VERIFICATION OF COMPLIANCE 1.

COMPANY NAME:

LABWAY CORPORATION

6F, 788, CHUNG CHENG ROAD

CHUNG HO CITY, TAIPEI

TAIWAN, R. O. C.

CONTACT PERSON: JERRY WU / MANAGER

TELEPHONE NO: (02) 3234-0222

MODEL NO/NAME: B091D70

SERIAL NO:

N/A

DATE TESTED:

APRIL 04, 1998

TYPE OF EQUIPMENT:	INFORMATION TECHNOLOGY EQUIPMENT (ITE)
MEASUREMENT DISTANCE:	() 3 METER (X) 10 METER
TECHNICAL LIMIT:	CLASS B
FCC RULES:	PART 15
MEASUREMENT PROCEDURE	ANSI C63.4:92 / EN55022
EQUIPMENT AUTHORIZATION PROCEDURE	CERTIFICATION
MODIFICATION MADE ON EUT	X YES NO
DEVIATIONS FROM MEASUREMENT PROCEDURE	YES (refer to section 21 for comments) NO
RADIATED EMISSION TEST RESULT	-1.7 dB @ 162.18 MHz/VERTICAL
CONDUCTED EMISSION TEST RESULT	-2.2 dB @ 0.175 MHz/L2

The above equipment was tested by Compliance Engineering Services, Inc. for compliance with the requirements set forth in the FCC CFR 47, PART 15. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By

Acknowledged By

C.I. KUO / VICÉ PRESIDENT COMPLIANCE ENGINEERING SERVICES

JERRY WU / MANAGER LABWAY CORPORATION

PRODUCT DESCRIPTION 2.

LIST OF EACH OSC. OR XTAL. FREQ. (FREQ.>=1 MHz)	X1= 27 MHz
CHIPSET BRAND AND PART NO.	LUXSONOR, LS220
NUMBER OF PCB LAYERS	4 LAYERS
NO. OF EXTERNAL I/O CONNECTORS	5

TESTED SYSTEM DETAILS 3.

The Model names for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Host Computer

Device Type	Manufacturer	Model Number	Serial Number	FCC ID / DoC
HOST COMPUTER	VIVA	VIVA586-133	HS-03	DOC
HARD DRIVE	WESTERN DIGITAL	WDAC2635-32F	HD-03	N/A
FLOPPY DRIVE	Panasonic	JU-257A606P	FD-03	N/A
VGA CARD	CARDEX	S3 TRIO64V2	CV18	ICUVGA-GW503B
DVD DECODER BOARD (EUT)	LABWAY	B091-D70	SC-03	DOC
I/O CARD	BUILT-IN	N/A	N/A	N/A
SOUND CARD	CREATIVE	CT4170	SC-01	DOC

External Peripheral Devices

Device Type	Manufacturer	Model Number	Serial No.	FCC ID / DoC
MONITOR	VIVA	1568	N/A	DOC
KEYBOARD	Acer	6311-TW	KB-12	JVPKBS-WIN
SPEAKER	Labtec	LCS-150	SPK-01	N/A
MODEM	LOGIDATA	2496CF	MD-04	I972496AF
PRINTER	MATSUSHITA	KX-P1080 <i>i</i>	PRN-01	ACJ5Z6KX-P1080I
HI 8	SAMSUNG	SCH985	67CG300364	N/A

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan R.O.C. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200064-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT(1300F2))

6. MEASUREMENT INSTRUMENTATION

Radiated emissions were measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, ridged waveguide, liner horn. EMI receivers were used for line conducted readings, spectrum analyzers with pre-selectors and quasi-peak detectors were used to perform radiated measurements. Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specification for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

MEASURING INSTRUMENT CALIBRATION 7.

The measuring equipment which was utilized in performing the tests documented herein has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment which is traceable to recognized national standards.

UNITS OF MEASUREMENT 8.

Measurements of radiated interference are reported in terms of $dB\left(uV/m\right)$ at a specified distance. The indicated readings on the spectrum analyzer were converted to dB(uV/m) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of dB(uV).

The field strength is calculated by adding the Antenna Factor and Cable Factors, then by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

WhereFS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/m. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dBuV/m$

Level in uV/m = Common Antilogarithm [(32 dBuV/m)/20] = 39.8 uV/m

9. **ANTENNAS**

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 10 meters from the leading edge of the turn table.

CLASSIFICATION OF DIGITAL DEVICE 10.

Class A includes digital devices that are marketed for use in commercial, industrial or business environments, excluding devices which are marketed for use by the general public or are intended to be used in the home.

Class B includes digital devices that are marketed for use in residential environments, notwithstanding use in commercial, business and industrial environments.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as Class B device, and in fact is encouraged to do so provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

RADIATED EMISSION LIMITS 11.

FCC PART 15 CLASS B

MEASUR	ING DISTANCE OF 3 MET	'ER
FREQUENCY RANGE (MHz)	FIELD STRENGTH (Microvolts/m)	FIELD STRENGTH (dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

FCC CLASS B ALTERNATIVE DISTANCE (CISPR 22:1993)

MEASUR:	ING DISTANCE OF 10 ME	rer
FREQUENCY RANGE (MHz)	FIELD STRENGTH (Microvolts/m)	FIELD STRENGTH (dBuV/m)
30-88	30	29.5
88-216	45	33.0
216-960	60	35.6
960-1000	150	43.5
ABOVE 1000	150	43.5

Note: Limits extrapolated 20dB/decade

FCC PART 15 CLASS A

	NG DISTANCE OF 10 ME	TED
FREQUENCY RANGE (MHz)	FIELD STRENGTH (Microvolts/m)	FIELD STRENGTH (dBuV/m)
30-88	90	39.1
88-216	150	43.5
216-960	210	46.4
Above 960	300	49.5

12. CONDUCTED EMISSION LIMITS

CLASS B

	021100	
FREQUENCY RANGE	FIELD STRENGTH (Microvolts)	FIELD STRENGTH (dBuV)
450kHz-30MHz	250	48

CLASS A

FREQUENCY RANGE	FREQUENCY RANGE FIELD STRENGTH (Microvolts)	
450kHz-1.705MHz	1000	60
1.705MHz - 30MHz	3000	69.54

13. CONDUCTED EMISSION TEST PROCEDURE

The EUT is located so that the distance between the boundary of the EUT and the closest surface to the LISN is 0.8m.

EUT test configuration is according to Section 7 of ANSI C63.4/1992.

Conducted disturbance shall be measured between the phase lead and the ground, and between the neutral lead and the ground. The frequency $0.450-30\,\mathrm{MHz}$ shall be investigated.

Set the EMI receiver to PEAK detector setting and sweep continuously over the frequency range to be investigated. Set resolution bandwidth to 9kHz minimum. Connect EMI receiver input cable to LINE 1 RF measurement connection on the LISN. Connect a 50ohm terminator to the unused RF connection on the LISN. For each mode of EUT operation, maximize emissions readings by manipulating cable and wire positions. Record the configuration for each EUT power cord which produces emissions closest to the limit. Repeat the same procedure for LINE 2 of each EUT power cord.

14. RADIATED EMISSION TEST PROCEDURE

The EUT and all other support equipment are placed on a wooden table 80 cm above the ground screen. Antenna to EUT distance is either 3 meters or 10 meters (Class B or Class A). During the test, the table is rotated 360 degrees to maximize emissions, and the antenna is positioned from 1 to 4 meters above the ground screen to further maximize emissions. The antenna is polarized in both vertical and horizontal positions.

EUT test configuration is according to Section 8 of ANSI C63.4/1992.

Monitor the frequency range of interest at a fixed antenna height and EUT azimuth. Frequency span should be small enough to easily differentiate between broadcast stations and intermittent ambients. Rotate EUT 360 degrees to maximize emissions received from EUT. If emission increases by more than 1 dB, or if another emission appears that is greater by 1 dB, return to azimuth where maximum occurred and perform additional cable manipulation to further maximize received emission.

Move antenna up and down to further maximize suspected highest amplitude signal. If emission increased by 1 dB or more, or if another emission appears that is greater by 1dB or more, return to antenna height where maximum signal was observed and

manipulate cables to produce highest emissions, noting frequency and amplitude.

15. AMBIENT CONDITIONS

The ambient conditions at the time of final tests were as follows:

	Radiated Emission	Conducted Emission
Temperature	25℃	26℃
Humidity	84% 82%	

16. SYSTEM TEST CONFIGURATION

The equipment under test was configured and operated in a manner which tended to maximize its emission characteristics in a typical application. Power and signal distribution, ground, interconnecting cabling and physical placement of equipment simulated the typical application and usage insofar as practicable.

	SOFTWARE USED DURING THE TESTS
Operating System	WINDOWS 95
File Name	PC-DVD PLAYER
Program Sequence	1. WINDOWS 95 BOOTS SYSTEM. 2. RUN PC-DVD PLAYER PROGRAM TO PLAY DVD.

17. EQUIPMENT MODIFICATIONS

To achieve compliance to CLASS B levels, the following change(s) were made during compliance testing:

- ADDED A FERRITE BEAD ON VCC INPUT OF PCI BUS. Mod.#1
- CHANGED R66 RESISTOR TO 33 OHM WITH A 22PF BYBASS Mod.#2 CAPACITOR.
- Mod.#3 ADDED A 5.1 OHM RESISTOR TO U14 VCC.
- CONNECTED NUMBER 5, 6, 7, 8 AND 10 GROUND PINS OF J7 Mod.#4 TO CHASSIS GROUND.
- CONNECTED NUMBER 3 AND 4 PINS OF J4 TO CHASSIS GROUND. Mod.#5
- Mod.#6 REPLACED R52 AND R53 RESISTORS TO 75 OHM.
- CHANGED L10 AND L12 TO 5.1 OHM RESISTORS. Mod.#7
- ADDED 22PF CAPACITORS ON EACH TERMINAL OF R53 Mod.#8 RESISTOR.

TEST EQUIPMENT LIST 19.

					Cal	Due
Equipment	Manuf.	Model No.	Serial No.	Site	Date	Date
EMI TEST	ROHDE	DSAI-D	827832/001	D	11/97	11/98
DISPLAY	& SCHWARZ	804.8932.52				
EMI TEST RF	ROHDE	ESBI-	827832/001	D	11/97	11/98
UNIT	& SCHWARZ	RF/1005.4300.52				
AMPLIFIER	H.P.	8447E A	272A02379	D	12/97	12/98
ANTENNA	EMC	3142	1212	D	1/98	1/99
LISN(EUT)	EMCO	3825/2	1435	D	1/98	1/99
LISN	SOLAR	8012-50-R-24-BNC	8305114	D	7/97	7/98
CABLE	TALLEY	HELIX FSJ4-50B	D0301	D	12/97	12/98
CABLE	TIME	LMR-400-2	D1001	D	12/97	12/98
	MICROWAVE			:		
SPECTRUM	H.P.	8568B	2928A04814	E	2/98	2/99
ANALYZER						
SPECTRUM	H.P.	85662A	2848A18276	E	2/98	2/99
DISPLAY						
QUASI-PEAK	H.P.	85650A	2811A01439	E	2/98	2/99
DETECTOR						
AMPLIFIER	H.P.	8447D B	1644A02328	E	4/97	4/98
ANTENNA	CHASE	CBL6111A	1547	E	10/97	10/98
TEST	ROHDE	ESHS20	840455/006	E	2/98	2/99
RECEIVER	& SCHWARZ					
LISN	EMCO	3825/2	1371	E	9/97	9/98
LISN(EUT)	FISCHER	FCC-LISN-50/250 -25-2	107	E	6/97	6/98
CABLE	TIME MICROWAVE	LMR-400-2	E1001	Ē	4/97	4/98
CABLE	TALLEY	HELIX FSJ4-50B	E0301	E	4/97	4/98
	.1	L	<u> </u>		L	

20. CORRECTION FACTOR

OATS NO. D

	ANTENNA 3 METER		ANTENNA 10 METER			SITE D	
FREQ	HORI.	VERT.	CABLE LOSS	HORI.	VERT.	CABLE LOSS	AMP GAIN
(MHZ)			(dB)			(dB)	(dB)
30	19.10	19.10	0.66	17.90	17.90	0.68	22.26
35	16.70	16.70	0.68	15.85	15.85	0.73	22.23
40	14.30	14.30	0.73	13.80	13.80	0.83	22.26
45	12.55	12.55	0.81	12.15	12.15	0.91	22.24
50	10.80	10.80	0.81	10.50	10.50	0.92	22.21
60	8.60	8.60	0.92	8.30	8.30	1.02	22.15
70	7.80	7.80	0.99	7.20	7.20	1.09	22.11
80	7.90	7.90	1.05	7.20	7.20	1.15	22.20
90	8.30	8.30	1.01	7.40	7.40	1.22	22.21
100	8.50	8.50	1.09	7.50	7.50	1.32	22.14
120	8.20	8.20	1.14	7.50	7.50	1.37	22.14
125	8.15	8.15	1.27	7.55	7.55	1.53	22.03
140	8.40	8.40	1.35	8.00	8.00	1.57	22.09
150	8.80	8.80	1.35	8.60	8.60	1.63	22.06
160	9.20	9.20	1.39	9.20	9.20	1.70	22.18
175	9.75	9.75	1.50	9.85	9.85	1.76	22.21
180	9.90	9.90	1.42	10.00	10.00	1.72	22.18
200	10.80	10.80	1.50	10.60	10.60	1.80	22.26
250	12.70	12.70	1.65	12.70	12.70	1.93	22.31
300	14.60	14.60	1.72	13.50	13.50	2.08	22.34
400	16.20	16.20	2.08	16.80	16.80	2.49	22.39
500	18.10	18.10	2.41	18.70	18.70	2.85	22.34
600	20.90	20.90	2.70	20.80	20.80	3.18	22.46
700	22.10	22.10	2.92	22.00	22.00	3.53	22.44
800	22.80	22.80	3.35	23.30	23.30	3.89	22.06
900	23.90	23.90	3.53	25.40	25.40	4.32	21.81
1000	24.40	24.40	3.81	25.60	25.60	4.42	21.12
1100	25.20	25.20	4.04	25.40	25.40		21.32
1200	26.70	26.70	4.77	27.30	27.30		21.30
1300	26.80	26.80	4.90	27.20	27.20		21.01
1400	27.60	27.60	7.80	28.40	28.40		
1500	28.30	28.30	6.63	28.30	28.30		
1600	29.00	29.00	5.33	29.60	29.60		
1700	28.90	28.90	5.48	28.90	28.90		
1800	29.70	29.70	5.64	30.60	30.60		
1900	29.70	29.70	6.22	30.10	30.10		
2000	30.90	30.90	5.74	31.60	31.60		

21. TEST RESULT SUMMARY

Preliminary Radiated Emission Tests were performed at the 10 meter open area test site. CCS test procedure no:CCSUE2001B and the procedure listed in ANSI C63.4 /1992 section 8.3.1.1. were used. The following preliminary tests were conducted to determine the worst mode of operation and configuration.

Prelimi	nary Radia	ted Emission Test	The second secon
Frequency Range Investi	gated	30 MHz TO 10	000 MHz
Mode of operation	Date	Data Report No.	Worst Mode
PLAY DVD	04/04/98	980404D2	

Final Radiated Emission Test was conducted by operating the worst mode as indicated above.

OATS D / 1	No: 0 M		port No. 104D2	Date 04/04 ,	-	Tested RICK Y	-
	Si	x Highe	st Radiated	Emission	Readings		1,1
Frequency Range Investigated				30	MHz TO	1000 MHz	
	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Туре	Pol.
(MHz)	(dBm)	(dB/m)	(dBuV)	(dBuV)	(dB)	P/Q/A	H/V
162.18	-67.5	-11.2	28.3	30	-1.7	Q	v
189.00	-70.2	-10.2	26.6	30	-3.4	P	V
48.01	-69.9	-10.1	27.0	30	-3.0	Q	H
138.80	-68.0	-12.5	26.5	30	-3.5	P	H
199.90	-69.7	-9.9	27.4	30	-2.6	P	H
216.00	-70.8	-9.2	27.0	30	-3.0	P	H

C.F.(Correction Factor) = Antenna Factor + Cable Loss - Amplifier Gain Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

P=Peak Reading Q=Quasi-peak H=Horizontal Polarization/Antenna V=Vertical Polarization/Antenna

A=Average Reading

Comments: N/A

Preliminary Conducted Emission Tests were performed according to CCS test procedure no:CCSUE2002B and ANSI C63.4/1992 section 7.2.3. The following preliminary tests were conducted to determine the worst mode of operation.

Prelim	inary Cond	ducted Emission Test	
Frequency Range Invest	igated	150 kHz TO 30 M	Hz
Mode of operation	Date	Data Report/Plot No.	Worst Mode
PLAY DVD	04/04/98	980404E1, 980404E2/ N/A	

Final Conducted Emission Test was conducted by operating the worst mode as indicated above.

Conduct	ted	Plot No		Date		Tested By:		
Room		N/A		04/04/98		RICK YEO		
	Six Highest Conducted Emission Readings							
Frequency Range Investigated				-	L50 kHz I	O 30 MHz		
	Me	ter		Corrected			Reading	
Freq	Read	ding	C.F.	Reading	Limits	Margin	Type	Line
(MHz)	(dE	3uV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
0.150	50).1	0	50.1	66.0	-15.9	P	L1
0.175	49	9.7	0	49.7	64.7	-15.0	P	L1
0.250	43	3.9	0	43.9	61.8	-17.9	P	L1
0.150	48	3.2	0	48.2	66.0	-17.8	P	L2
0.175	56	5.0	0	56.0	64.7	-8.7	P	L2
0.175	52	2.5	0	52.5	54.7	-2.2	A	L2
0.275	46	5.8	0	46.8	61.0	-14.2	P	L2

C.F.(Correction Factor) = Insertion Loss + Cable Loss

Corrected Reading = Metering Reading + C.F.

A=Average Reading

Comments: N/A

APPENDICES

EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION CONFIGURATION BLOCK DIAGRAM CONDUCTED EMISSION PLOT RADIATED EMISSION DATA EUT PHOTOGRAPHS

REPORT NO: 97E6824 DATE: APRIL 08, 1998 FCC ID: LWHB091D70

EUT: DVD DECODER BOARD

External I/O Cable Construction Description

CABLE NO: 1	Number of I/O ports of this type: 1		
I/O Port: Parallel	Connector Type: DB25		
Capture Type: Screw-in	Type of Cable used: Shielded		
Cable Connector Type: Molded	Cable Length: 1.7 M		
Bundled During Tests: Yes	Data Traffic Generated: No		
Remarks: N/A			

CABLE NO: 2	Number of I/O ports of this type: 1
I/O Port: Speakers	Connector Type: Phone Jack
Capture Type: Snap-in	Type of Cable used: Un-Shielded
Cable Connector Type: Molded	Cable Length: 1.8 M
Bundled During Tests: Yes	Data Traffic Generated: Yes
Remarks: N/A	

CABLE NO: 3	Number of I/O ports of this type: 1
I/O Port: KB	Connector Type: Din-5 Pin
Capture Type: Snap-in	Type of Cable used: Shielded
Cable Connector Type: Molded	Cable Length: 1.0 M
Bundled During Tests: No	Data Traffic Generated: Yes
Remarks: N/A	

r Type: DB15 Cable used: Shielded
Cable used: Shielded
ngth: 1.2 M
ffic Generated: Yes

CABLE NO: 5	Number of I/O ports of this type: 1
I/O Port: VGA Loop Back Connector	Connector Type: DB15 (VGA Card) Mini Din-9 Pin (EUT)
Capture Type: Screw-In(VGA Card) Snap-In(EUT)	Type of Cable used: Shielded
Cable Connector Type: Molded	Cable Length: 0.25 M
Bundled During Tests: No	Data Traffic Generated: Yes
Remarks: N/A	

TABLE NO: 6	Number of I/O ports of this type: 1
O Port: S-Video Output	Connector Type: Mini Din-4 Pin
apture Type: Snap-in	Type of Cable used: Un-Shielded
able Connector Type: Molded	Cable Length: 1.8 M
- indled During Tests: Yes	Data Traffic Generated: Yes

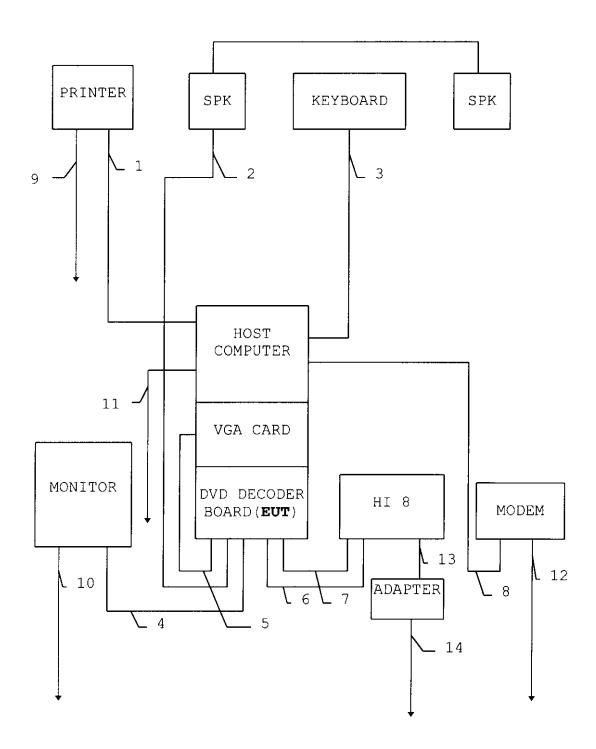

ABLE NO: 7	Number of I/O ports of this type: 1
100 Port: Composite Video Output	Connector Type: RCA
apture Type: Snap-in	Type of Cable used: Un-Shielded
Cable Connector Type: Molded	Cable Length: 1.8 M
Bundled During Tests: Yes	Data Traffic Generated: Yes
Remarks: N/A	

TABLE NO: 8	Number of I/O ports of this type: 1 Connector Type: DB9					
1/0 Port: RS232 Modem						
Capture Type: Screw-in	Type of Cable used: Shielded					
Cable Connector Type: Metal	Cable Length: 1.1 M					
Bundled During Tests: No	Data Traffic Generated: No					
Remarks: N/A						

CABLE NO: 9, 10, 11, 12, 14	Number of I/O ports of this type: 5				
I/O Port: Power Cord	Connector Type: 110 V DC				
Capture Type: Snap-in	Type of Cable used: Un-Shielded				
Cable Connector Type: Molded	Cable Length: 1.8 M				
Bundled During Tests: No (Radiation), Yes (Line Conduction)	Data Traffic Generated: No				
Remarks: N/A	, , ,				

CABLE NO: 13	Number of I/O ports of this type: 1				
I/O Port: Adapter	Connector Type: 110 V AC				
Capture Type: Snap-In	Type of Cable used: Un-Shielded				
Cable Connector Type: Molded	Cable Length: 2 M Data Traffic Generated: No				
Bundled During Tests: No (Radiation), Yes (Line Conduction)					
Remarks: N/A					

Configuration Block Diagram

COMPLIANCE ENGINEERING SERVICES, INC. 04. Apr 98 14:55 RFI VOLTAGE TEST.

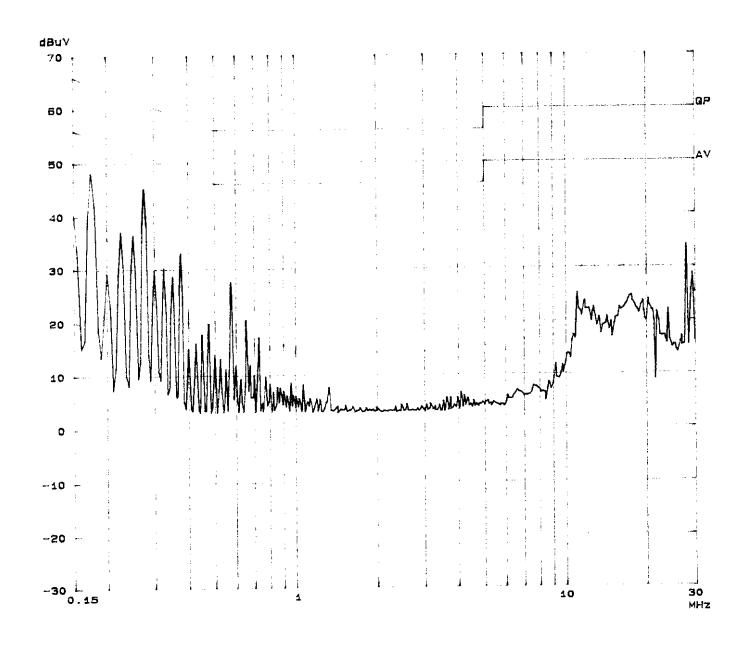
Rick yeur

8091070 EUT:

LABWAY CORPORATION Manuf:

PLAY DVD Op Cond: RICK YEO Operator:

ENSSOZZ CLASS B Test Spec:


LINE 1 . PEAK (RED) . AVERAGE (BLUE) Comment:

Scan Settings (1 Range)

----- Receiver Settings ------|----- Frequencies ---IF BW Detector M-Time Atten Preamp OpRge Step Stop Start 100ms AUTO LN OFF 10k 5k 150k MOE

Final Measurement: x QP / + AV

1 8 Meas Time: Subrangea: 25 248 Acc Margin:

COMPLIANCE ENGINEERING SERVICES, INC. RFI VOLTAGE TEST.

04. Apr 98 15: 14

Rick yla

EUT: Manuf: 8091070

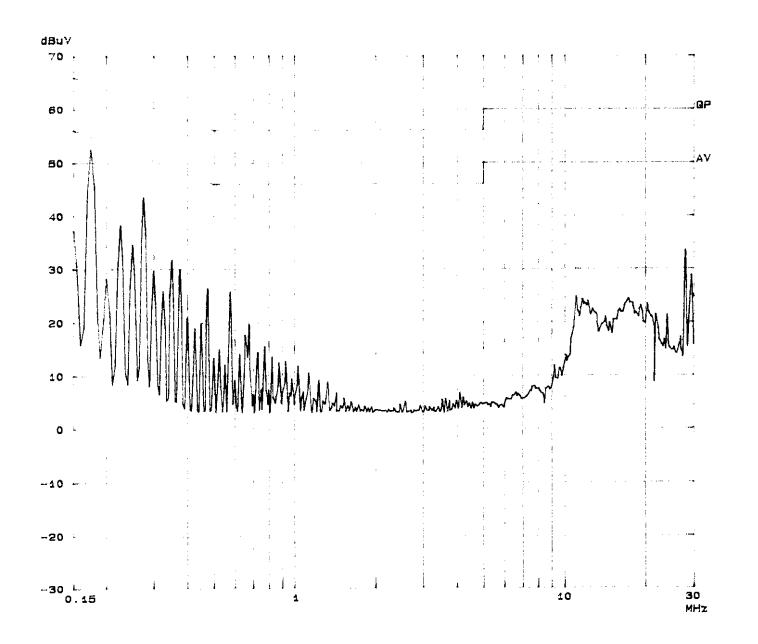
LABWAY CORPORATION

Op Cond: Operator: PLAY DVD RICK YEO

Test Spec:

EN56022 CLASS B

Comment:


LINE 2 , PEAK (RED) , AVERAGE (BLUE)

Scan Settings (1 Asnge)

----- Receiver Settings -----|---- Frequencies -Stop Step IF BW Detector M-Time Atten Preamp OpAge Start PK+AV 100ms AUTO LN OFF 60dB MOE 5ĸ 10k 150K

Final Measurement: x QP / + AV

Meas Time: 1 8 Subrangea: 25 Acc Margin: 2**d**B

Report No. : 980404D2

Date : 04/04/1998 Compliance Engineering Services, Inc.

Time : 13:42

>> 10 M RADIATED EMISSION DATA << Test Engr : RICK YEO

Rick yeu

Company : LABWAY CORPORATION Equipment Under Test : B091D70

Test Configuration : EUT/HOST-03/MONITOR/KB-12/PRN-01/MD-04/SPK-01/Hi 8

Type of Test: EN55022 CLASS B

Mode of Operation : PLAY DVD

Freq.	dBm NG AT 62	CF(dB)	d BuV	EN55022-A	EN55022-B	EUT-A	EUT-B	Note	
62.54	-67.9		26.0	40.0	20.0	14.0	4 0	77	
02.54	-67.9	-13.1	26.0	40.0	30.0	-14.0	-4.0	Vertical	
QP READI	NG AT 66	.81 MHz							
66.81	-67.7	-13.5	25.8	40.0	30.0	-14.2	-4.2	Vertical	
82.94	-68.3	-13.8	24.9	40.0	30.0	-15.1	-5.1	Vertical	
122.10	-70.1	-13.1	23.8	40.0	30.0	-16.2	-6.2	Vertical	
135.06	-69.4	-12.7	24.9	40.0	30.0	-15.1	-5.1	Vertical	
136.85	-68.6	-12.6	25.8	40.0	30.0	-14.2	-4.2	Vertical	
QP READING AT 162.18 MHz									
162.18	-67.5	-11.2	28.3	40.0	30.0	-11.7	-1.7	Vertical	
189.00	-70.2	-10.2	26.6	40.0	30.0	-13.4	-3.4	Vertical	
207.70	-72.7	-9.5	24.8	40.0	30.0	-15.2	<i>-</i> 5.2	Vertical	
257.71	-69.2	-7.5	30.3	47.0	37.0	-16.7	-6.7	Vertical	
272.03	-70.3	-7.3	29.4	47.0	37.0	-17.6	-7.6	Vertical	
336.04	-73.4	-5.5	28.1	47.0	37.0	-18.9	-8.9	Vertical	
QP READI	NG AT 48	.01 MHz							
48.01	-69.9	-10.1	27.0	40.0	30.0	~13.0	-3.0	Horizontal	
121.63	-71.6	-13.2	22.2	40.0	30.0	-17.8	-7.8	Horizontal	
125.31	-71.2	-12.9	22.9	40.0	30.0	-17.1	-7.1	Horizontal	
134.98	-71.6	-12.7	22.7	40.0	30.0	-17.3	-7.3	Horizontal	
138.80	-68.0	-12.5	26.5	40.0	30.0	-13.5	-3.5	Horizontal	
143.76	-69.0	-12.3	25.7	40.0	30.0	-14.3	-4.3	Horizontal	
168.00	-69.9	-10.9	26.2	40.0	30.0	-13.8	-3.8	Horizontal	
199.90	-69.7	-9.9	27.4	40.0	30.0	-12.6	-2.6	Horizontal	
216.00	-70.8	-9.2	27.0	40.0	30.0	-13.0	-3.0	Horizontal	
219.97	-71.8	-9.0	26.2	40.0	30.0	-13.8	-3.8	Horizontal	
229.10	-73.0	-8.6	25.4	40.0	30.0	-14.6	-4.6	Horizontal	
336.01	-68.1	-5.5	33.4	47.0	37.0	-13.6	-3.6	Horizontal	

Total # of data 24 V2.0.a