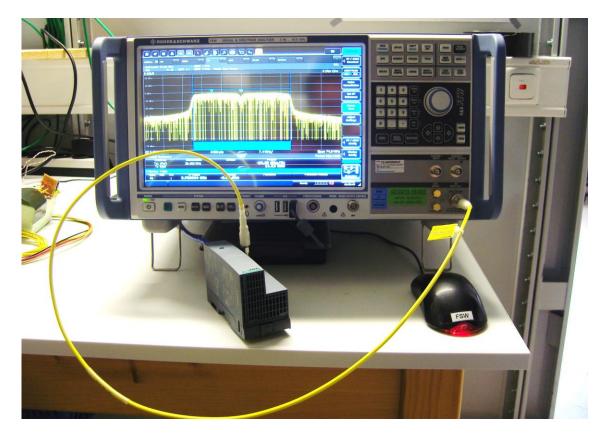
Maximum power spectral density limit according to RSS247, 6.2.1(1): The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Frequency	Maximum power spectral density limit
(MHz)	(dBm/MHz)
5150 - 5250	10.0

The requirements are **FULFILLED.**

Remarks: For detailed test results, please see to test protocols under 5.3.7.

IC: 267AA-ELN1V1


5.5 Defacto limit

For test instruments and accessories used see section 6 Part CPC 3.

5.5.1 Description of the test location

Test location: AREA 4

5.5.2 Photo documentation of the test set-up

5.5.3 Applicable standard

According to FCC Part 15, Section 15.407(a)(3):

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.5.4 Test result

Antenna	Gx	Cond. limit	G	Amax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)	5 GHz
ANT 793-8DK	14.2	30.0	6.0	8.1	21.8	0.0	P9
ANT 793-8DJ	13.6	30.0	6.0	8.1	22.4	0.0	P9
ANT793-8DL	14.0	30.0	6.0	8.1	22.0	0.0	P9
ANT793-8DP	13.5	30.0	6.0	8.1	22.5	0.0	P9

IC: 267AA-ELN1V1

Antenna	Gx	Cond. limit	G	Amax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)	5 GHz
ANT 795-6DC	9.0	30.0	6.0	12.6	27.0	0.0	P14
ANT793-6DG	9.0	30.0	6.0	12.6	27.0	0.0	P14
ANT 795-6MN	8.0	30.0	6.0	12.6	28.0	0.0	P14
ANT795-6MP	7.0	30.0	6.0	12.6	29.0	0.0	P14
ANT896-6MM	7.0	30.0	6.0	12.6	29.0	0.0	P14

PSD:

Antenna	Gx	Cond. limit	G	PSDmax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm/MHz)	(dBi)	(dBm/MHz)	(dBm/MHz)	(dB)	5 GHz
ANT 793-8DK	14.2	17.0	6.0	-4.3	8.8	0.0	P9
ANT 793-8DJ	13.6	17.0	6.0	-4.3	9.4	0.0	P9
ANT793-8DL	14.0	17.0	6.0	-4.3	9.0	0.0	P9
ANT793-8DP	13.5	17.0	6.0	-4.3	9.5	0.0	P9

Antenna	Gx	Cond. limit	G	PSDmax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm/MHz)	(dBi)	(dBm/MHz)	(dBm/MHz)	(dB)	5 GHz
ANT 795-6DC	9.0	17.0	6.0	0.3	14.0	0.0	P14
ANT793-6DG	9.0	17.0	6.0	0.3	14.0	0.0	P14
ANT 795-6MN	8.0	17.0	6.0	0.3	15.0	0.0	P14
ANT795-6MP	7.0	17.0	6.0	0.3	16.0	0.0	P14
ANT896-6MM	7.0	17.0	6.0	0.3	16.0	0.0	P14

Defacto limit according to FCC Part 15, Section 15.407(a)(3):

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency	Defacto EIRP limit				
(MHz)	(dBm)	(Watt)			
5150 - 5250	36	4.0			

Frequency	Defacto radiated PSD limit				
(MHz)	(dBm/MHz)	(mW/MHz)			
5150 - 5250	17.0	50.0			

The requirements are **FULFILLED**.

Remarks:

No power reduction results using the listed antennas in combination with the mentioned power

settings.

File No. T40580-03-01HS, page 29 of 31

IC: 267AA-ELN1V1

5.6 Undesirable emissions

For test instruments and accessories used see section 6 Part SER 1, SER 2 and SER 3.

5.6.1 Description of the test location

Test location: NONE

Remarks: This measurement is already documented in the test report T35625-00-04HS.

5.7 Frequency stability

For test instruments and accessories used see section 6 Part MB.

5.7.1 Description of the test location

Test location: NONE

Remarks: This measurement is already documented in the test report T35625-00-04HS.

5.8 Antenna application

5.8.1 Applicable standard

According to FCC Part 15C, Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit that the user can replace broken antennas, but the use of a standard antenna jack is prohibited.

The EUT use the listed antennas. The equipment connector is SMA-R.

Remarks:

File No. T40580-03-01HS, page 30 of 31

IC: 267AA-ELN1V1

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID CPC 3	Model Type FSW43	Equipment No. 02-02/11-15-001	Next Calib. 05/08/2016	Last Calib. 05/08/2015	Next Verif.	Last Verif.
MB	FSW43	02-02/11-15-001	05/08/2016	05/08/2015		