

Emerson

Bluetooth LE Radio Module, Model: EMR303

Antenna Pattern Measurements

Report: EMPM0139.4, Issue Date: December 18, 2023

Approved by:

Eric Brandon, Department Manager

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. EMPM0139.4

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

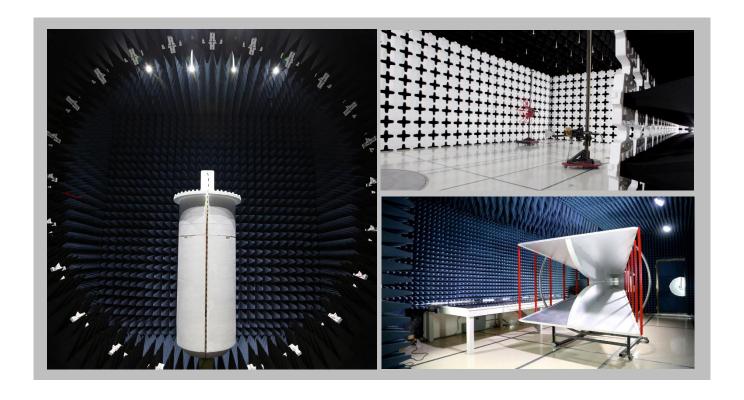
Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
		A2LA		
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
		BSMI		
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157

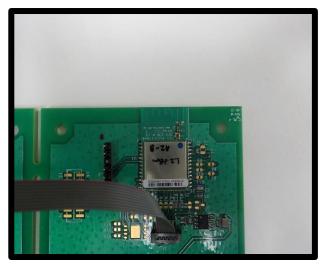
Report No. EMPM0139.4

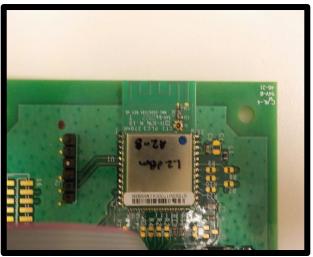
PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Emerson/ Mirco Motion Inc
Address:	7070 Winchester Circle
City, State, Zip: Boulder, Colorado 80301, USA	
Test Requested By:	Randon Beuc
EUT:	EMR303
First Date of Test:	November 21, 2022
Last Date of Test:	November 22, 2022
Receipt Date of Samples:	November 21, 2022
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test


Functional Description of the EUT:


Bluetooth low energy module for configuration and status of Emerson industrial automation products. The module is DC powered and contains an on-board, PCB trace antenna (maximum calculated gain 4.0dBi) for a complete, standalone Bluetooth low energy solution. This module is designed for use in internal Emerson products only.

Testing Objective:

To obtain 3D antenna pattern measurements and calculated antenna performance values

EUT Photo:

Report No. EMPM0139.4 5/11

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-11-17	Active 3D Antenna Pattern Measurements	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. EMPM0139.4

OTA TEST DESCRIPTION

OTA 2018.01.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description		Manufacturer	Model	ID	Last Cal.	Interval
	Antenna - Dipole	ETS Lindgren	3126-2450	OTF2	4/8/2021	36 mo
	Network Analyzer	Keysight Technologies	AGIL-E5071C-PKG 10	R329	3/22/2022	18 mo
	Analyzer - Spectrum Analyzer	Agilent	E4443A	AAS	6/6/2022	12 mo
•	Chamber - OTA	ETS Lindgren	AMS-8923-195	OTA	4/19/2021	36 mo

TEST DESCRIPTION

Using the modes of operation and configurations noted within this report, a radiated pattern measurement test was performed. The frequency ranges investigated (scanned), are also noted in this report.

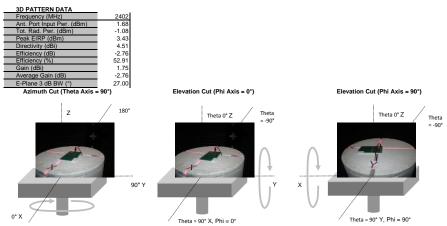
The EUT was placed on a low dielectric constant support structure (Phi Axis Positioner) in the 3D center of the measurement zone using a laser alignment system.

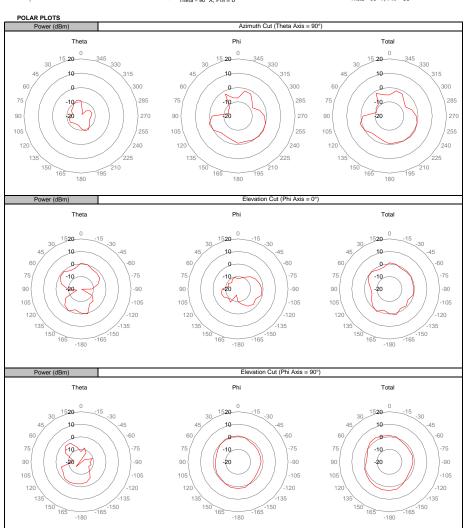
The test begins with a measurement path configured (via ETS-Lindgren EMQuest Data Acquisition and Analysis Software) such that an electrical path is present from the Theta polarization element of the -165° detector antenna, to the measurement port of a spectrum analyzer. The EUT is commanded to transmit at the desired frequency and an absolute power measurement is obtained at the spectrum analyzer. The measurement path is then reconfigured (again via EMQuest) such that an electrical path is present from the Phi polarization element of the -165° detector antenna, to the measurement port of the spectrum analyzer. Another absolute power measurement is obtained at the spectrum analyzer. This process is repeated at each of the 23 detector antennas in turn. This process is repeated for every rotation of the Phi Axis Positioner up to 180° - Phi Axis Resolution. When this process is complete, EMQuest applies factors from a Range Calibration and Normalization to produce a final data set with 1D/2D/3D patterns and tabular values such as antenna efficiency, Equivalent Isotropic Radiated Power (EIRP), Total Radiated Power (TRP), etc.

A measurement uncertainty estimation has been performed for this testing. When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution. The expanded measurement uncertainty, 95% confidence level (K=2), for Maximum Gain / Efficiency for 2400-2483.5 MHz on active measurements is +/-1.08 dB. The expanded measurement uncertainty, 95% confidence level (K=2), for Maximum Gain / Efficiency for 2400-2483.5 MHz on passive measurements is +/-1.29. The calculations for estimating measurement uncertainty are available upon request.

Procedures for the Range Calibration and Normalization can be found in Element Materials Technology document: WP Antenna Pattern Measurements (3D)

ACTIVE 3D ANTENNA PATTERN MEASUREMENTS



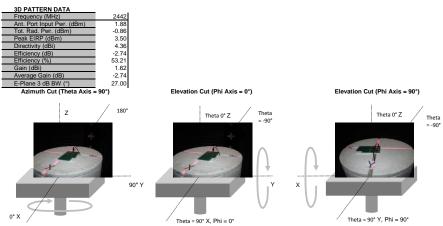

FUT:	EMR303
Serial Number:	A2-8
Customer:	Emerson
Attendees:	Randy Beuc
Customer Project:	None
Tested By:	Christopher Heintzelman
Toot Pun Deceription:	Δ2-8 2402 MHz

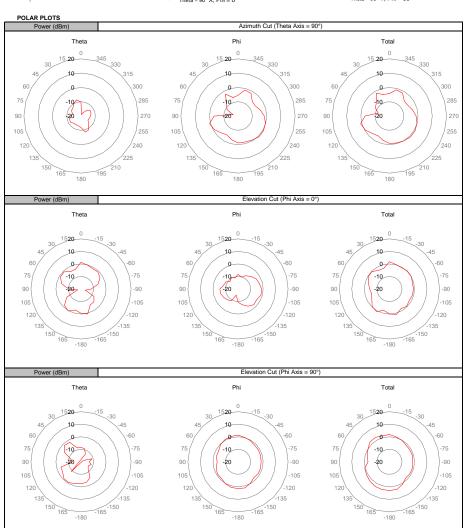
	OTA 2018.01.04
Work Order:	EMPM0139
Date:	11/17/2022
Temperature:	21.7 °C
Relative Humidity:	25.4% RH
Bar. Pressure:	1018 mbar
Job Site:	MN10

COMMENT

Transmitting CW. APIP taken from conducted power measurements under job EMPM0139.

ACTIVE 3D ANTENNA PATTERN MEASUREMENTS



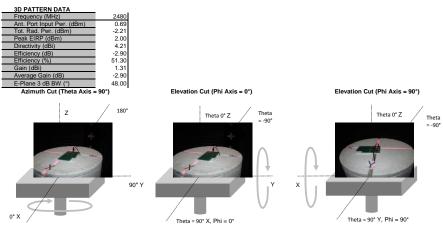

EUT:	EMR303
Serial Number:	A2-8
Customer:	Emerson
Attendees:	Randy Beuc
Customer Project:	None
Tested By:	Christopher Heintzelman
Test Run Description:	A2-8 2442 MHz

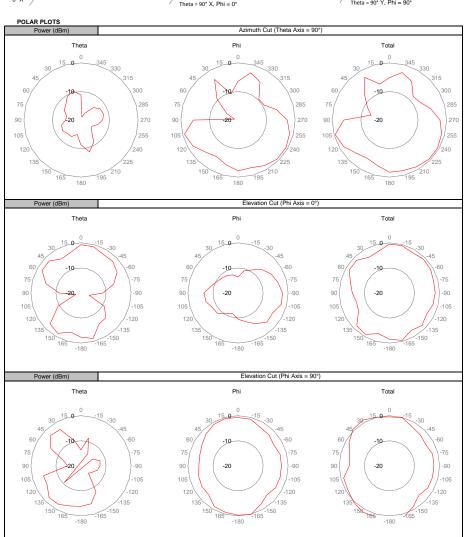
	OTA 2018.01.04
Work Order:	EMPM0139
Date:	11/17/2022
Temperature:	21.7 °C
Relative Humidity:	25.4% RH
Bar. Pressure:	1018 mbar
Job Site:	MN10

COMMENTS

Transmitting CW. APIP taken from conducted power measurements under job EMPM0139.

ACTIVE 3D ANTENNA PATTERN MEASUREMENTS




EUT:	EMR303
Serial Number:	A2-8
Customer:	Emerson
Attendees:	Randy Beuc
Customer Project:	None
Tested By:	Christopher Heintzelman
Test Run Description:	A2-8 2480 MHz 2

	OTA 2018.01.0
Work Order:	EMPM0139
Date:	11/17/2022
Temperature:	21.7 °C
Relative Humidity:	25.4% RH
Bar. Pressure:	1018 mbar
Job Site:	MN10

COMMENT

Transmitting CW. APIP taken from conducted power measurements under job EMPM0139.

End of Test Report