EMC Technologies Pty. Ltd. ABN 82 057 105 549

Melbourne 176 Harrick Road Keilor Park, Vic 3042

Sydney Unit 3/87 Station Road Seven Hills, NSW 2147 Tel: +61 3 9365 1000 Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au Web: www.emctech.com.au

RADIO REPORT FOR CERTIFICATION

REPORT NUMBER: M181127-1R1

TEST STANDARD: FCC PART 15 SUBPART C SECTION 15.247

- CLIENT: ROBERT BOSCH (AUSTRALIA) PTY LTD
- DEVICE: MCSS RF MODULE
- MODEL: 6LP GW / 6LP SN
- FCC ID: LXP-6LPRF

DATE OF ISSUE: 5 FEBRUARY 2019

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Equipment Under Test: MCSS RF module

CONTENTS

1	Test	Summary	. 7
2	Test	Facility	. 7
	2.1	General	. 7
	2.2	NATA Accreditation	. 7
3	Test	Equipment Calibration	. 8
4	Meas	surement Uncertainty	. 8
5	Devid	ce Details	. 9
	5.1	EUT (Transmitter) Details	. 9
	5.2	EUT (Host) Details	. 9
	5.3	Test Configuration	. 9
	5.4	Modifications	. 9
6	Resu	lts	10
	6.1	§15.203 Antenna Requirement	10
	6.2	§15.205 Restricted Bands of Operation	10
	6.3	§15.207 Conducted Limits	10
	6.4	§15.209 Radiated emission limits; general requirements	10
	6.5	§15.247(a)(1) Channel Separation	10
	6.5.1	Test Procedure	10
	6.5.2	Limits	10
	6.5.3	Results	10
	6.6	§15.247(a)(1)(i) Number of channels and time of occupancy	12
	6.6.1	Test Procedure	12
	6.6.2	Limits	12
	6.6.3	Results	12
	6.7	§15.247(b)(2) Peak Output Power	14
	6.7.1	Test procedure	14
	6.7.2	Limits	14
	6.7.3	Results	14
	6.8	§15.247(d) Out-of-Band/Spurious Emissions	16
	6.8.1	Test procedure	16
	6.8.2	Evaluation of field strength	16
	6.8.3	Limits	16
	6.8.4	Results: Frequency Band: 9 kHz - 30 MHz	19
	6.8.5	Results: Frequency Band: 30 - 1000 MHz	21
	6.8.6	Results: Frequency Band: 1000 – 10000 MHz	27
	6.9	Band Edge Emission Measurements	36
	6.10	§15.247(i) Maximum Permissible Exposure	38
	6.11	§15.215 Occupied Bandwidth – 99% power	38
	6.11.	1 Test procedure	38
	6.11.	2 Limits	38
	6.11.	3 Results	38

GRAPHS

Graph 6-1: 20-dB bandwidth – Middle channel 922.2 MHz	11
Graph 6-2: Channel Separation	11
Graph 6-3: Number of Channels	12
Graph 6-4: Single hop time of Occupancy	13
Graph 6-5: Number of hops over 20 s	13
Graph 6-6: Conducted Peak Power – 917MHz (Low channel)	14
Graph 6-7: Conducted Peak Power – 922.2MHz (Middle channel)	15
Graph 6-8: Conducted Peak Power – 927.6MHz (High channel)	15
Graph 6-9: 100 kHz bandwidth. Peak measurement, EUT x-axis, Measurement antenna	а –
Vertical polarisation, Low channel – 917 MHz	17
Graph 6-10: 100 kHz bandwidth. Peak measurement, EUT x-axis, Measurement antenna	а –
Vertical polarisation, Middle channel – 922.2 MHz	18
Graph 6-11: 100 kHz bandwidth. Peak measurement, EUT x-axis, Measurement antenna	а –
Vertical polarisation, High channel – 927.6 MHz	18
Graph 6-12: Radiated spurious emissions 9 kHz - 30 MHz, Low channel - 917 MHz	19
Graph 6-13: Radiated spurious emissions 9 kHz - 30 MHz, Middle Channel - 922.2 MHz	19
Graph 6-14: Radiated spurious emissions 9 kHz - 30 MHz, High Channel - 927.6 MHz	20
Graph 6-15: Spurious Emissions, 30 – 1000 MHz, Vertical, Low channel 917 MHz	21
Graph 6-16: Spurious Emissions, 30 – 1000 MHz, Horizontal, Low channel 917 MHz	22
Graph 6-17: Spurious Emissions, 30 – 1000 MHz, Vertical, Middle channel 922.2 MHz	23
Graph 6-18: Spurious Emissions, 30 – 1000 MHz, Horizontal, Middle channel 922.2 MHz	24
Graph 6-19: Spurious Emissions, 30 – 1000 MHz, Vertical, High channel 927.6 MHz	25
Graph 6-20: Spurious Emissions, 30 – 1000 MHz, Horizontal, High channel 927.6 MHz	26
Graph 6-21: Spurious Emissions, 1000 - 10000 MHz, Vertical, Peak, Low channel 917 MHz	<u>z</u> 27
Graph 6-22: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Peak, Low channel 917 M	1Hz
	27
Graph 6-23: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Low channel 917 N	1Hz
	28
Graph 6-24: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, Low channel S	<u>917</u>
MHz	29
Graph 6-25: Spurious Emissions, 1000 - 10000 MHz, Vertical, Peak, Middle channel 922.2 M	IHZ
	30
Graph 6-26: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Peak, Middle channel 92	2.2
MHZ	30
Graph 6-27: Spunous Emissions, 1000 - 10000 MHz, Venical, Average, Middle channel 92	2.2
MITZ	31
Graph 6-28: Spunous Emissions, 1000 - 10000 MHZ, Honzontal, Average, Middle chan	nei
922.2 MHZ	3Z
Graph 6-29. Spunous Emissions, 1000 - 10000 MHz, Venical, Peak, High channel 927.6 M	201
Cranh 6 20: Spurious Emissions 1000 10000 MHz Harizantal Dook High shannal 02	33
MU-	0.1
MITZ	33
Mu-	24
Graph 6.22: Spurious Emissions 1000, 10000 MHz Harizontal Average High chapped 02	76
Mu-	25
Craph 6 22: Ligher hand adda 029 MHz, Ligh channel 027 6 MHz, Hanning off	20
Graph 6-34: Higher band edge 920 MHz, High channel 027.6 MHz, Hopping on	36
Graph 6-35: Lower band edge 902 MHz Low channel 917 MHz Henning off	30
Graph 6-36: Lower band edge 902 MHz, Low channel 917 MHz, Hopping on	37
Graph 6-37: Occupied bandwidth - Low channel 017 MHz	20 20
Graph 6-38: Occupied bandwidth - Middle channel 922 2 MHz	30
Graph 6-39: Occupied bandwidth - High channel 922.2 MHz	30
$\nabla (april 0) = 0$. $\nabla (b) = 0$ and $w = 1$ light that the $3 \ge 1 = 0$ will be a subset of the matrix $(a + b) = 0$.	00

TABLES

Table 6-1: 20dB Bandwidth	. 10
Table 6-2: Channel Separation	. 11
Table 6-3: Number of Channels	. 12
Table 6-4: Time of occupancy	. 13
Table 6-5: Conducted Peak Output Power	. 14
Table 6-6: 100 kHz reference level measurement	. 17
Table 6-7: Spurious Emissions, 30 - 1000 MHz, Vertical, Low channel 917 MHz	. 21
Table 6-8: Spurious Emissions, 30 - 1000 MHz, Horizontal, Low channel 917 MHz	. 22
Table 6-9: Spurious Emissions, 30 - 1000 MHz, Vertical, Middle channel 922.2 MHz	. 23
Table 6-10: Spurious Emissions, 30 - 1000 MHz, Horizontal, Middle channel 922.2 MHz	. 24
Table 6-11: Spurious Emissions, 30 - 1000 MHz, High channel 927.6 MHz	. 25
Table 6-12: Spurious Emissions, 30 - 1000 MHz, High channel 927.6 MHz	. 26
Table 6-13: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Low channel 917 M	1Hz 28
Table 6-14: Spurious Emissions 1000 - 10000 MHz Horizontal Average Low channel 9	917
MHz	. 29
Table 6-15: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Middle channel 92	2.2
MHz	. 31
Table 6-16: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, Middle channel 92	2.2
MHz	. 32
Table 6-17: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, High channel 92	27.6
MHz	. 34
Table 6-18: Spurious Emissions, 1000 - 10000 MHz, Average, High channel 927.6 MHz	. 35

RADIO REPORT FOR CERTIFICATION TO FCC PART 15 SUBPART C SECTION 15.247

CERTIFICATE OF COMPLIANCE

Device: Model Number: Serial Number: Manufacturer:	MCSS RF module 6LP GW / 6LP SN 00-12-4B-00-18-6E-7B-1B / 00-12-4B-00-18-6E-7B-6E ROBERT BOSCH (AUSTRALIA) PTY LTD
FCC ID:	FCC ID: LXP-6LPRF
Tested for: Address: Phone Number: Contact: Email:	ROBERT BOSCH (AUSTRALIA) PTY LTD 1555 CENTRE ROAD, CLAYTON VIC 3168 +61 3 9541 5213 Brendan Westhorpe Brendan.Westhorpe@au.bosch.com
Standard:	FCC Part 15 – Radio Frequency Devices Subpart C – Intentional Radiators Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
Result:	
Test Date(s):	11,12 & 13 December, 2018, 10 & 11 January, 2019
Issue Date:	5 February 2019
	Willen XPAP
Test Engineer(s):	Wison Xaio
Attestation:	I hereby certify that the device(s) described herein were tested as described in this report and that the data included is that which was obtained during such testing.
Authorised Signatory:	Chris Zombolas Technical Director EMC Technologies Pty Ltd
	Issued by: EMC Technologies Pty. Ltd., 176 Harrick Road, Keilor Park, VIC, 3042, Australia.

Phone: +61 3 9365 1000 E-mail: <u>emc-general@emctech.com.au</u>

RADIO REPORT FOR CERTIFICATION TO

Page 7 of 39

FCC PART 15 SUBPART C SECTION 15.247

1 TEST SUMMARY

Section	Clause	Sample	Result(s)
6.1	§15.203 Antenna Requirement	N/A	Complied
6.2	§15.205 Restricted Bands of Operation	6LP GW	Complied
6.3	§15.207 Conducted Limits	N/A	Not Applicable
6.4	§15.209 Radiated emission limits; general requirements	6LP GW	Complied
6.5	§15.247(a)(1) Channel Separation	6LP GW	Complied
		& 6LP SN	
6.6	§15.247(a)(1)(i) Number of channels and time of	6LP GW	Complied
	occupancy	& 6LP SN	
6.7	§15.247(b)(2) Peak Output Power	6LP GW	Complied
6.8	§15.247(d) Out-of-Band/Spurious Emissions	6LP GW	Complied
6.9	§15.247(d) Band-Edge Emission Measurements	6LP GW	
		& 6LP SN	
6.10	§15.247(i) Maximum Permissible Exposure	N/A	Complied
6.11	§15.215 Occupied Bandwidth – 99% power	6LP GW	Complied

2 TEST FACILITY

2.1 General

EMC Technologies Pty Ltd is listed by the FCC as a test laboratory able to perform compliance testing for the public. EMC Technologies is listed as an FCC part 47 CFR 2.948 test lab and may perform the testing required under Parts 15 and 18 – **FCC Registration Number 90560**.

EMC Technologies Pty Ltd has also been accredited as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001**.

EMC Technologies indoor open are test site (iOATS) have been accepted by Industry Canada for the performance of radiated measurements in accordance with RSS-Gen, Issue 8 - Industry Canada iOATS number - IC 3569B.

2.2 NATA Accreditation

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to operate to the IEC/ISO17025 requirements. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires fully documented test procedures, continued calibration of all equipment to the National Standard at the National Measurements Institute (NMI) and an internal quality system similar to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A²LA).

EMC Technologies is accredited in Australia by the National Association of Testing Authorities (NATA). All testing in this report has been conducted in accordance with EMC Technologies'

scope of NATA accreditation to ISO 17025 for both testing and calibration and ISO 17020 for Inspection – Accreditation Number 5292.

The current full scope of accreditation can be found on the NATA website: www.nata.com.au

3 **TEST EQUIPMENT CALIBRATION**

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA accredited laboratory such as Keysight Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

Equipment Type	Make/Model/Serial Number	Last Cal. dd/mm/yyyy	Due Date dd/mm/yyyy	Cal. Interval
Chamber	Frankonia SAC-3-2 (R-144)	17/07/2017	17/07/2020	3 Year ^{*1}
EMI Receiver	R&S ESW26 Sn: 101306 (R-143)	14/05/2018	14/05/2019	1 Year ^{*2}
•	EMCO 6502 Active Loop 9 kHz – 30 MHz Sn. 9311-2801 (A-231)	15/08/2018	15/08/2021	3 Year*2
Antennas	SUNOL JB1 Sn. A061917 (A-425)	21/07/2017	21/07/2019	2 Year ^{*2}
	EMCO 3115 Double Ridge Horn Sn: 8908-3282 (A-004)	15/07/2016	15/07/2019	3 Year ^{*1}
	Huber & Suhner Sucoflex 104A Sn: 503055 (C-457)	02/01/2018	02/01/2019	1 Year ^{*1}
Cables*4	Huber & Suhner Sucoflex 104A Sn: 507099 (C-479)	10/01/2018	10/01/2019	1 Year ^{*1}
	Huber & Suhner Sucoflex 104A Sn: 503061 (C-463)	03/01/2018	03/01/2019	1 Year ^{*1}

Note *1. Internal NATA calibration.

Note *2. External NATA / A2LA calibration.

Note *3. Calibration date was valid during the time of testing.

Note *4. Cables are verified before measurements are taken.

MEASUREMENT UNCERTAINTY 4

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

Conducted Emissions:	9 kHz to 30 MHz	±3.2 dB
Radiated Emissions:	9 kHz to 30 MHz	±4.1 dB
	30 MHz to 300 MHz	±5.1 dB
	300 MHz to 1000 MHz	±4.7 dB
	1 GHz to 18 GHz	±4.6 dB
Peak Output Power:		±1.5 dB

Peak Output Power:

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

5 DEVICE DETAILS

(Information supplied by the Client)

Radio frequency module encompassing two variants. This module operates as a frequency hopping system in the 915MHz band. The variants have identical RF sections and only differ in parts loading with connectors and a USB to UART section.

5.1 EUT (Transmitter) Details

Radio:	MCSS RF module transmitter
Operating Frequency Range:	917.0 – 927.6 MHz
Modulation:	FHSS
Number of Channels:	50
Microprocessor:	TI CC1310
Antenna:	Pulse W5012 half-wave dipole antenna
Antenna gain:	2.0 dBi
Highest frequency related to the transmitter circuit	927.6 MHz

5.2 EUT (Host) Details

Test Sample:	MCSS RF module
Model Number:	6LP GW / 6LP SN
Serial Number:	00-12-4B-00-18-6E-7B-1B / 00-12-4B-00-18-6E-7B-6E
Manufacturer:	ROBERT BOSCH (AUSTRALIA) PTY LTD
Supply Rating:	2.5-5.5V DC

5.3 Test Configuration

Testing was performed with the EUT set to transmit continuously (with modulation applied).

Frequency hopping system attributes were tested with model 6LP SN and 6LP GW. Single channel transmissions were tested with Model 6LP GW.

5.4 Modifications

No modification was required to achieve compliance.

6 **RESULTS**

6.1 §15.203 Antenna Requirement

The MCSS RF module has an U.FL antenna port and incorporates the following external antenna only:

Antenna Type: Pulse W5012 half-wave dipole antenna Antenna gain: 2.0 dBi Connector: RP-SMA Antenna port to antenna connection: 200 mm Amphenol U.FL to RP-SMA cable

The above installation will prevent any unauthorised switching of antennas.

6.2 §15.205 Restricted Bands of Operation

The provisions of the §15.205 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.8

6.3 §15.207 Conducted Limits

The device is DC powered and does not connect directly or indirectly to the AC mains network. Test was not applicable.

6.4 §15.209 Radiated emission limits; general requirements

The provisions of the §15.205 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.8

6.5 §15.247(a)(1) Channel Separation

6.5.1 Test Procedure

The channel separation was measured while the device was transmitting with typical hopping function enable. The 20dB bandwidth was measured to determine the limits.

6.5.2 Limits

In the band 902 – 928 MHz, the channel separation must be more than 25 kHz or the 20dB bandwidth, whichever is greater.

6.5.3 Results

20dB bandwidth

Channel	Centre Frequency [MHz]	20 dB Bandwidth [kHz]
Low	917.0	103.10
Middle	922.2	105.09
High	927.6	104.30

Table 6-1: 20dB Bandwidth

The largest 20 dB bandwidth was measured on the Middle channel:

MultiView	Spectrum								
Ref Level 15. Att Input TDS	00 dBm 15 dB SWT 1 AC PS	4.45 ms VBW Off Notcl	3 kHz 10 kHz Mod h Off	e Sweep			Frequ	uency 922.20	000000 MHz
1 Frequency S	weep								⊙1Pk Max
30 dBm					M1			M1[1] 9	23.96 dBm 22.229970 MHz
20 dBm				A~	n A				
10 dBm	-15.000 dBm		TL	- A V	~ ~ ~			2	
0 dBm			Y			- V			
-10 dBm			N				N	-	
-20 dBm		- And					hungen		
-30 dBm	amond	Sunt					~	my	n.
-40 dBm-									- march
-50 dBm									
-60 dBm									
CF 922.2 MHz			1001 pt	6	40	0.0 kHz/		S	pan 400.0 kHz
2 Marker Table	2								
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1 T1 T2	1 9 1 1	22.22997 M 922.15205 M 922.25714 M	HZ 2 IHz IHz	4.32 dBm 3.84 dBm	ndB ndB down (Q Factor	зw		105.09 k 87	0 dB (Hz 75.2

Graph 6-1: 20-dB bandwidth – Middle channel 922.2 MHz

Channel Separation

Graph 6-2: Channel Separation

Table 6-2: Channel Separation

Channel Separation [kHz]	Limit [kHz]	Result
199.8	>=105.09	Complied

6.6 §15.247(a)(1)(i) Number of channels and time of occupancy

6.6.1 Test Procedure

The tests were performed in accordance with ANSI C63.10: 2013 Clause 7.8.3 for Number of hopping frequencies and Clause 7.8.4 for Time of occupancy.

6.6.2 Limits

In the band 902-928 MHz, frequency hopping systems operation bands shall use at least 50 hopping frequencies. The average time of occupancy on any channels shall not be greater than 0.4 seconds within a 20 seconds period.

6.6.3 Results

Graph 6-3: Number of Channels

Table 6-3: I	Number of	Channels
--------------	-----------	----------

Number of Channels	Limit [kHz]	Result
50	>=50	Complied

MultiView	Spectrum	≱							
Ref Level -38. Att Input	.00 dBm 0 dB = SW1 1 AC PS	20 s VBW Off Notch	5 kHz 20 kHz Off				Frequ	ency 921.37	00000 MHz
1 Zero Span									⊙1Pk Max
-40 dBm								M2[1] -105.46 dBm
								_	4.5 ms
								M1[1] -105.46 dBm
-50 dBm									4.5 ms
						1			
-60 dBm									
-/U dBm									
-90 dBm									
-ou ubili									
-90 dBm									
-100 dBm									
2									1
a republic where where	North March March Marchel	ungunigered	phippontubilities	mouniquella	double how build	Marythanstell	Labornaryelly	duter when the about	mon work the
-110 dBm									
-120 dBm									
-120 UBIII									
-130 dBm									
CF 921.37 MHz				1001	pts				2.0 s/

Graph 6-5: Number of hops over 20 s

Table	6-4:	Time	of occu	pancy

Single hop time of	Number of	Total time of occupancy	Limit	Result
occupancy [ms]	hops over 20 s	over 20 s [ms]	[ms]	
23.6	2	47.2	<=400	Complied

6.7 §15.247(b)(2) Peak Output Power

6.7.1 Test procedure

The peak output power was measured using the conducted methods according the procedure from ANSI C63.10 clause 7.8.5.

6.7.2 Limits

From §15.247(b)(2), the peak output power limit at frequencies 902-928 MHz for frequency hopping systems employing 50 hopping channels is 1 W.

6.7.3 Results

Conducted Peak Output Power

Channel	Freq.	Conduc	ted Power	Limit	∆ Limit*	Decult
Channel	MHz	dBm	w	w	w	Result
Low	917.0	24.80	0.301	1	-0.699	Complied
Middle	922.2	24.90	0.309	1	-0.681	Complied
High	927.6	24.33	0.271	1	-0.729	Complied

Table 6-5: Conducted Peak Output Power

*A negative Δ is below the limit

Graph 6-6: Conducted Peak Power – 917MHz (Low channel)

MultiView	Spectrum	1							
Ref Level 15. Att Input TDS	00 dBm 15 dB SWT 1 AC PS	1.01 ms VBW Off Note	300 kHz 1 MHz Mo h Off	ode Sweep			Freque	ency 922.20	00000 MHz
1 Frequency S	weep								⊙1Pk Max
30 dBm				M1				M1[1]	24.90 dBm 922.17800 MHz
20 dBm									
10 dBm	-15.000 dBm								
0 dBm							1		
-10 dBm		/							
-20 dBm	a sumarray							and the second second	
-30 dBm-									man harden
-40 dBm						-			
-50 dBm									
-60 dBm									
CF 922.2 MHz			1001 pt	ts	20	0.0 kHz/			Span 2.0 MHz
2 Marker Table Type Ref M1	e Trc 1	X-Value 922.178 MH	Z	Y-Value 24.90 dBm		Function		Function Re	esult

Graph 6-7: Conducted Peak Power – 922.2MHz (Middle channel)

MultiView	Spectrum								
Ref Level 15 Att Input TDS	.00 dBm 15 dB SWT 1 AC PS	RBW 1.01 ms VBW Off Note	300 kHz 1 MHz Moo h Off	de Sweep			Frequ	ency 927.60	000000 MHz
1 Frequency S	weep						_		• 1Pk Max
30 dBm								MILI	24.33 dBm 927.63000 MHz
Service Services					M1				
20 dBm									
	15 000 dBm					-			
10 dBm	10.000 0000								
10 0.011		0					~		
0 dBm									
0 dbin									
10 dbm		1							
-10 dBm		1							
20 dbm	/							1	
-20 UBIN	1. Justice					10		and and a second	
20 dbm	man							andress	and makender with
-30 UBIII-									
10 d0 m									
-40 UBIII-									
FO do-									
-50 dBm-									
50 JD									
-60 dBm-									
CF 927.6 MHz		·	1001 pts	5	20	0.0 kHz/			Span 2.0 MHz
2 Marker Tabl	e		1		1				
N1 Ref	1	27.63 MHz		4.33 dBm		Function		Function Re	esult
PIL	1	527100 Mill	· · ·				11.01.2	010 (0 () 1	2 (

Graph 6-8: Conducted Peak Power – 927.6MHz (High channel)

6.8 §15.247(d) Out-of-Band/Spurious Emissions

6.8.1 Test procedure

Radiated out-of-band/spurious emissions measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

The test frequency range was sub-divided into smaller bands with the defined resolution bandwidths to permit reliable display and identification of emissions.

Frequency range [MHz]	Measurement Bandwidth [kHz]	Measurement Distance [m]	Antenna
0.009 to 0.150	0.2	3	0.6 matra laon antanna
0.150 to 30	9	3	0.6 metre loop antenna
30 to 1000	120	3	Biconilog hybrid
1000 to 18 000	1000	3	Standard gain or broadband
18 000 to 40 000	1000	1	horn

EUT was set at a height of 0.8 m for measurements below 1000 MHz and set at a height of 1.5 m for measurements above 1000 MHz.

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified and its maximum level found by rotating the automated turntable and by varying the antenna height. For below 1000 MHz the emissions were measured with a Quasi-Peak detector, and for above 1000 MHz the emissions were measured with Peak and Average detectors.

EUT was investigated on all three axes (x, y, and z) with the loop antenna. Measurements on the worst axis are presented below.

The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical polarisations of the measurement antenna.

6.8.2 Evaluation of field strength

Field strengths were calculated automatically by the software using pre-stored calibration data. The method of calculation is shown below:

$$E = V + AF - G + L$$

Where: $E = \text{Radiated Field Strength in dB}\mu\text{V/m}$.

V = EMI Receiver Voltage in dBµV/m.

AF = Antenna Factor in dB (stored as a data array).

G = Preamplifier Gain in dB (stored as a data array).

L = Cable loss in dB (stored as a data array of Insertion Loss versus frequency).

6.8.3 Limits

The limit applied is in accordance with the out-of-band/spurious emissions limit defined in §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The in-band peak PSD in 100 kHz bandwidth were measured on all three channels. The maximum PSD level was used to establish the limit. However, the general limits of §15.209 apply for the restricted bands of operation defined in §15.205.

Table 6-6: 100 kHz reference level measurement

Channel	Peak at 3 m (dBµV/m)	Limit at 3m (dBµV/m)
Middle	123.41	103.41

10:14:11 10.01.2019

Graph 6-9: 100 kHz bandwidth. Peak measurement, EUT x-axis, Measurement antenna – Vertical polarisation, Low channel – 917 MHz

10:19:27 10.01.2019

10:23:37 10.01.2019

Graph 6-11: 100 kHz bandwidth. Peak measurement, EUT x-axis, Measurement antenna – Vertical polarisation, High channel – 927.6 MHz

6.8.4 Results: Frequency Band: 9 kHz - 30 MHz

All emissions measured in the frequency band 9 kHz to 30 MHz complied with the requirements of \$15.247(d). The emissions were 10 dB or more below the limit.

Graph 6-12: Radiated spurious emissions 9 kHz - 30 MHz, Low channel - 917 MHz

Graph 6-13: Radiated spurious emissions 9 kHz – 30 MHz, Middle Channel – 922.2 MHz

Graph 6-14: Radiated spurious emissions 9 kHz - 30 MHz, High Channel - 927.6 MHz

6.8.5 Results: Frequency Band: 30 - 1000 MHz

All spurious emissions measured in the frequency band 30 MHz to 1000 MHz complied with the requirements of 15.247(d).

Graph 6-15: Spurious Emissions, 30 – 1000 MHz, Vertical, Low channel 917 MHz

Table 6-7: Spurious Emissions, 30 - 1000 MHz, Vertical, Low channel 917 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Vertical	917.00	123.4	N/A	N/A
2	Vertical	118.40	34.6	43.5	-8.9
3	Vertical	965.05	43.1	54.0	-10.9

Graph 6-16: Spurious Emissions, 30 – 1000 MHz, Horizontal, Low channel 917 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Horizontal	917.00	108.2	N/A	N/A
2	Horizontal	119.32	40.0	43.5	-3.5
3	Horizontal	114.58	39.4	43.5	-4.1

Table 6-8: Spurious Emissions, 30 - 1000 MHz, Horizontal, Low channel 917 MHz

Graph 6-17: Spurious Emissions, 30 – 1000 MHz, Vertical, Middle channel 922.2 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Vertical	922.21	123	N/A	N/A
2	Vertical	115.55	35.7	43.5	-7.8
3	Vertical	970.16	42.8	54	-11.2
4	Vertical	962.18	41	54	-13

Table 6-9: Spurious Emissions, 30 - 1000 MHz, Vertical, Middle channel 922.2 MHz

Graph 6-18: Spurious Emissions, 30 – 1000 MHz, Horizontal, Middle channel 922.2 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Horizontal	922.2	112.8	N/A	N/A
2	Horizontal	114.64	38.6	43.5	-4.9
3	Horizontal	136.45	38.4	43.5	-5.1

Table 6-10: Spurious Emissions, 30 - 1000 MHz, Horizontal, Middle channel 922.2 MHz

Graph 6-19: Spurious Emissions, 30 – 1000 MHz, Vertical, High channel 927.6 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Vertical	927.6	122.9	N/A	N/A
2	Vertical	975.61	42.8	54	-11.2
3	Vertical	112.74	31.9	43.5	-11.6
4	Vertical	137.34	30.3	43.5	-13.2
5	Vertical	967.52	39.5	54	-14.5

Table 6-11: Spurious Emissions, 30 - 1000 MHz, High channel 927.6 MHz

Graph 6-20: Spurious Emissions, 30 – 1000 MHz, Horizontal, High channel 927.6 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1*	Horizontal	927.61	111.9	N/A	N/A
2	Horizontal	115.56	36.6	43.5	-6.9
3	Horizontal	137.35	35.4	43.5	-8.1

Table 6-12: Spurious Emissions, 30 - 1000 MHz, High channel 927.6 MHz

6.8.6 Results: Frequency Band: 1000 – 10000 MHz

All spurious emissions measured in the frequency band 1000 MHz to 10000 MHz complied with the requirements of §15.247(d). The emissions were more than 10 dB below the limit.

Graph 6-21: Spurious Emissions, 1000 - 10000 MHz, Vertical, Peak, Low channel 917 MHz

Graph 6-22: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Peak, Low channel 917 MHz

Graph 6-23: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Low channel 917 MHz

Table 6-13: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Low channel 917 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Vertical	2751.03	36	54	-18
2	Vertical	1834	41.2	103.41	-62.21

Graph 6-24: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, Low channel 917 MHz

Table 6-14: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, Low channel 917 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Horizontal	1834.02	36.0	103.41	-67.41

Graph 6-25: Spurious Emissions, 1000 - 10000 MHz, Vertical, Peak, Middle channel 922.2 MHz

Graph 6-26: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Peak, Middle channel 922.2 MHz

Graph 6-27: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, Middle channel 922.2 MHz

Table 6-15: Spurious Emissions,	1000 - 10000 MHz,	Vertical, Average,	Middle channel	922.2 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Vertical	2766.65	35.5	54	-18.5
2	Vertical	1844.43	40.4	103.41	-63.01

Graph 6-28: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, Middle channel 922.2 MHz

Table 6-16: Spurious Emissions	1000 - 10000 MHz	Horizontal Average	Middle channel 922 2 MHz
	, 10000 100000 mm 12,	rionzonian, rivorago,	

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Horizontal	2766.62	35.9	54	-18.1
2	Horizontal	1844.4	39	103.41	-64.41

Graph 6-29: Spurious Emissions, 1000 - 10000 MHz, Vertical, Peak, High channel 927.6 MHz

Graph 6-30: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Peak, High channel 927.6 MHz

Graph 6-31: Spurious Emissions, 1000 - 10000 MHz, Vertical, Average, High channel 927.6 MHz

Table 6-17: Spurious Emissions,	1000 -	10000 MHz,	Vertical, Average,	High channel 927.6 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Vertical	2782.85	35.4	54	-18.6
2	Vertical	1855.21	38	103.41	-65.41

Graph 6-32: Spurious Emissions, 1000 - 10000 MHz, Horizontal, Average, High channel 927.6 MHz

Peak	Polarisation	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta Limit (dB)
1	Horizontal	2782.81	35.6	54	-18.4
2	Horizontal	1855.2	39.8	103.41	-63.61

Table 6-18: Spurious Emissions, 1000 - 10000 MHz, Average, High channel 927.6 MHz

6.9 §15.247(d) Band Edge Emission Measurements

Band-edge measurements were done using conducted methods in accordance to ANSI C63.10 clause 6.10.

All emissions measured near the lower and higher band edge complied with the requirements of §15.247(d).

Graph 6-33: Higher band edge 928 MHz, High channel 927.6 MHz, Hopping off

Graph 6-34: Higher band edge 928 MHz, High channel 927.6 MHz, Hopping on

MultiView	B Spectrum								
Ref Level 12 Att Input TDS	2.00 dBm 15 dB SWT 1 AC PS	1.04 ms VBW Off Notch	100 kHz 300 kHz Mo Off	de Sweep			Frequ	uency 911.5 0	00000 MHz
1 Frequency S	Sweep								•1Pk Max
30 dBm						MI		D5[1]	-65.79 dB -4.0250 MHz
20 dBm						Ă		M1[1]	23.96 dBm 916.9940 MHz
10 dBm	-12.000 dBm								
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm						N	η		
-40 dBm	D4				D5	M2 J	Detre	0	
. 59.48mmm	And M3	mund	بعالى، دور الامرين بەرمە و	Harmann	when have	-	- mm	- Anne and a second	an see he have a set
-60 dBm									
CF 911.5 MHz			1001 pt	S	3	.0 MHz/			Span 30.0 MHz
2 Marker Tab	е								
Type Re	t Trc	X-Value		Y-Value		Function		Function R	esult
M2	1	915.0 MHz		12.46 dBm					
M3	ī	902.0 MHz	<u>،</u> -!	51.45 dBm					
D4 M1 D5 M1	1 1	-15.984 MHz -4.025 MHz		-70.56 dB -65.79 dB					

Graph 6-35: Lower band edge 902 MHz, Low channel 917 MHz, Hopping off

MultiView 🕀	Spectrum	<u> </u>							
Ref Level -13.0 Att Input	00 dBm 10 dB SW 1 1 AC PS	• RI 1.04 ms VI Off N	BW 100 kHz BW 300 kHz Monthead M	1ode Sweep			Frequ	ency 911.50	00000 MHz
1 Frequency Sw	/eep								0 1 Pk Max
-20 dBm								M1[1] M2[1]	-43.48 dBm 917.1200 MHz -83.91 dBm
-30 dBm									913.0000 MHZ
-40 dBm						Total and the second seco	Mann Mannanana	anna/anh a/ar	WW AMWAR
-50 dBm									
-60 dBm									
-70 dBm								V 1	
-80 dBm	M3 manantal	munan	an market and the	Mushmung	manne	me			
-90 dBm									
-100 dBm									
-110 dBm									
CF 911.5 MHz		1	1001 p	ts	3	.0 MHz/	_		pan 30.0 MHz
2 Marker Table						-1			
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1 M2 M3	1	917.12 MI 915.0 MI	1z - 1z -	43.48 dBm 83.91 dBm 81 68 dBm					
0.01	1	30210 M	12	orioo ubiii				010 (- (- 1	

Graph 6-36: Lower band edge 902 MHz, Low channel 917 MHz, Hopping on

6.10 §15.247(i) Maximum Permissible Exposure

The EUT complied with the applicable maximum permissible exposure levels. Refer to EMC Technologies report M181127-2.

6.11 §15.215 Occupied Bandwidth – 99% power

6.11.1 Test procedure

The bandwidth containing 99% power of the transmitted signal was measured using the procedure from ANSI C63.10 section 6.9.

6.11.2 Limits

The 99% power should be contained within the frequency band 902 - 928 MHz.

6.11.3 Results

Channel	99% Bandwidth [MHz]	Low Frequency [MHz]	ow Frequency High Frequency [MHz] [MHz]	
Low	0.0967	916.94	917.04	Complied
Middle	0.0963	922.14	922.24	Complied
High	0.0967	927.54	927.64	Complied

Graph 6-37: Occupied bandwidth – Low channel 917 MHz

Graph 6-38: Occupied bandwidth – Middle channel 922.2 MHz

Graph 6-39: Occupied bandwidth – High channel 927.6 MHz

