

Emerson/Rosemount

Emerson Wireless 775 THUM Adapter, Model: 775

FCC 15.247:2024 RSS-247 Issue 3:2023

2400 - 2483.5 MHz DTS under Technology Category Other

Report: EMPM0151.0 Rev. 1, Issue Date: April 24, 2024

TABLE OF CONTENTS

Section

Page Number

Certificate of Test	.3
Revision History	.5
Accreditations	.6
Facilities	.7
Measurement Uncertainty	.8
Test Setup Block Diagrams	.9
Product Description	.12
Power Settings and Antenna Information	.13
Configurations	.14
Modifications	.16
Powerline Conducted Emissions (Transmitter)	.17
Spurious Radiated Emissions	.22
Occupied Bandwidth (99%)	.29
Duty Cycle	.33
DTS Bandwidth (6 dB)	.34
Output Power	.38
Equivalent Isotropic Radiated Power (EIRP)	.42
Power Spectral Density	.46
Band Edge Compliance	.50
Spurious Conducted Emissions	.53
Appendix – Gap Analysis and Manufacturer Attestation	.60
End of Report	.63

Last Date of Test: September 6, 2023 Emerson/Rosemount EUT: Wireless 775 THUM Adapter, Model: 775

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2024	
FCC 15.207:2024	ANSI 062 10:2012
RSS-247 Issue 3:2023	ANSI 663.10.2013
RSS-Gen Issue 5:2018+A1:2019+A2:2021	

Note: FCC 15.247:2024 and FCC 15.207:2024 have been updated to reflect the current year, superseding the specifications noted within the body of this report. The specifications are unchanged and do not affect the results of the prior testing.

Note: RSS-247 Issue 3 has been updated superseding prior editions and amendments noted within the body of this report. The changes between the specifications do not affect the results of the prior testing. The manufacturer attests that no changes have been made to the product. See gap analysis in the appendix along with the manufacturer's attestation.

Guidance

FCC KDB 558074 v05r02:2019

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Powerline Conducted Emissions (Transmitter)	Pass	15.207	RSS-Gen 8.8	6.2	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 -8.6, 8.7	RSS-247 5.5	6.5, 6.6, 11.12.1, 11.13.2	
Occupied Bandwidth (99%)	Evaluated	KDB 558074 -2.1	RSS-Gen 6.7	6.9.3	No limit specified.
Carrier Frequency Separation	N/A	15.247(a)(1)	RSS-247 5.1(b)	7.8.2	Not required for DTS devices.
Number of Hopping Frequencies	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.3	Not required for DTS devices.
Dwell Time	N/A	15.247(a)(1)	RSS-247 5.1(d)	7.8.4	Not required for DTS devices.
Band Edge Compliance - Hopping Mode	N/A	15.247(d)	RSS-247 5.5	7.8.6	Not required for DTS devices.
Duty Cycle	N/A	15.247, KDB 558074 -6.0	RSS-Gen 3.2	11.6	Test mode duty cycle is 100% in test mode. Operations duty cycle is <20.706%.
DTS Bandwidth (6 dB)	Pass	15.247(a), KDB 558074 -8.2	RSS-247 5.2(a)	11.8.2	
Output Power	Pass	15.247(b), KDB 558074 -8.3	RSS-247 5.4(d)	11.9.1.1	

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

CERTIFICATE OF TEST

Equivalent Isotropic Radiated Power (EIRP)	Pass	15.247(b), KDB 558074 -8.3	RSS-247 5.4(d)	11.9.1.1	
Power Spectral Density	Pass	15.247(e), KDB 558074 -8.4	RSS-247 5.2(b)	11.10.2	
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	RSS-Gen 5.2	ANSI C63.4 - 12.2.4	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC. RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.
Radiated Emissions for Receiver	N/A	15.101, 15.109	RSS-Gen 5.2	ANSI C63.4 - 12.2.5	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC. RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.

Deviations From Test Standards

Spurious Conducted Emissions: Reference level offset includes measurement cable, attenuator DC patch, and 0.75dB loss on the customer's soldered patch cable, as declared by the customer.

Approved By:

Jeff Alcoke, Senior EMC Test Engineer

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Updated FCC and RSS specification in the Testing Objective	2024-04-24	12
01	Added the data rate to the Power Settings and Antenna Information section.	2024-04-24	13

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE						
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425) 984-6600				
		A2LA						
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06				
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1				
		BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
	VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110				
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	US0017	US0191	US0157				

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (k=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test Location: Minneapolis

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Emerson/Rosemount
Address:	6021 Innovation Boulevard
City, State, Zip:	Shakopee, MN 55379
Test Requested By:	Elizabeth Reierson
EUT:	Wireless 775 THUM Adapter, Model: 775
First Date of Test:	July 26, 2023
Last Date of Test:	September 6, 2023
Receipt Date of Samples:	July 26, 2023
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The Emerson/Rosemount Wireless 775 THUM Adapter is a product which connects to and is powered by a wired HART device, and wirelessly transmits HART measurement and diagnostic information from itself and the wired device to a wireless gateway for analysis. The Emerson 775 uses an on-board radio to communicate wirelessly in a network utilizing a 2.4GHz WirelessHART protocol.

Testing Objective:

Seeking to demonstrate compliance in the 2400 - 2483.5 MHz band for operation under FCC 15.247:2024 and RSS-247 Issue 3:2023, RSS-Gen Issue 5:2018+A1:2019+A2:2021 specifications under technology category Other.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Dipole Antenna	Emerson/Rosemount	2400-2483.5	2

The EUT was tested using the power settings provided by the manufacturer which were based upon:

- \Box Test software settings
- Test software/firmware installed on EUT: None ⊠ Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT

	Data Rate	Position	Tolerance*	
Modulation Types	(kbps)	(if multiple channels)	(dB)	Power Setting (dBm)
		Low Channel, 2405 MHz	+0.5	8
OQPSK	250	Mid Channel, 2440 MHz	+0.5	8
		High Channel, 2475 MHz	+0.5	8

stated manufacturing tolerance

Configuration EMPM0151-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
775	Emerson/Rosemount	775	003

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Numb					
Laptop	Dell	Lattitude 7490	1FVF6S2		
12V DC Supply (775)	None	CJ-1205	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable(775)	No	1.2 m	No	775	DC Adapter (775)
Ground Cable	No	2.3 m	No	775	GND
Programming Cable	No	2.4 m	No	Laptop	DC Supply leads

Configuration EMPM0151-4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
775	Emerson/Rosemount	775	1234

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
12V DC Supply (775)	None	CJ-1205	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable(775)	No	1.2 m	No	775	DC Adapter (775)
Ground Cable	No	2.3 m	No	775	GND

Configuration EMPM0151-5

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
775	Emerson/Rosemount	775	1234		

Peripherals in Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply	Agilent	E3649A	MY53376005		

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
Ground Cable	No	2.3 m	No	775	GND			
AC Power	No	1.8 m	No	Power Supply	AC Mains			
DC Power	No	1.2 m	No	Power Supply	775			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2023-07-26	Band Edge Compliance	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2023-07-26	DTS Bandwidth (6 dB)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2023-07-26	Equivalent Isotropic Radiated Power (EIRP)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2023-07-26	Occupied Bandwidth (99%)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2023-07-26	Output Power	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2023-07-26	Power Spectral Density	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2023-07-26	Spurious Conducted Emissions	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2023-07-31	Spurious Radiated Emissions	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2023-09-06	Powerline Conducted Emissions (Receiver)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss Instruments	TDEMI 30M	ARS	2023-04-26	2024-04-26
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK, VAE	MNCA	2023-03-09	2024-03-09
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	2023-04-02	2024-04-02

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.2 dB	-3.2 dB

CONFIGURATIONS INVESTIGATED

EMPM0151-5

MODES INVESTIGATED

Continuous modulated, transmitting Mid Channel (2440 MHz)

EUT:	Wireless 775	5 THUM Ad	apter, Model: 775		Work Order:	EMPM0151			
Serial Number:	1234				Date:	2023-09-06			
Customer:	Emerson/Ro	semount			Temperature:	21.9°C			
Attendees:	Bryan Rober	tson, Elizat	beth Reierson		Relative Humidity:	53.7%			
Customer Project	None				Bar. Pressure (PMSL):	1010 mb			
Tested By:	Ko Vorasarn	, James Mo	orris	Job Site:	MN03				
Power:	12VDC (See	Comments	5)		Configuration:	EMPM0151-5			
TEST SPECIFICATIONS									
Specification:				Method:					
FCC 15.207:2023				ANSI C63.	.10:2013				
RSS-Gen Issue 5	2018+A1:2019+	+A2:2021		ANSI C63.	.10:2013				
TEST PARAM	ETERS								
Run #: 10		Line:	High Line		Add. Ext. Attenuation (dB): 0				
COMMENTS Tested AC mains	input of linear D	C power su	pply powered at 110V	AC/60Hz					
EUT OPERATING MODES									
Continuous modulated, transmitting Mid Channel (2440 MHZ)									
DEVIATIONS	DEVIATIONS FROM TEST STANDARD								
None									

100 90 80 70 60 dBuV 50 40 30 20 10 0 1.0 10.0 100.0 0.1 MHz

Average Data - vs - Average Limit

RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
4.720	22.7	20.2	42.9	56.0	-13.1					
1.468	12.2	19.9	32.1	56.0	-23.9					
0.829	11.6	19.8	31.4	56.0	-24.6					
1.954	6.3	19.9	26.2	56.0	-29.8					
0.489	6.0	19.7	25.7	56.2	-30.5					
0.490	5.5	19.7	25.2	56.2	-31.0					
2.445	3.5	20.1	23.6	56.0	-32.4					
2.930	3.3	20.1	23.4	56.0	-32.6					
0.722	3.5	19.8	23.3	56.0	-32.7					
0.975	3.4	19.8	23.2	56.0	-32.8					
27.605	3.7	22.8	26.5	60.0	-33.5					
1.706	2.4	19.9	22.3	56.0	-33.7					
1.244	2.0	19.8	21.8	56.0	-34.2					
3.681	1.5	20.2	21.7	56.0	-34.3					
5.521	4.6	20.2	24.8	60.0	-35.2					
0.278	5.4	19.9	25.3	60.9	-35.6					
0.338	2.9	19.7	22.6	59.3	-36.7					
22.085	1.1	21.9	23.0	60.0	-37.0					
0.150	8.1	20.3	28.4	66.0	-37.6					
11.043	1.5	20.6	22.1	60.0	-37.9					
6.526	1.8	20.2	22.0	60.0	-38.0					
19.439	0.2	21.6	21.8	60.0	-38.2					
15.803	0.2	21.1	21.3	60.0	-38.7					
12.974	0.5	20.7	21.2	60.0	-38.8					
0.223	3.7	20.0	23.7	62.7	-39.0					

Average Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
4.720	22.2	20.2	42.4	46.0	-3.6					
0.831	9.1	19.8	28.9	46.0	-17.1					
1.471	8.8	19.9	28.7	46.0	-17.3					
1.954	2.2	19.9	22.1	46.0	-23.9					
0.489	1.7	19.7	21.4	46.2	-24.8					
0.490	0.9	19.7	20.6	46.2	-25.6					
2.930	-2.2	20.1	17.9	46.0	-28.1					
27.605	-1.0	22.8	21.8	50.0	-28.2					
2.442	-2.4	20.1	17.7	46.0	-28.3					
0.975	-2.2	19.8	17.6	46.0	-28.4					
0.708	-3.0	19.8	16.8	46.0	-29.2					
5.521	0.3	20.2	20.5	50.0	-29.5					
3.681	-4.2	20.2	16.0	46.0	-30.0					
1.246	-4.0	19.8	15.8	46.0	-30.2					
1.685	-4.2	19.9	15.7	46.0	-30.3					
0.278	0.0	19.9	19.9	50.9	-31.0					
22.085	-4.8	21.9	17.1	50.0	-32.9					
0.330	-3.2	19.7	16.5	49.5	-33.0					
6.525	-4.0	20.2	16.2	50.0	-33.8					
11.043	-4.4	20.6	16.2	50.0	-33.8					
20.579	-5.9	21.7	15.8	50.0	-34.2					
14.496	-5.9	21.0	15.1	50.0	-34.9					
0.223	-2.3	20.0	17.7	52.7	-35.0					
8.734	-5.5	20.5	15.0	50.0	-35.0					
11.543	-5.7	20.7	15.0	50.0	-35.0					

CONCLUSION

Pass

James & Morris

Tested By

EUT:	Wireless 775	5 THUM Ada	apter, Model: 775		Work Order:	EMPM0151			
Serial Number:	1234				Date:	2023-09-06			
Customer:	Emerson/Ro	semount			Temperature:	21.9°C			
Attendees:	Bryan Rober	tson, Elizat	oeth Reierson		Relative Humidity:	53.7%			
Customer Project	None				Bar. Pressure (PMSL):	1010 mb			
Tested By:	Ko Vorasarn	, James Mo	orris	Job Site:	MN03				
Power:	12VDC (See	Comments	6)	Configuration:	EMPM0151-5				
TEST SPECIFICATIONS									
Specification:				Method:	hod:				
FCC 15.207:2023				ANSI C63.	.10:2013				
RSS-Gen Issue 5	2018+A1:2019+	-A2:2021		ANSI C63.	.10:2013				
TEST PARAM	ETERS								
Run #: 11		Line:	Neutral		Add. Ext. Attenuation (dB): 0				
COMMENTS Tested AC mains	input of linear D	C power su	pply powered at 110V	AC/60Hz					
EUT OPERATING MODES									
Continuous modu	Continuous modulated, transmitting Mid Channel (2440 MHz)								
DEVIATIONS FROM TEST STANDARD									
None									

Average Data - vs - Average Limit

RESULTS - Run #11

Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
4.717	21.4	20.2	41.6	56.0	-14.4					
1.470	14.3	19.9	34.2	56.0	-21.8					
0.829	11.4	19.8	31.2	56.0	-24.8					
1.952	6.6	19.9	26.5	56.0	-29.5					
0.487	6.2	19.7	25.9	56.2	-30.3					
0.490	5.5	19.7	25.2	56.2	-31.0					
2.443	3.8	20.1	23.9	56.0	-32.1					
0.975	4.0	19.8	23.8	56.0	-32.2					
2.928	3.4	20.1	23.5	56.0	-32.5					
0.725	3.6	19.8	23.4	56.0	-32.6					
27.605	4.1	22.8	26.9	60.0	-33.1					
1.708	2.7	19.9	22.6	56.0	-33.4					
1.247	2.2	19.8	22.0	56.0	-34.0					
3.679	1.6	20.2	21.8	56.0	-34.2					
5.521	4.9	20.2	25.1	60.0	-34.9					
0.277	5.4	19.9	25.3	60.9	-35.6					
22.083	2.5	21.9	24.4	60.0	-35.6					
11.043	2.9	20.6	23.5	60.0	-36.5					
0.333	2.8	19.7	22.5	59.4	-36.9					
19.274	0.9	21.6	22.5	60.0	-37.5					
6.525	2.0	20.2	22.2	60.0	-37.8					
0.150	7.6	20.3	27.9	66.0	-38.1					
16.566	0.3	21.2	21.5	60.0	-38.5					
11.543	0.5	20.7	21.2	60.0	-38.8					
0.223	3.7	20.0	23.7	62.7	-39.0					

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
4.717	20.8	20.2	41.0	46.0	-5.0				
1.470	11.1	19.9	31.0	46.0	-15.0				
0.831	8.6	19.8	28.4	46.0	-17.6				
1.954	2.6	19.9	22.5	46.0	-23.5				
4.741	2.2	20.2	22.4	46.0	-23.6				
0.489	2.0	19.7	21.7	46.2	-24.5				
0.490	1.2	19.7	20.9	46.2	-25.3				
27.605	-0.1	22.8	22.7	50.0	-27.3				
2.930	-2.0	20.1	18.1	46.0	-27.9				
2.442	-2.1	20.1	18.0	46.0	-28.0				
0.977	-2.0	19.8	17.8	46.0	-28.2				
5.521	0.7	20.2	20.9	50.0	-29.1				
0.708	-2.9	19.8	16.9	46.0	-29.1				
3.681	-4.1	20.2	16.1	46.0	-29.9				
1.247	-3.9	19.8	15.9	46.0	-30.1				
1.685	-4.1	19.9	15.8	46.0	-30.2				
22.083	-2.8	21.9	19.1	50.0	-30.9				
0.278	0.0	19.9	19.9	50.9	-31.0				
11.043	-2.3	20.6	18.3	50.0	-31.7				
0.338	-3.2	19.7	16.5	49.3	-32.8				
6.525	-3.9	20.2	16.3	50.0	-33.7				
18.772	-5.2	21.4	16.2	50.0	-33.8				
16.563	-5.8	21.2	15.4	50.0	-34.6				
11.545	-5.5	20.7	15.2	50.0	-34.8				
0.223	-2.3	20.0	17.7	52.7	-35.0				

CONCLUSION

Pass

James & Morris

Tested By

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AIP	2022-07-20	2024-07-20
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2023-01-14	2024-01-14
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2023-01-14	2024-01-14
Attenuator	Fairview Microwave	SA18E-20	TWZ	2022-08-27	2023-08-27
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	2023-02-06	2024-02-06
Filter - High Pass	Micro-Tronics	HPM50111	LFN	2022-08-27	2023-08-27
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2023-01-14	2024-01-14
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2023-01-14	2024-01-14
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2023-01-14	2024-01-14
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	NCR
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNP	2022-09-10	2023-09-10
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	2022-09-10	2023-09-10
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2021-09-14	2023-09-14
Cable	ESM Cable Corp.	Bilog Cables	MNH	2022-10-08	2023-10-08
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2022-10-08	2023-10-08
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	2022-08-27	2023-08-27

TEST EQUIPMENT

MEASUREMENT UNCERTAINTY

Description

Expanded k=2

5.2 dB

-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26000 MHz

POWER INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

EMPM0151-4

MODES INVESTIGATED

Transmitting continuously, modulated, on low channel 2405MHz and high channel 2475MHz (channels tested independently)

Transmitting continuously, modulated, on low channel 2405MHz, mid channel 2440MHz, and high channel 2475MHz (channels tested independently)

EUT:		Wireless 775 T	HUM Adapter, Model	: 775		Work Order:	EM	1PM0151	
Serial Nu	mber:	1234	· ·			Date:	202	23-07-31	
Customer	:	Emerson/Rose	mount			Temperature:	23.	.3°C	
Attendees	3:	Bryan Roberts	on			Relative Humidity:	52.	.6%	
Customer	· Project:	None				Bar. Pressure (PMS	L): 102	21 mb	
Tested By	/:	Marcelo Aguay	′0			Job Site:	MN	105	
Power:		12VDC				Configuration:	EM	IPM0151-4	
TEST SP	ECIFICA	TIONS							
Specificat	tion:								
FCC 15.2	47:2023				ANSI C63	.10:2013			
RSS-247	Issue 2:201	7			ANSI C63	.10:2013			
TEST PA	RAMETE	RS							
Run #:	12		Test Distance (m):	3		Ant. Height(s) (m	n): 1 to	o 4(m)	
COMME 100% Dut	NTS ty Cycle								
EUT OPE	ERATING	MODES							
Transmitti	ing continuc	usly, modulated	, on low channel 2408	5MHz ai	nd high cha	nnel 2475MHz (chann	els teste	d	
independe	ently)								
DEVIATI	ONS FRO	OM TEST ST	ANDARD						
None									
80									
70									
60									
								•	
50							•		
е ³⁰	•	• •					•		
\mathbf{S}									
a 40 –									
σ									
20									
30									
20 🕂									

 20
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

RESULTS - Run #12

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.533	35.8	-4.2	1.1	206.0	3.0	20.0	Horz	AV	0.0	51.6	54.0	-2.4	EUT Horz, High Ch
2483.500	34.4	-4.2	1.4	245.0	3.0	20.0	Horz	AV	0.0	50.2	54.0	-3.8	EUT On Side, High Ch
2483.500	34.4	-4.2	1.5	209.0	3.0	20.0	Vert	AV	0.0	50.2	54.0	-3.8	EUT Vert, High Ch
2386.150	31.9	-4.3	1.7	185.9	3.0	20.0	Horz	AV	0.0	47.6	54.0	-6.4	EUT Vert, Low Ch
2388.867	31.9	-4.3	1.5	318.0	3.0	20.0	Vert	AV	0.0	47.6	54.0	-6.4	EUT Vert, Low Ch
2483.650	31.7	-4.2	1.5	80.0	3.0	20.0	Vert	AV	0.0	47.5	54.0	-6.5	EUT On Side, High Ch
2483.567	31.5	-4.2	2.2	207.0	3.0	20.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Horz, High Ch
2484.308	31.2	-4.2	1.5	296.0	3.0	20.0	Horz	AV	0.0	47.0	54.0	-7.0	EUT Vert, High Ch
2484.283	46.2	-4.2	1.1	206.0	3.0	20.0	Horz	PK	0.0	62.0	74.0	-12.0	EUT Horz, High Ch
2483.667	46.2	-4.2	1.0	207.0	3.0	20.0	Horz	PK	0.0	62.0	74.0	-12.0	EUT On Side, High Ch
2483.658	43.8	-4.2	1.5	209.0	3.0	20.0	Vert	PK	0.0	59.6	74.0	-14.4	EUT Vert, High Ch
2385.867	43.3	-4.3	1.5	318.0	3.0	20.0	Vert	PK	0.0	59.0	74.0	-15.0	EUT Vert, Low Ch
2385.333	42.9	-4.3	1.7	185.9	3.0	20.0	Horz	PK	0.0	58.6	74.0	-15.4	EUT Vert, Low Ch
2483.508	42.6	-4.2	2.2	207.0	3.0	20.0	Vert	PK	0.0	58.4	74.0	-15.6	EUT Horz, High Ch
2486.642	42.6	-4.2	1.5	296.0	3.0	20.0	Horz	PK	0.0	58.4	74.0	-15.6	EUT Vert, High Ch
2485.508	42.5	-4.2	1.5	80.0	3.0	20.0	Vert	PK	0.0	58.3	74.0	-15.7	EUT On Side, High Ch

CONCLUSION

Pass

Tested By

EUT:	Wireless 775	THUM Adapter, Mode	el: 775	Work	Order:	EMPN	10151
Serial Number:	1234	•		Date:		2023-0)7-31
Customer:	Emerson/Ros	emount		Temp	erature:	23.3°C	;
Attendees:	Bryan Robert	son		Relat	ive Humidity:	52.6%	
Customer Proje	ct: None			Bar. F	Pressure (PM	SL): 1021 r	nb
Tested By:	Marcelo Agua	Marcelo Aguayo				MN05	
Power:	12VDC	•		Confi	guration:	EMPN	10151-4
	ICATIONS						
Specification:			M	lethod:	_		
FCC 15.247:202	23		A	NSI C63.10:201	3		
RSS-247 Issue	2:2017		A	NSI C63.10:201	3		
	IETERS						
Run #:	13	Test Distance (m):	3	A	nt. Height(s)	(m): 1 to 4	(m)
OMMENTS							
100% Duty Cyc	е						
	ING MODES						
Transmitting cor	ntinuously, modulate	d. on low channel 240	5MHz. mid	channel 2440M	Hz. and high	channel 2475	5MHz
(channels tested	d independently)	_,	·····		,		
	FROM TEST ST						
None							
80							
70							
60							
50							
Ę							
2							
U I							
30				_			
20							
10							
0 	10	<u>י</u> י י י י	1 000		10 000		
10	10	5	MU-		10,000		100,000
			141112				
	_						
	Run #: 13	3		PK	AV	UP UP	

RESULTS - Run #13

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Heighi (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments	
7423.492	29.7	11.9	1.5	16.0	3.0	0.0	Vert	AV	0.0	41.6	54.0	-12.4	EUT Vert, High Ch	
7426.467	29.6	11.9	1.5	19.9	3.0	0.0	Vert	AV	0.0	41.5	54.0	-12.5	EUT On Side, High Ch	
7426.942	29.6	11.9	1.8	19.0	3.0	0.0	Vert	AV	0.0	41.5	54.0	-12.5	EUT Vert, High Ch	
7319.000	29.8	11.7	1.5	311.0	3.0	0.0	Vert	AV	0.0	41.5	54.0	-12.5	EUT Vert, Mid Ch	
7424.883	29.5	11.9	2.7	34.0	3.0	0.0	Horz	AV	0.0	41.4	54.0	-12.6	EUT Vert, High Ch	
7426.150	29.5	11.9	1.5	95.9	3.0	0.0	Horz	AV	0.0	41.4	54.0	-12.6	EUT On Side, High Ch	
7424.667	29.5	11.9	2.7	145.9	3.0	0.0	Horz	AV	0.0	41.4	54.0	-12.6	EUT Vert, High Ch	
7319.250	29.7	11.7	1.7	48.9	3.0	0.0	Horz	AV	0.0	41.4	54.0	-12.6	EUT Vert, Mid Ch	
4880.667	30.0	3.4	1.5	199.0	3.0	0.0	Horz	AV	0.0	33.4	54.0	-20.6	EUT Vert, Mid Ch	
4881.183	30.0	3.4	1.5	55.0	3.0	0.0	Vert	AV	0.0	33.4	54.0	-20.6	EUT Vert, Mid Ch	
4948.050	29.3	3.5	3.6	63.0	3.0	0.0	Horz	AV	0.0	32.8	54.0	-21.2	EUT Vert, High Ch	
4948.308	29.2	3.5	1.5	117.9	3.0	0.0	Vert	AV	0.0	32.7	54.0	-21.3	EUT Vert, High Ch	
4808.492	29.4	3.3	3.3	181.9	3.0	0.0	Horz	AV	0.0	32.7	54.0	-21.3	EUT Vert, Low Ch	
4809.058	29.3	3.3	1.5	1.0	3.0	0.0	Vert	AV	0.0	32.6	54.0	-21.4	EUT Vert, Low Ch	
7426.467	40.3	11.9	2.7	145.9	3.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	EUT Vert, High Ch	
7425.950	40.2	11.9	1.5	19.9	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9	EUT On Side, High Ch	
7321.508	40.4	11.7	1.7	48.9	3.0	0.0	Horz	PK	0.0	52.1	74.0	-21.9	EUT Vert, Mid Ch	
7422.642	40.0	11.9	2.7	34.0	3.0	0.0	Horz	PK	0.0	51.9	74.0	-22.1	EUT Vert, High Ch	
7424.042	40.0	11.9	1.5	16.0	3.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	EUT Vert, High Ch	
7318.750	40.2	11.7	1.5	311.0	3.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	EUT Vert, Mid Ch	
12197.660	30.0	1.8	1.4	243.0	3.0	0.0	Vert	AV	0.0	31.8	54.0	-22.2	EUT Vert, Mid Ch	
7427.150	40.0	11.8	1.5	95.9	3.0	0.0	Horz	PK	0.0	51.8	74.0	-22.2	EUT On Side, High Ch	
7426.475	39.4	11.9	1.8	19.0	3.0	0.0	Vert	PK	0.0	51.3	74.0	-22.7	EUT Vert, High Ch	
12373.880	29.2	1.8	1.4	164.9	3.0	0.0	Vert	AV	0.0	31.0	54.0	-23.0	EUT Vert, High Ch	
12372.530	28.9	1.8	1.5	225.0	3.0	0.0	Horz	AV	0.0	30.7	54.0	-23.3	EUT Vert, High Ch	
12198.570	28.8	1.8	1.7	360.0	3.0	0.0	Horz	AV	0.0	30.6	54.0	-23.4	EUT Vert, Mid Ch	
12022.670	30.0	0.4	1.5	110.9	3.0	0.0	Vert	AV	0.0	30.4	54.0	-23.6	EUT Vert, Low Ch	
12027.280	28.4	0.4	2.3	261.0	3.0	0.0	Horz	AV	0.0	28.8	54.0	-25.2	EUT Vert, Low Ch	
4878.717	40.5	3.4	1.5	55.0	3.0	0.0	Vert	PK	0.0	43.9	74.0	-30.1	EUT Vert, Mid Ch	
4877.808	40.2	3.4	1.5	199.0	3.0	0.0	Horz	PK	0.0	43.6	74.0	-30.4	EUT Vert, Mid Ch	
4809.442	40.1	3.3	3.3	181.9	3.0	0.0	Horz	PK	0.0	43.4	74.0	-30.6	EUT Vert, Low Ch	
4948.400	39.6	3.5	3.6	63.0	3.0	0.0	Horz	PK	0.0	43.1	74.0	-30.9	EUT Vert, High Ch	
4950.542	39.3	3.5	1.5	117.9	3.0	0.0	Vert	PK	0.0	42.8	74.0	-31.2	EUT Vert, High Ch	
4809.083	39.3	3.3	1.5	1.0	3.0	0.0	Vert	PK	0.0	42.6	74.0	-31.4	EUT Vert, Low Ch	
12199.530	40.4	1.8	1.4	243.0	3.0	0.0	Vert	PK	0.0	42.2	74.0	-31.8	EUT Vert, Mid Ch	
12376.420	39.8	1.8	1.4	164.9	3.0	0.0	Vert	PK	0.0	41.6	74.0	-32.4	EUT Vert, High Ch	
12376.260	39.1	1.8	1.5	225.0	3.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	EUT Vert, High Ch	
12026.440	40.3	0.4	1.5	110.9	3.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	EUT Vert, Low Ch	
12198.980	38.7	1.8	1.7	360.0	3.0	0.0	Horz	PK	0.0	40.5	74.0	-33.5	EUT Vert, Mid Ch	
12025.640	38.2	0.4	2.3	261.0	3.0	0.0	Horz	PK	0.0	38.6	74.0	-35.4	EUT Vert, Low Ch	

CONCLUSION Pass

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

		TbtTx 2022.06.03.0	XMit 2023.02.14.0								
EUT: Wireless 775 THUM Adapter, Model: 775	Work Order:	EMPM0151									
Serial Number: 003	Date:	07/26/2023									
Customer: Emerson/Rosemount	Temperature:	23.2°C									
Attendees: Bryan Robertson	Humidity:	57.6%									
Project: None	Barometric Pres.:	1008 mbar									
Tested by: Christopher Heintzelman Power: 12VDC	Job Site:	MN11									
TEST SPECIFICATIONS Test Method											
FCC 15.247:2023 ANSI C63.10:2013											
RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.10:2013											
COMMENTS											
Reference level offset includes measurement cable, attenuator, DC block, and 0.75 dB loss on the customer's soldered patch cable, as declared by the customer.											
DEVIATIONS FROM TEST STANDARD											
None											
Configuration # EMPM0151-3 Cli Ame Hauften											
	Value	Limit	Result								
Single Channel Modulated											
Low Channel, 2405 MHz	2.365 MHz	N/A	N/A								
Mid Channel, 2440 MHz	2.397 MHz	N/A	N/A								
High Channel, 2475 MHz	2.437 MHz	N/A	N/A								

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle in test mode. Operational Duty Cycle will not exceed 20.706% in 100ms and 19.09% in 1s.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

			TbtTx 2022.06.03.0	XMit 2023.02.14.0						
EUT: Wireless 775 THUM Adapter, Model: 775		Work Order:	EMPM0151							
Serial Number: 003		Date:	07/26/2023							
Customer: Emerson/Rosemount		Temperature:	23.3°C							
Attendees: Bryan Robertson		Humidity:	57.8%							
Project: None		Barometric Pres.:	1008 mbar							
Tested by: Christopher Heintzelman	Power: 12VDC	Job Site:	MN11							
TEST SPECIFICATIONS Test Method										
FCC 15.247:2023	ANSI C63.10:2013									
RSS-247 Issue 2:2017	ANSI C63.10:2013									
COMMENTS										
Reference level offset includes measurement cable, attenuator, DC block, and 0.75 dB loss on the customer's soldered patch cable, as declared by the customer.										
DEVIATIONS FROM TEST STANDARD										
DEVIATIONS FROM TEST STANDARD None										
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature	li Am Hanften									
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature	li Am Hanften		Limit							
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature	li Am Hauften	Value	Limit (>)	Result						
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature Single Channel Modulated	li Am Hauften	Value	Limit (>)	Result						
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature Single Channel Modulated Low Channel, 2405 MHz	li Am Hanften	Value 1.576 MHz	Limit (>) 500 kHz	Result Pass						
DEVIATIONS FROM TEST STANDARD None Configuration # EMPM0151-3 Signature Single Channel Modulated Low Channel, 2405 MHz Mid Channel, 2440 MHz	li Am Hauften	Value 1.576 MHz 1.563 MHz	Limit (>) 500 kHz 500 kHz	Result Pass Pass						

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

		TbtTx 2022.06.03.0	XMit 2023.02.14.0								
EUT: Wireless 775 THUM Adapter, Model: 775	Work Order:	EMPM0151									
Serial Number: 003	Date:	07/26/2023									
Customer: Emerson/Rosemount	Temperature:	23.3°C									
Attendees: Bryan Robertson	Humidity:	57.5%									
Project: None	Barometric Pres.:	1008 mbar									
Tested by: Christopher Heintzelman Power: 12VDC	Job Site:	MN11									
TEST SPECIFICATIONS Test Method											
FCC 15.247:2023 ANSI C63.10:2013											
RSS-247 Issue 2:2017 ANSI C63.10:2013											
COMMENTS											
DEVIATIONS FROM TEST STANDARD	Reference level offset includes measurement cable, attenuator, DC block, and 0.75 dB loss on the customer's soldered patch cable, as declared by the customer.										
None											
Configuration # EMPM0151-3 Cli Am Hanften											
	Out Pwr	Limit									
	(dBm)	(dBm)	Result								
Single Channel Modulated											
Low Channel, 2405 MHz	6.839	30	Pass								
Mid Channel, 2440 MHz	7.228	30	Pass								
High Channel, 2475 MHz	7.02	30	Pass								

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

							TbtTx 2022.06.03.0	XMit 2023.02.14.0			
EUT	Wireless 775 THUM Adap	oter, Model: 775				Work Order:	EMPM0151				
Serial Number	: 003					Date:	07/26/2023				
Customer	Emerson/Rosemount					Temperature:	23.3°C				
Attendees	Bryan Robertson			Humidity:	57.7%						
Project	None			Barometric Pres.:	1008 mbar						
Tested by	Christopher Heintzelman	1	Power: 12VDC			Job Site:	MN11				
TEST SPECIFICATIONS Test Method											
FCC 15.247:2023			ANSI C63.10:2013								
RSS-247 Issue 2:2	017		ANSI C63.10:2013								
COMMENTS											
DEVIATIONS FRO	M TEST STANDARD	. ,		.,							
None											
Configuration #	EMPM0151-3	Signature	li Am Hauffen								
				Out Pwr	Antenna	EIRP	EIRP Limit				
				(dBm)	Gain (dBi)	(dBm)	(dBm)	Result			
Single Channel Mod	dulated										
	Low Channel, 2405 MHz			6.839	2	8.839	36	Pass			
	Mid Channel, 2440 MHz			7.228	2	9.228	36	Pass			
	Lligh Channel 0475 Mills		=								

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Keysight S	Spectrum Ana	ilyzer - Element	Materials Tech	nology						
LXI RL	RF	50 Ω A	C		SENSE:INT		ALIGN OFF		04:28:4	7 PM Jul 26, 2023
				PNO: Fast ← IFGain:Low	► Trig: Fre #Atten: 1	e Run 0 dB	#Avg Type Avg Hold:	: Voltage 100/100	TI	RACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P
5 dB/div Log	Ref Of Ref 1	ffset 22.3 d 7.00 dBr	B n					M	kr1 2.439 7.	414 GHz 228 dBm
						Ĭ				
12.0					. 1					
7.00					•					
2.00										
-3.00										
-8.00									<u> </u>	
13.0		and the second s								
-13.0										
-18.0										
-23.0										
-28.0										
Center 2	2.440000	GHz		#1			·····	Swoo	Span	10.00 MHz
WRES DV	v 2.4 Mir	14		#V		C		Swee	p 1.000 m	s (ruuu pis)
MSG							STATUS			

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

				TbtTx 2022.06.03.0	XMit 2023.02.14.0
EUT: Wireless 77	THUM Adapter, Model: 775		Work Order:	EMPM0151	
Serial Number: 003			Date:	07/26/2023	
Customer: Emerson/Re	emount		Temperature:	23.3°C	
Attendees: Bryan Robe	son		Humidity:	57.6%	
Project: None			Barometric Pres.:	1008 mbar	
Tested by: Christopher	leintzelman	Power: 12VDC	Job Site:	MN11	
TEST SPECIFICATIONS		Test Method			
FCC 15.247:2023		ANSI C63.10:2013			
RSS-247 Issue 2:2017		ANSI C63.10:2013			
COMMENTS					
Reference level offset includes	easurement cable, attenuator, DC block, and 0.75	dB loss on the customer's soldered patch cable, as de	eclared by the customer.		
DEVIATIONS FROM TEST STAP	ARD				
None					
Configuration # EMPN	151-3 Cu Signature	li Am Hauften			
			Value	Limit	
			dBm/3kHz	< dBm/3kHz	Results
Single Channel Modulated					
Low Channe	2405 MHz		-5.422	8	Pass
Low Channe Mid Channel	2405 MHz 2440 MHz		-5.422 -5.825	8	Pass Pass

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

				TbtTx 2022.06.03.0	XMit 2023.02.14.0
EUT:	Wireless 775 THUM Adapter, Model: 775		Work Order:	EMPM0151	
Serial Number:	003		Date:	07/26/2023	
Customer:	Emerson/Rosemount		Temperature:	23.2°C	
Attendees:	Bryan Robertson		Humidity:	57.5%	
Project:	None		Barometric Pres.:	1008 mbar	
Tested by:	Christopher Heintzelman	Power: 12VDC	Job Site:	MN11	
TEST SPECIFICAT	ONS	Test Method			
FCC 15.247:2023		ANSI C63.10:2013			
RSS-247 Issue 2:20	17	ANSI C63.10:2013			
COMMENTS					
	set includes measurement cable, attenuator, DC block, and 0.7	5 dB loss on the customer's soldered patch cable, as de	clared by the customer.		
DEVIATIONS FROM	I TEST STANDARD				
None					
Configuration #	EMPM0151-3 Signature	li Am Hauften			
			Value	Limit	
			(dBc)	≤ (dBc)	Result
Single Channel Mod	ulated				
	Low Channel, 2405 MHz		-40.79	-20	Pass
	High Channel, 2475 MHz		-48.6	-20	Pass

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4014-20	AQI	2022-09-10	2023-09-10
Block - DC	Fairview Microwave	SD3379	AMZ	2022-11-06	2023-11-06
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2022-09-10	2023-09-10
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2023-05-01	2024-05-01
Generator - Signal	Keysight	N5182B	TET	2021-08-27	2024-08-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

Fundamental Offset = Ref Lvl Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref LvI Offset showing expected attenuator value and any other losses

							TbtTx 2022.06.03.0	XMit 2023.02.14.0
EUT	Wireless 775 THUM Adap	ter, Model: 775				Work Order:	EMPM0151	
Serial Number	: 003					Date:	07/26/2023	
Customer	: Emerson/Rosemount					Temperature:	23.3°C	
Attendees	Bryan Robertson					Humidity:	58%	
Project	: None					Barometric Pres.:	1008 mbar	
Tested by	Christopher Heintzelman		Power:	12VDC		Job Site:	MN11	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247:2023				ANSI C63.10:2013				
RSS-247 Issue 2:2	017			ANSI C63.10:2013				
COMMENTS								
Reference level of	fset includes measuremen	t cable, attenuator, DC block, and	0.75 dB loss on the cu	stomer's soldered patch cable	e, as declared by the custo	mer.		
		,,,		P P	-,,,			
DEVIATIONS FRO	M TEST STANDARD							
Reference level of	fset includes measuremen	t cable, attenuator DC patch, and	0.75dB loss on the cus	tomer's soldered patch cable	, as declared by the custon	ner.		
			Cach	11-1				
Configuration #	EMPM0151-3	(li me	Hautten				
		Signature						
				Frequency	Measured	Max Value	Limit	
				Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
Single Channel Mod	dulated							
	Low Channel, 2405 MHz			Fundamental	2405.26	N/A	N/A	N/A
	Low Channel, 2405 MHz			30 MHz - 12.5 GHz	2394.29	-52.54	-20	Pass
	Low Channel, 2405 MHz			12.5 GHz - 25 GHz	24455.19	-40.95	-20	Pass
	Mid Channel, 2440 MHz			Fundamental	2440.26	N/A	N/A	N/A
	Mid Channel, 2440 MHz			30 MHz - 12.5 GHz	2697.25	-53.29	-20	Pass
	Mid Channel, 2440 MHz			12.5 GHz - 25 GHz	24778.72	-40.68	-20	Pass
	High Channel, 2475 MHz			Fundamental	2475.26	N/A	N/A	N/A
	High Channel, 2475 MHz			30 MHz - 12.5 GHz	11779.9	-53.42	-20	Pass
	High Channel, 2475 MHz			12.5 GHz - 25 GHz	24830.61	-40.68	-20	Pass

	Single C	hannel Modulated, Low Cl	nannel, 2405 MHz		
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental	2405.26	N/A	N/A	N/A
Keysight Spectrum Analyze	r - Element Materials Technology	L seves well	A 11 1911 1917		
	SU S2 AC	SENSE:INT	#Avg Type:	Voltage	TRACE 1 2 3 4 5 6
	PNO: W IFGain:L	ide 🕞 Trig: Free Run .ow #Atten: 10 dB			
Ref Offse	et 22.3 dB 00 dBm			Mkr1 2.4	05 259 43 GHz 4.11 dBm
			↓ 1		
0.00	m	- Marine - M		and the second s	
man and a start of the start of					and the second
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
-80.0					
Center 2.405000 G	iHz			1	Span 2.000 MHz
#Res BW 100 kHz		#VBW 300 kHz		Sweep 1.	092 ms (8192 pts)
MSG			STATUS		
	Single C	hannel Modulated Low C	annel 2405 MU-		
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
	30 MHz - 12 5 GHz	2394 29	-52 54	-20	Pass

Single Channel Modulated, Low Channel, 2405 MHz							
	Frequency Measured Max Value Limit						
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
	30 MHz - 12.5 GHz	2394.29	-52.54	-20	Pass		

Fre	quency Range	Measured Freg (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 G	Hz - 25 GHz	24455.19	-40.95	-20	Pass
				eleksieren ander seine s	
Keysight Spectrum Analyzer - Elemen Keysight Spectrum Analyzer - Elemen Keysight Spectrum Analyzer - Elemen Keysight Spectrum Analyzer - Elemen	C CORREC	SENSE:INT	ALIGN OFF		04:12:39 PM Jul 26, 2023
	PNO: Fast IEGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type:	: Voltage	TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P P
Ref Offset 20 dB				Mkr	1 24.455 2 GHz -36.84 dBm
Log		The second secon			
.2 30					
2.00					
-12.3					
-22.3					
-32.3					1_
					الأذعما يسروحان ورور
-42.3	مار واللأفريقات وراله ويرد والتروي	i destato e a la contratición e astribute escati	والمتلخ ومقادها الخاده وبالتابيد مرراردا	And and a state of the state of	
-52.3			line we are a second to be and		
a definition of a second second second					
-62.3					
70.9					
-12.3					
-82.3					
Start 12.500 GHz					Stop 25.000 GHz
#Res BW 100 kHz	#	VBW 300 kHz	OTATI	Sweep	1.195 s (8192 pts
MSG			STATUS		

Frequency Measured Ma				Max Value	Limit	
	Range		Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental		2440.26	N/A	N/A	N/A

Keys	ight Spect	rum Ana	ilyzer - Element	Materials Techn	ology							
LXI RL		RF	50 Ω A	C		SENS	SE:INT	A A	ALIGN OFF		04:29:10	PM Jul 26, 2023
									#Avg Type	Voltage	TR	ACE 1 2 3 4 5 6
					DNO: Wide (Tria: Free R	un			1	YPE MWWWWW
					IEGain:Low	÷ ,	#Atten: 10 d	в				DET PPPPP
					II Guill.com			_				
		Pof Of	Feet 22 3 d	•						Mkr1	2.440 26	1 14 GHz
10 dB	(diu	Dof 1	0 00 dBn								4	1.35 dBm
Loa -	uiv	NCI I	0.00 001			нексексеренноского						
							Ť					
					ma	~				A CONTRACTOR OF THE		
0.00			And the second second	and all the second	4 Monthe .		and the second	ANT CALM		When we we we we want	man and	
		- Andrews									and and	man
	and and a start											and the second
-10.0												
-20.0												
-30.0												
-40.0												
-50.0												
-60.0												
-70.0												
00.0												
-80.0												
Cent	er 2 44	10000	GH7								Snan	2 000 MHz
#Doo	DIAL 4		1-		-#1	(D)AL	200 24-			Ewoor	0 1 002 mg	(9102 nto)
10 A 4	DW	UU KI	12		#\	TOW .	300 MHZ			Sweet	7 T.092 IIIS	te tez pis)
MSG									STATUS			
												and the second second second second

Single Channel Modulated, Mid Channel, 2440 MHz								
	Frequency Measured Max Value			Limit				
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result			
	12.5 GHz - 25 GHz	24778.72	-40.68	-20	Pass	ı.		

	Single Channel M	Nodulated, High C	hannel, 2475 MHz		
Frequency		Measured	Max Value	Limit	Beerly
Kange Fundamental	1	Freq (MHz)		<u>≤ (dBc)</u>	Result N/A
Fundamentai		2475.20	N/A	IN/A	IN/A
Keysight Spectrum Analyzer - Element Materials Tech	nology				
M RL RF 50Ω AC	5	ENSE:INT	ALIGN OFF		04:34:55 PM Jul 26, 2023
	PNO: Wide 🖵 IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type:	Voltage	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
Ref Offset 22.3 dB 10 dB/div Ref 10.00 dBm				Mkr1 2.4	4.34 dBm
		martin	1	May marked and an	
U.UU					wood ward and a second
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
-80.0					
Center 2.475000 GHz #Res BW 100 kHz	#VBV	V 300 kHz		Sweep 1	Span 2.000 MHz .092 ms (8192 pts)
MSG			STATUS		
	Single Channel N	Aodulated, High C	hannel, 2475 MHz		
Frequency Range		Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
30 MHz - 12.5 GH	lz	11779.9	-53.42	-20	Pass

Key	signt spec	trum An	alyzer - Elemel	nt ivia	tenais recimo	logy		maximum traveril	1				
RL	L	RF	50 Ω	AC	CORREC		SENSE:INT		<u> </u>	ALIGN OFF	Voltago	04:35:49 PM Jul 26, 2023	
						PNO: Fast IFGain:Low	Ģ	Trig: Free #Atten: 10	Run dB	#Avg Type.	voitage		DET PPPP
0 dE	3/div	Ref 0 Ref 1	ffset 20 di 7.70 dBn	B n							Ν	49.4% Akr1 11.7 49.	79 9 GF 9.08 dBi
°g				1				, ,					
.30													
2.3													
.3													
.3													
.3													1
.3			والمراجع والمراجع		ويتله والألمورون		La La La La			and the second diversion of the second diversion of the second diversion of the second diversion of the second		Chatletta and an and	الدرسة الرابعية
3					and a second								
3													
2.3													
ari Res	30 M	Hz 100 k	Hz			#	/VBV	V 300 kHz			Swe	Stop 2	2.500 G
				Andrewser									

APPENDIX

Gap Analysis and Manufacturer Attestation

GAP ANALYSIS

Gap analysis comparing RSS-247 Issue 2:2017 to RSS-247 Issue 3:2023

RSS-247 Issue 2:2017 has been superseded by RSS-247 Issue 3:2023.

The standard has had technical changes requiring evaluation of the compliance information of relevant products. The following changes have been made to this report

- The manufacturer's attestation to the status of the product is included in this report.
- A Gap Analysis (GA) has been performed of the current issue of the standard and was compared to the standard and method used during testing of the device documented in this report. The GA is located in the appendix of this report.

The data was verified that it continues to comply with the requirements of RSS-247 Issue 3:2023.

Conclusion:

No retesting of the device described in this report is required due to the changes made to the standard.

The following changes were made in RSS-247 Issue 3:2023

- 1. Modified section 6.2 to clarify that different measurement methods can apply depending on the operating frequency range of the device.
- 2. Added section 6.2.5 to introduce the requirements for devices operating from 5850 5895 MHz and channels that span across 5850 MHz.
- 3. Added section 6.2.5.1 to provide general information and definitions.
- 4. Added section 6.2.5.2 to identify the power limits associated with devices operating in the 5850-5895 MHz band.
- 5. Added section 6.2.5.3 to identify the unwanted emission limits associated with devices operating in the 5850-5895 MHz band.
- 6. Made editorial changes and clarifications, as appropriate.

Emerson, Rosemount Inc. 6021 Innovation Blvd Shakopee, MN 55379 USA

Re: Emerson 775 and FCC/ISED Testing

18 April 2024

To Whom It May Concern:

The updated radio version of the Emerson Wireless 775 THUM Adapter was tested to FCC 15.247 and RSS-247 at Element from dates 26-Jul-23 to 6-Sept-23, under Element project EMPM0151. I certify the design and function of this updated version of the product has not changed since these tests were performed.

Sincerely,

Eizabeth Reierson

Elizabeth Reierson Principal Engineer Global Operations and Quality Emerson Pervasive Sensing

End of Test Report