

Emerson Automation Solutions/Rosemount Inc.

Model 248DX

FCC 15.247:2019 2.4 GHz DTS Radio

Report # EMPM0071.1

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

Last Date of Test: October 17, 2019 Emerson Automation Solutions/Rosemount Inc. EUT: Model 248DX

Radio Equipment Testing

 Standards
 Method

 Specification
 Method

 FCC 15.247:2019
 ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6, 11.12.1, 11.13.2,	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

a.

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

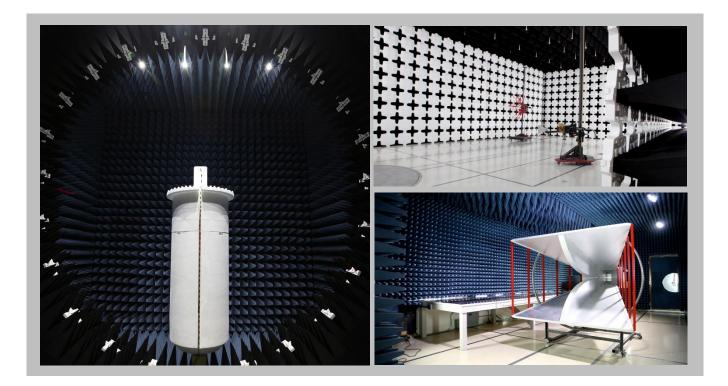
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

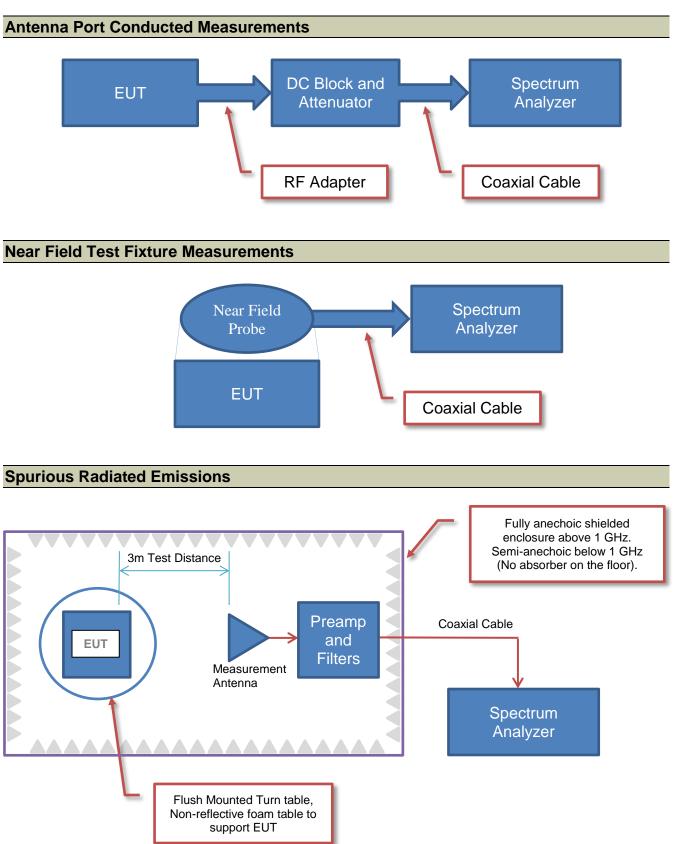
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NVLAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
		BSMI			
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VCCI			
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Emerson Automation Solutions/Rosemount Inc.
Address:	6021 Innovation Boulevard
City, State, Zip:	Shakopee, MN 55379
Test Requested By:	Elizabeth Reierson
EUT:	Model 248DX
First Date of Test:	October 14, 2019
Last Date of Test:	October 17, 2019
Receipt Date of Samples:	October 14, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Wireless Temperature Transmitter

Testing Objective:

To demonstrate compliance of the 2.4 GHz DTS radio to FCC 15.247 requirements.

Configuration EMPM0071-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wireless Temperature Transmitter	Rosemount Inc.	248DX	0007065

Configuration EMPM0071-3

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Wireless Temperature Transmitter	Rosemount Inc.	248DX	0009561			

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Laptop	Lenovo	ThinkPad T510	431436U				
USB HART Interface	MACTek Corporation	Viator	346802				
AC Adapter (Laptop)	Lenovo	92P1160	11S92P1160Z1ZBGH87P524				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB Cable (HART Interface)	No	0.3m	No	Laptop	USB HART Interface		
HART Interface Cable	No	2.0m	No	USB HART Interface	Wireless Temperature Transmitter		
AC Cable (Laptop)	No	1.0m	No	AC Mains	AC Adapter (Laptop)		
DC Cable (Laptop)	No	1.8m	Yes	AC Adapter (Laptop)	Laptop		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	2019-10-14	Spurious Radiated Emissions	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
2	2019-10-17	Duty Cycle	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	2019-10-17	Bandwidth	delivered to	devices were added or	Element following
		Danuwidin	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
4	2019-10-17	Output Power	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Equivalent Isotropic	Tested as	No EMI suppression	EUT remained at
5	2019-10-17	Radiated Power	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Power Spectral	Tested as	No EMI suppression	EUT remained at
6	2019-10-17	Density	delivered to	devices were added or	Element following
		Density	Test Station.	modified during this test.	the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
7	2019-10-17	Compliance	delivered to	devices were added or	Element following
		Compliance	Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
8	2019-10-17	Conducted	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting WirelessHART (802.15.4) - low channel (2405 MHz), mid channel (2440 MHz), and high channel (2475 MHz) modulated

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

EMPM0071 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Coaxicom	3910-20	AXY	17-Sep-2019	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	HGG	17-Sep-2019	12 mo
Filter - High Pass	Micro-Tronics	HPM50111	HFM	18-Sep-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	11-Sep-2019	12 mo
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNP	11-Sep-2019	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0 mo
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-12001800-30-10P	PAP	23-Feb-2019	12 mo
Cable	Element	Biconilog Cable	MNX	23-Feb-2019	12 mo
Cable	Element	Standard Gain Cable	MNW	23-Feb-2019	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	23-Feb-2019	12 mo
Antenna - Biconilog	Ametek	CBL 6141B	AYS	19-Mar-2019	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	23-Feb-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	23-Feb-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	23-Feb-2019	12 mo
Antenna - Standard Gain	ETS-Lindgren	3160-08	AJP	NCR	0 mo
Antenna - Standard Gain	ETS-Lindgren	3160-07	AJJ	NCR	0 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIB	27-Aug-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	28-Jul-2019	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

										EmiR5 2019.08.15.1	PSA-ESCI 2019.05
	k Order:	EMPN			Date:		t-2019	\sim	9	\sim	0
	Project:	No		Ten	perature:		5 °C	5	Inst	mxp	ands
	Job Site:				Humidity:		RH			(
Serial I	Number:	0007		Barome	tric Pres.:	1019	mbar		Tested by	1: Dustin Sparks	S
		Model 248	X								
	juration:				-						
		Emerson A		Solutions/R	osemount I	nc.					
Att	tendees:	Merritt Pulk	rabek								
EUT	Power:										
Operatin	g Mode:		g Wireless	HART (802	.15.4) - low	channel (2	405 MHz),	mid char	nel (2440 M	Hz), and high c	hannel (2475 MHz
-	<u> </u>	modulated									
Dev	viations:	None									
					C0/	ala Dutur					
C		EUT operat	ting at a m	easured 77.		CIE. Duty C	cie correct	tion facto	r (DCCF) of	1.1 dB was add	led to the average
COL	mments:	points, base	ed on the f	ormula DCC	F = 10 " 10	g(1/DC).					
est Specifi							Test Meth				
CC 15.247:	2019						ANSI C63	.10:2013			
Run #	21	Test Dis	tance (m)	3	Antenna	Height(s)		1 to 4(r	n)	Results	Pass
80											
70											
~											
60											
50											
30											
									🛓 _		
40								1			
								🎽			
									\$		
30									$ \bullet$		
20											
20											
20											
20											
10			100			1000			10000		100000
10			100			1000 MHz			10000	PK	100000

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.542	36.0	-4.1	1.0	296.0	1.1	20.0	Vert	AV	0.0	53.0	54.0	-1.0	High ch, EUT on side
2483.508	34.7	-4.1	1.0	188.0	1.1	20.0	Horz	AV	0.0	51.7	54.0	-2.3	High ch, EUT horizontal
2483.500	33.5	-4.1	1.5	29.0	1.1	20.0	Horz	AV	0.0	50.5	54.0	-3.5	High ch, EUT vertical
2483.525	32.3	-4.1	1.5	159.0	1.1	20.0	Horz	AV	0.0	49.3	54.0	-4.7	High ch, EUT on side
2483.617	31.9	-4.1	1.5	322.0	1.1	20.0	Vert	AV	0.0	48.9	54.0	-5.1	High ch, EUT vertical
2483.525	31.5	-4.1	1.5	300.0	1.1	20.0	Vert	AV	0.0	48.5	54.0	-5.5	High ch, EUT horizontal
2387.567	31.3	-4.2	1.5	278.0	1.1	20.0	Vert	AV	0.0	48.2	54.0	-5.8	Low ch, EUT on side
7426.383	31.1	12.8	3.6	16.0	1.1	0.0	Vert	AV	0.0	45.0	54.0	-9.0	High ch, EUT on side
7321.517	31.0	12.7	3.9	219.0	1.1	0.0	Horz	AV	0.0	44.8	54.0	-9.2	Mid ch, EUT vertical
2483.900	48.6	-4.1	1.0	296.0	0.0	20.0	Vert	PK	0.0	64.5	74.0	-9.5	High ch, EUT on side
7321.350	29.9	12.7	1.5	32.0	1.1	0.0	Vert	AV	0.0	43.7	54.0	-10.3	Mid ch, EUT on side
7426.542	28.9	12.8	1.5	213.0	1.1	0.0	Horz	AV	0.0	42.8	54.0	-11.2	High ch, EUT vertical
4809.000	38.2	3.4	2.2	2.0	1.1	0.0	Horz	AV	0.0	42.7	54.0	-11.3	Low ch, EUT vertical
2483.675	46.0	-4.1	1.5	29.0	0.0	20.0	Horz	PK	0.0	61.9	74.0	-12.1	High ch, EUT vertical
4810.925	37.1	3.4	1.0	296.0	1.1	0.0	Vert	AV	0.0	41.6	54.0	-12.4	Low ch, EUT on side
4808.992	37.0	3.4	1.5	225.0	1.1	0.0	Horz	AV	0.0	41.5	54.0	-12.5	Low ch, EUT horizontal
2483.592	45.2	-4.1	1.0	188.0	0.0	20.0	Horz	PK	0.0	61.1	74.0	-12.9	High ch, EUT horizontal
4809.017	35.7	3.4	2.3	356.0	1.1	0.0	Vert	AV	0.0	40.2	54.0	-13.8	Low ch, EUT vertical

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4808.992	35.0	3.4	3.6	76.0	1.1	0.0	Horz	AV	0.0	39.5	54.0	-14.5	Low ch, EUT on side
4808.992	34.9	3.4	2.8	151.0	1.1	0.0	Vert	AV	0.0	39.5	54.0 54.0	-14.5	Low ch, EUT horizontal
2484.033	43.2	-4.1	1.5	159.0	0.0	20.0	Horz	PK	0.0	59.1	74.0	-14.0	High ch, EUT on side
2484.083	43.0	-4.1	1.5	322.0	0.0	20.0	Vert	PK	0.0	58.9	74.0	-15.1	High ch, EUT vertical
2485.175	43.0	-4.1	1.5	300.0	0.0	20.0	Vert	PK	0.0	58.3	74.0	-15.7	High ch, EUT horizontal
2387.983	42.4	-4.1	1.5	278.0	0.0	20.0	Vert	PK	0.0	58.2	74.0	-15.8	Low ch, EUT on side
4880.992	32.6	3.5	2.5	194.0	1.1	0.0	Horz	AV	0.0	37.2	54.0	-16.8	Mid ch, EUT vertical
4950.917	32.5	3.6	2.3	149.0	1.1	0.0	Horz	AV	0.0	37.2	54.0	-16.8	High ch, EUT vertical
4950.850	31.4	3.6	3.5	126.0	1.1	0.0	Vert	AV	0.0	36.1	54.0	-17.9	High ch, EUT on side
4880.917	30.7	3.5	1.3	90.0	1.1	0.0	Vert	AV	0.0	35.3	54.0	-18.7	Mid ch, EUT on side
12027.480	35.4	-1.2	2.0	240.0	1.1	0.0	Horz	AV	0.0	35.3	54.0	-18.7	Low ch, EUT vertical
12027.330	34.5	-1.2	1.0	47.0	1.1	0.0	Vert	AV	0.0	34.4	54.0	-19.6	Low ch, EUT on side
7321.850	40.6	12.7	3.9	219.0	0.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	Mid ch, EUT vertical
7426.458	40.4	12.8	3.6	16.0	0.0	0.0	Vert	PK	0.0	53.2	74.0	-20.8	High ch, EUT on side
12377.470	32.6	-0.5	1.5	240.0	1.1	0.0	Horz	AV	0.0	33.2	54.0	-20.8	High ch, EUT vertical
7318.408	39.9	12.7	1.5	32.0	0.0	0.0	Vert	PK	0.0	52.6	74.0	-21.4	Mid ch, EUT on side
7423.192	39.7	12.8	1.5	213.0	0.0	0.0	Horz	PK	0.0	52.5	74.0	-21.5	High ch, EUT vertical
12202.340	29.4	-0.4	1.5	47.0	1.1	0.0	Horz	AV	0.0	30.1	54.0	-23.9	Mid ch, EUT vertical
12199.050	29.4	-0.4	2.7	158.0	1.1	0.0	Vert	AV	0.0	30.1	54.0	-23.9	Mid ch, EUT on side
12377.440	29.0	-0.5	1.5	295.0	1.1	0.0	Vert	AV	0.0	29.6	54.0	-24.4	High ch, EUT on side
4808.767	45.1	3.4	2.2	2.0	0.0	0.0	Horz	PK	0.0	48.5	74.0	-25.5	Low ch, EUT vertical
4808.867	44.4	3.4	1.5	225.0	0.0	0.0	Horz	PK	0.0	47.8	74.0	-26.2	Low ch, EUT horizontal
4808.717	44.3	3.4	1.0	296.0	0.0	0.0	Vert	PK	0.0	47.7	74.0	-26.3	Low ch, EUT on side
4808.717	43.5	3.4	3.6	76.0	0.0	0.0	Horz	PK	0.0	46.9	74.0	-27.1	Low ch, EUT on side
4808.967	43.2	3.4	2.3	356.0	0.0	0.0	Vert	PK	0.0	46.6	74.0	-27.4	Low ch, EUT vertical
4808.783	42.9	3.4	2.8	151.0	0.0	0.0	Vert	PK	0.0	46.3	74.0	-27.7	Low ch, EUT horizontal
4881.192	41.8	3.5	2.5	194.0	0.0	0.0	Horz	PK	0.0	45.3	74.0	-28.7	Mid ch, EUT vertical
4950.867	41.6	3.6	2.3	149.0	0.0	0.0	Horz	PK	0.0	45.2	74.0	-28.8	High ch, EUT vertical
4950.800	40.5	3.6	3.5	126.0	0.0	0.0	Vert	PK	0.0	44.1	74.0	-29.9	High ch, EUT on side
4878.508	39.8	3.6	1.3	90.0	0.0	0.0	Vert	PK	0.0	43.4	74.0	-30.6	Mid ch, EUT on side
12022.870	43.7	-1.2	2.0	240.0	0.0	0.0	Horz	PK	0.0	42.5	74.0	-31.5	Low ch, EUT vertical
12022.540	43.4	-1.2	1.0	47.0	0.0	0.0	Vert	PK	0.0	42.2	74.0	-31.8	Low ch, EUT on side
12377.220	41.7	-0.5	1.5	240.0	0.0	0.0	Horz	PK	0.0	41.2	74.0	-32.8	High ch, EUT vertical
12199.420	40.9	-0.4	2.7	158.0	0.0	0.0	Vert	PK	0.0	40.5	74.0	-33.5	Mid ch, EUT on side
12374.670	39.5	-0.5	1.5	295.0	0.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	High ch, EUT on side
12198.200	39.4	-0.5	1.5	47.0	0.0	0.0	Horz	PK	0.0	38.9	74.0	-35.1	Mid ch, EUT vertical

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

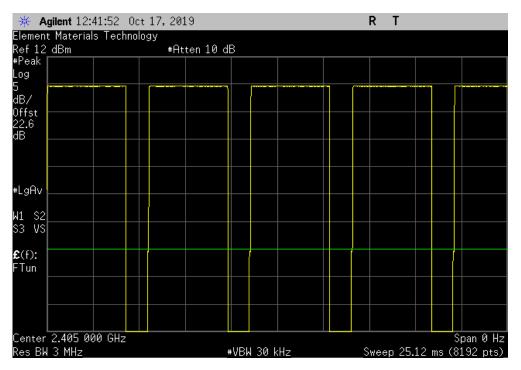
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

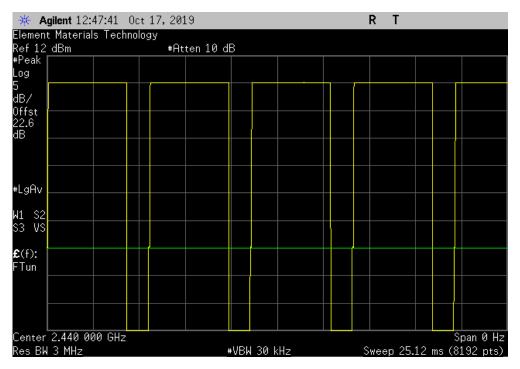
The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

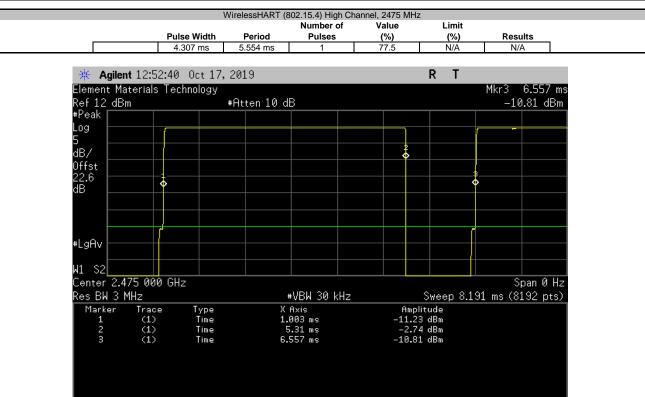
If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.



	Model 248DX					Work Order:		
Serial Number:							17-Oct-19	
Customer:	Emerson Automation So	lutions/Rosemount Inc.				Temperature:		
Attendees:	Merritt Pulkrabek						36.3% RH	
Project:						Barometric Pres.:		
	Dustin Sparks		Power: Battery			Job Site:	MN08	
TEST SPECIFICATI	IONS		Test Method					
FCC 15.247:2019			ANSI C63.10:2013					
COMMENTS								
None								
DEVIATIONS FROM	M TEST STANDARD							
	M TEST STANDARD							
None	M TEST STANDARD	Signature	Sustin Sparks					
DEVIATIONS FROM None Configuration #		Signature	Dustingoards		Number of	Value	Limit	
None		Signature	Sustingouls Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
None Configuration #			-{	Period 5.553 ms				Results N/A
None Configuration # WirelessHART (802	3	ЛНz	Pulse Width			(%)	(%)	
None Configuration # WirelessHART (802 WirelessHART (802	3 2.15.4) Low Channel, 2405 M	ЛНz ЛНz	Pulse Width 4.308 ms	5.553 ms		(%) 77.6	(%) N/A	N/A
None Configuration # WirelessHART (802 WirelessHART (802 WirelessHART (802	3 2.15.4) Low Channel, 2405 N 2.15.4) Low Channel, 2405 N	лНz ЛHz IHz	Pulse Width 4.308 ms N/A	5.553 ms N/A		(%) 77.6 N/A	(%) N/A N/A	N/A N/A
None Configuration # WirelessHART (802 WirelessHART (802 WirelessHART (802 WirelessHART (802	3 2.15.4) Low Channel, 2405 N 2.15.4) Low Channel, 2405 N 2.15.4) Mid Channel, 2440 N	лНz ЛНz ЛНz IHz IHz	Pulse Width 4.308 ms N/A 4.308 ms	5.553 ms N/A 5.554 ms		(%) 77.6 N/A 77.6	(%) N/A N/A N/A	N/A N/A N/A

Ref 12 dBm #Atten 10 dB -11.01 dBn #Peak							
Pulse Width Period Pulses (%) (%) Results 4.308 ms 5.553 ms 1 77.6 N/A N/A # Agilent 12:41:47 Oct 17, 2019 R T Element Materials Technology Mkr3 6.56 m Ref 12 dBm *Atten 10 dB -11.01 dBm *Peak -11.01 dB -11.01 dBm 5		W	irelessHART (
4.308 ms 5.553 ms 1 77.6 N/A N/A # Agilent 12:41:47 Oct 17, 2019 R T Element Materials Technology Mkr3 6.56 m Ref 12 dBm #Atten 10 dB -11.01 dBn #Peak #Atten 10 dB -11.01 dBn GB/ Gffst 2 2 GB/ Gffst 2 2 3 Upg G G G G G HgRv Gffst 2 2 3 3 3 4 3 6 3 4 3 4 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 <td></td> <td>Pulse Width</td> <td>Period</td> <td></td> <td></td> <td></td> <td>Posulte</td>		Pulse Width	Period				Posulte
Agilent 12:41:47 Oct 17, 2019 R T Element Materials Technology Mkr3 6.56 m Ref 12 dBm #Atten 10 dB -11.01 dBn *Peak -11.01 dB -11.01 dBn *Peak -11.01 dB -11.01 dBn *B -11.01 dB -11.01 dBn *Peak -11.01 dB -11.01 dBn *B -11.01 dB -11.01 dB							
Element Materials Technology Mkr3 6.56 m Ref 12 dBm #Atten 10 dB -11.01 dBn #Peak		4.000 1113	0.000 113		11.0	11/7	19/73
Ref 12 dBm #Atten 10 dB -11.01 dBn #Peak	🔆 Agilent 12:4	1:47 Oct 17, 2	2019			RT	
Ref 12 dBm #Atten 10 dB -11.01 dBn #Peak	Element Materials	Technology					Mkr3 6.56 ms
#Peak			Atten 10 c	B			
Log 5 dB/ 0ffst 22.6 dB #LgAv w1 \$2 Center 2.405 000 GHz Res BW 3 MHz MHz Marker Trace Type X Axis 1.007 ms -9.66 dB Amplitude -9.66 dB	#Peak						
5 dB/ 0ffst 2 22.6 0 dB 2 #LgAv 0 #LgAv 0 W1 \$2 0 Center 2.405 000 GHz Span 0 H: Res BW 3 MHz #VEW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis 1 (1) Time 1.007 ms							
dB/ Offst 22.6 dB i i i i #LgAv i i i i #LgAv i i i i #LgAv i i i i W1 \$2 i i i i Center 2.405 000 GHz Span 0 H: Span 0 H: Res BW 3 MHz #VEW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis 1 (1) Time 1.007 ms							
Offst 22.6 dB dB #LgAv dB #LgAv dB W1 S2 dB Center 2.405 000 GHz Span 0 H: Res BW 3 MHz #VEW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis 1 (1) Time 1.007 ms							
22.6 dB #LgAv W1 \$2 Center 2.405 000 GHz Res BW 3 MHz Marker Trace Type X Axis 1 (1) Time 1.007 ms -9.66 dBm	Offst						
#LgAv #LgAv W1 \$2 Span 0 Hz Center 2.405 000 GHz Span 0 Hz Res BW 3 MHz #VBW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms	22.6				*		\$
#LgAv #LgAv W1 \$2 Span 0 Hz Center 2.405 000 GHz Span 0 Hz Res BW 3 MHz #VBW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms	dB	Ĭ I					2
W1 S2 Center 2.405 000 GHz Res BW 3 MHz Marker Trace Type X Axis 1 (1) Time 1.007 ms -9.66 dBm							
W1 S2 Center 2.405 000 GHz Res BW 3 MHz Marker Trace Type X Axis 1 (1) Time 1.007 ms -9.66 dBm							
W1 S2 Center 2.405 000 GHz Res BW 3 MHz Marker Trace Type X Axis 1 (1) Time 1.007 ms -9.66 dBm							
W1 S2 Center 2.405 000 GHz Res BW 3 MHz Marker Trace Type X Axis 1 (1) Time 1.007 ms -9.66 dBm						(
Center 2.405 000 GHz Span 0 Hz Res BW 3 MHz #VBW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms -9.66 dBm	#LgHv						
Center 2.405 000 GHz Span 0 Hz Res BW 3 MHz #VBW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms -9.66 dBm	uu oo						
Res BW 3 MHz #VBW 30 kHz Sweep 8.191 ms (8192 pts) Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms -9.66 dBm							
Marker Trace Type X Axis Amplitude 1 (1) Time 1.007 ms -9.66 dBm		0 GHZ					
1 (1) Time 1.007 ms -9.66 dBm							91 ms (8192 pts)
2 (1) 1100 2.313 0S -3.30 0D0	1 (1)						
3 (1) Time 6.56 ms -11.01 dBm							
		111112		0.00 ms	11.0	ii abm	


WirelessHART (802.15.4) Low Channel, 2405 MHz										
Number of Value Limit										
 Pulse Width	Period	Pulses	(%)	(%)	Results					
N/A	N/A	5	N/A	N/A	N/A					



			NirelessHART ((802.15.4) Mid Ch Number of	annel, 2440 MHz Value	Limit		
		Pulse Width	Period	Pulses	(%)	(%)	Results	
		4.308 ms	5.554 ms	1	77.6	N/A	N/A	
🔆 🔆 Agile	ent 12:47	7:34 Oct 17,	2019			RT		
-		Technology					Mkr3 6.611	ms
Ref 12 dE			#Atten 10 c	łΒ			-9.10 df	
#Peak 🔽								
Log								
5, –		- <u> </u>						
dB/					•			
0ffst 22.6		4					å	
dB		*						
		┫						
#LgAv								
W1 S2								
Center 2.) GHz					Span Ø	
Res BW 3				⊭VBW 30 kHz			91 ms (8192 pt	ts)
Marker 1	Trace (1)	e Type Time		Axis .057 ms	Amp -10.5	litude o dem		
2	(1)	Time		.857 MS .365 MS		o abiii 3 dBm		
3	(1)	Time		.611 ms		0 dBm		

WirelessHART (802.15.4) Mid Channel, 2440 MHz										
	Number of Value Limit									
	Pulse Width	Period	Pulses	(%)	(%)	Results				
	N/A	N/A	5	N/A	N/A	N/A				

WirelessHART (802.15.4) High Channel, 2475 MHz										
			Number of	Value	Limit					
	Pulse Width	Period	Pulses	(%)	(%)	Results				
	N/A	N/A	5	N/A	N/A	N/A				

ement Materials	Techno			_					
ef 12 dBm Peak ∏		#H [.]	tten 10 d	<u>B</u>					
ig									
3/	i i i i								
ifst 2.6 3									
, 									
.gAv									
L S2 3 VS									
(f): Tun					,				
enter 2.475 00									an 0 H:

XMit 2019.09.05

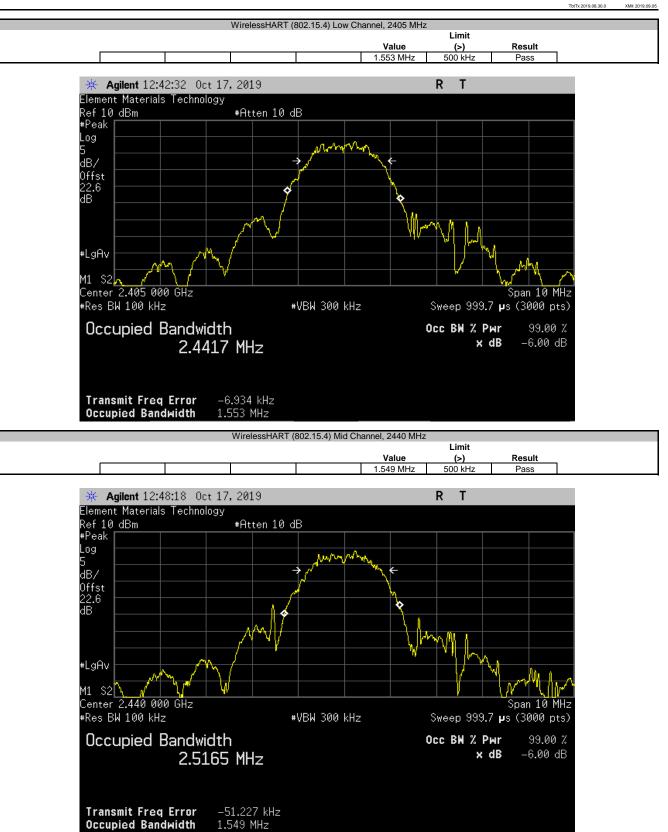
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.


					TbtTx 2019.08.30.0	XMit 2019.0
	lodel 248DX			Work Order		
Serial Number: 00	009561			Date	17-Oct-19	
Customer: En	merson Automation Solutions/Rosemour	nt Inc.		Temperature		
	lerritt Pulkrabek				36.5% RH	
Project: No				Barometric Pres.		
Tested by: Du			Power: Battery	Job Site	MN08	
TEST SPECIFICATION	NS		Test Method			
FCC 15.247:2019			ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM TI	EST STANDARD					
None						
		/	0			
Configuration #	3	R	Justin Spardo			
	Sig	nature				
					Limit	
				Value	(>)	Result
VirelessHART (802.15.	5.4) Low Channel, 2405 MHz			1.553 MHz	500 kHz	Pass
	5.4) Low Channel, 2405 MHz 5.4) Mid Channel, 2440 MHz			1.553 MHz 1.549 MHz	500 kHz 500 kHz	Pass Pass

Report No. EMPM0071.1

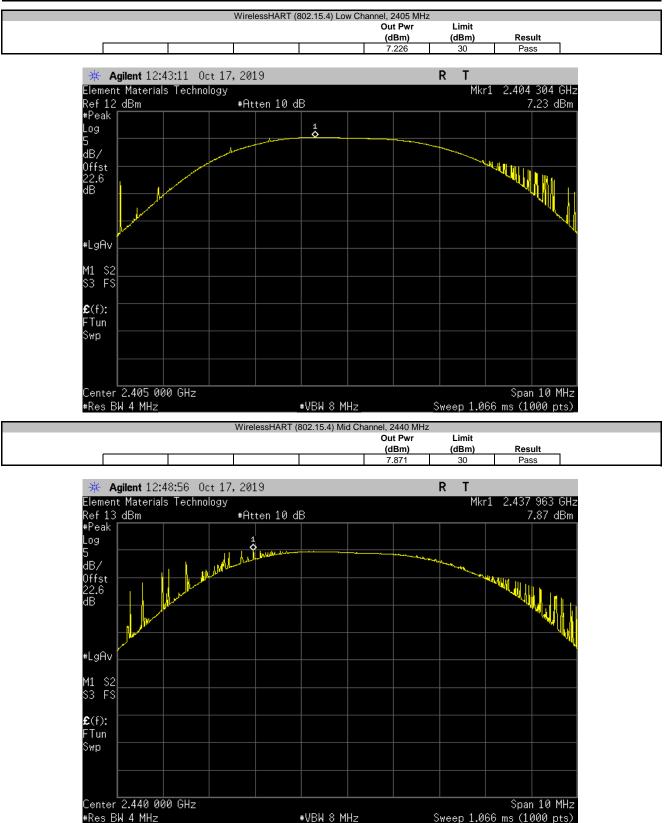
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

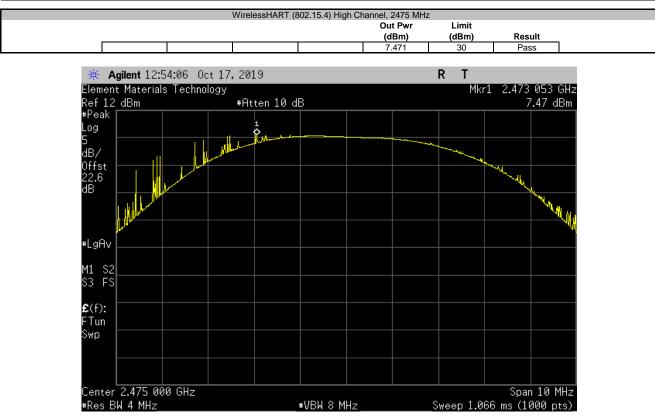
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.


Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.



				TbtTx 2019.08.30.0	
EUT: M	lodel 248DX		Work Order:		
Serial Number: 00	009561			17-Oct-19	
Customer: Er	merson Automation Solutions/Rosemount Inc.		Temperature:	23.6 °C	
	lerritt Pulkrabek			36.4% RH	
Project: No			Barometric Pres.:		
Tested by: Du		Power: Battery	Job Site:	MN08	
TEST SPECIFICATION	NS	Test Method			
FCC 15.247:2019		ANSI C63.10:2013			
COMMENTS					
None					
DEVIATIONS FROM T	EST STANDARD				
DEVIATIONS FROM T	TEST STANDARD				
None	3	Dustin Sparls			
		Dustingoads	Out Pwr	Limit	
None	3	Dustingoards	Out Pwr (dBm)	Limit (dBm)	Result
None Configuration #	3	Dustingowlo			Result Pass
None Configuration # WirelessHART (802.15	3 Signature	Dustin Sparts	(dBm)	(dBm)	

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

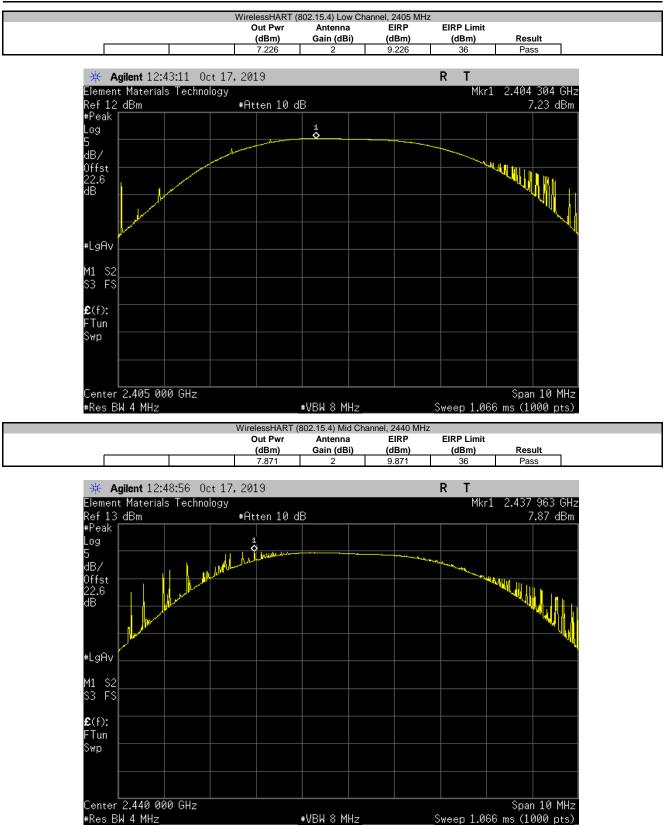
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

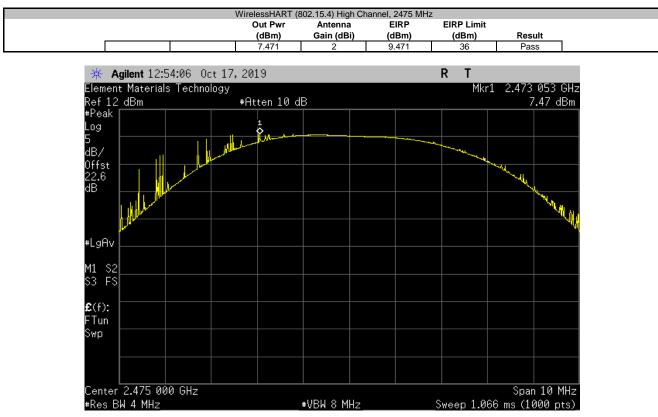
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio. The antenna gain in dBi was added to the conducted output power in order to obtain the EIRP.


EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

			XMit 201
EUT: M	Nodel 248DX Work Order	TbiTx 2019.08.30.0	
Serial Number: 00		17-Oct-19	
	Emerson Automation Solutions/Rosemount Inc.		
Attendees: M	Aerritt Pulkrabek Humidity:	36.6% RH	
Project: No	None Barometric Pres.	1018 mbar	
Tested by: Du	Dustin Sparks Power: Battery Job Site:	MN08	
EST SPECIFICATION	INS Test Method		
CC 15.247:2019	ANSI C63.10:2013		
	· · · · · · · · · · · · · · · · · · ·		
COMMENTS None	•		
lone			
None	TEST STANDARD		
lone	TEST STANDARD		
Ione DEVIATIONS FROM T	3 Dustingouls		
Ione EVIATIONS FROM T Ione	3 Signature	EIRP Limit	
ONE	3 Dustingouls	EIRP Limit (dBm)	Result
EVIATIONS FROM T one configuration #	3 Signature Out Pwr Antenna EIRP		Result Pass
Ione DEVIATIONS FROM TI Ione Configuration #	3 Signature Out Pwr Antenna EIRP (dBm) Gain (dBi) (dBm)	(dBm)	


EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

XMit 2019.09.05

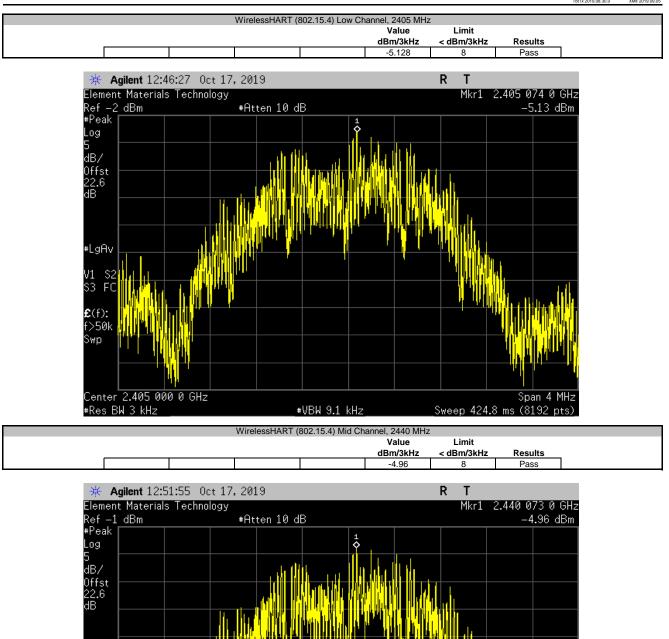
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

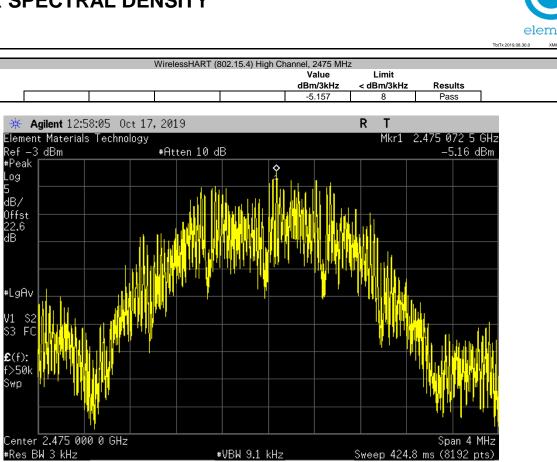
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.


Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.


				TbtTx 2019.08.30.0	XMit 2019.
EUT: Mo	odel 248DX		Work Order:		
Serial Number: 00	009561			17-Oct-19	
Customer: En	merson Automation Solutions/Rosemount Inc.		Temperature:		
	erritt Pulkrabek			36.4% RH	
Project: No			Barometric Pres.:		
Tested by: Du		Power: Battery	Job Site:	MN08	
TEST SPECIFICATION	IS	Test Method			
FCC 15.247:2019		ANSI C63.10:2013			
COMMENTS					
None					
DEVIATIONS FROM T					
DEVIATIONS FROM T	EST STANDARD				
None	EST STANDARD				
None	a a standard	Justin Que 20			
		Oustin Sparls			
None	3	Justin Sparlo	Value dBm/3kHz	Limit < dBm/3kHz	Results
None Configuration #	3	Oustin Sparlo			Results Pass
None Configuration # WirelessHART (802.15.	3 Signature	Oustin Sparlo	dBm/3kHz	< dBm/3kHz	

Report No. EMPM0071.1

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

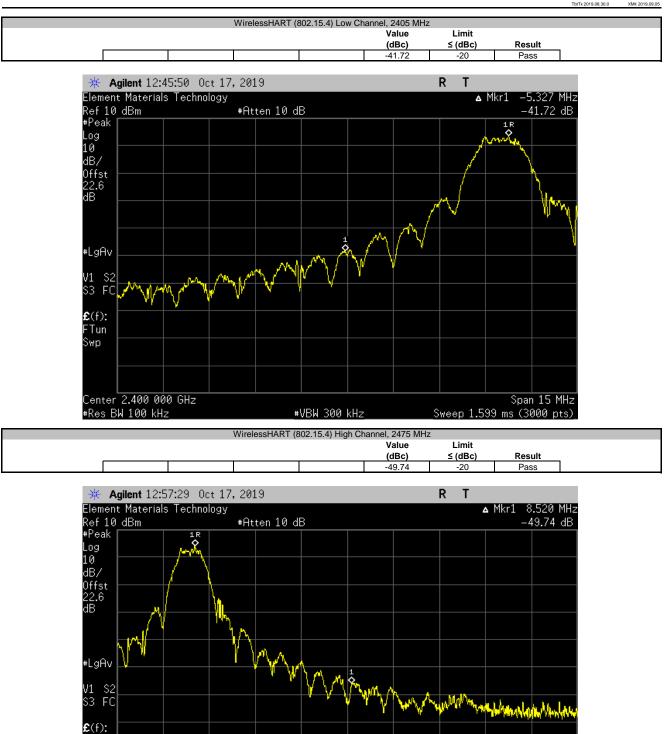
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE



							TbtTx 2019.08.30.0	XMit 2019.0
EUT: Mo	del 248DX					Work Order:	EMPM0071	
Serial Number: 000	9561					Date:	17-Oct-19	
Customer: Em	erson Automation Solution	s/Rosemount Inc.				Temperature:	23.6 °C	
Attendees: Me	rritt Pulkrabek					Humidity	36.3% RH	
Project: No	ne				E	arometric Pres.:	1018 mbar	
Tested by: Due	stin Sparks		Pow	ver: Battery		Job Site:	MN08	
TEST SPECIFICATIONS	5			Test Method				
FCC 15.247:2019				ANSI C63.10:2013				
COMMENTS				• •				
None								
EVIATIONS FROM TE	ST STANDARD							
lone								
Configuration #	3	Signature	Justin	Spards				
						Value (dBc)	Limit ≤ (dBc)	Result
VirelessHART (802 15 /	1) Low Channel, 2405 MHz					-41.72	-20	Pass
	4) High Channel, 2475 MHz					-49.74	-20	Pass
	, , , , , , , , , , , , , , , , , , , ,							

Report No. EMPM0071.1

BAND EDGE COMPLIANCE

#VBW 300 kHz

FTun Swp

Center 2.483 500 GHz

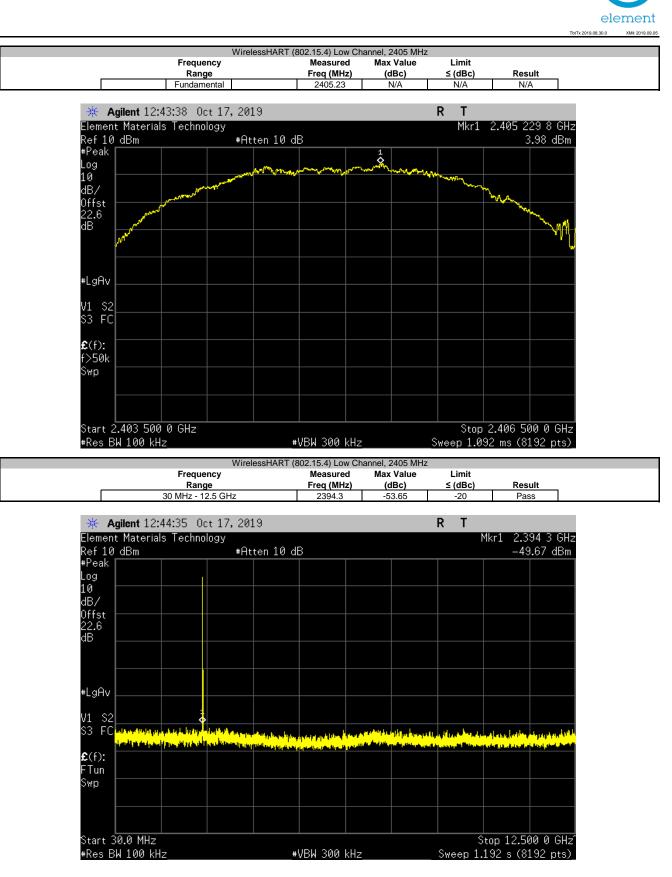
#Res BW 100 kHz

Span 25 MHz

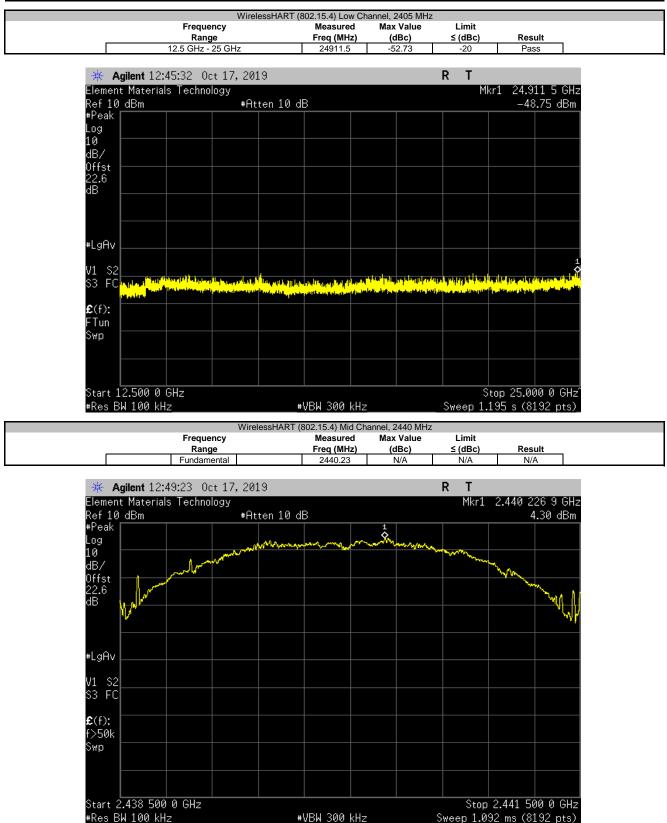
Sweep 2.399 ms (3000 pts)

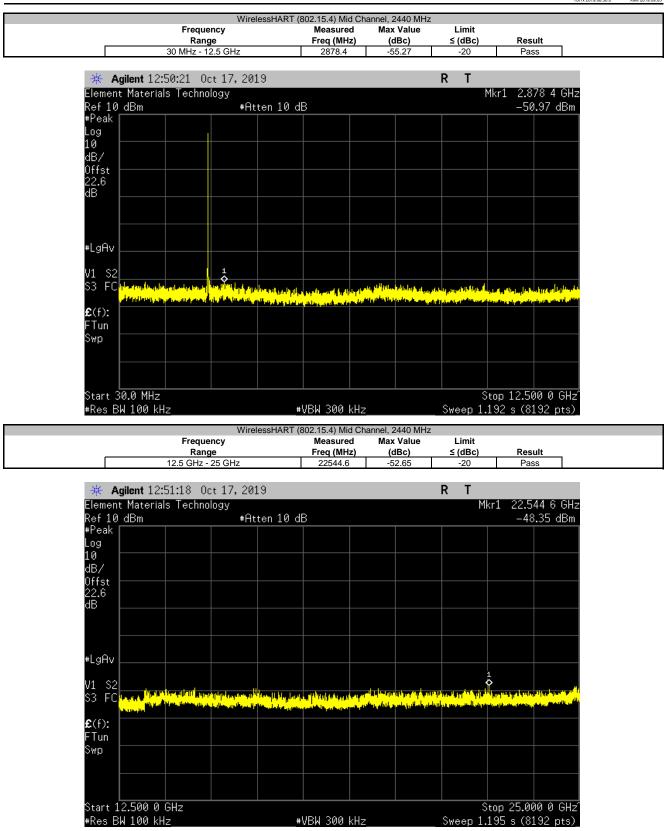
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT


Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	MNU	11-Apr-19	11-Apr-20
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-19	13-Feb-20
Block - DC	Fairview Microwave	SD3379	AMI	6-Aug-19	6-Aug-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	5-Apr-19	5-Apr-20

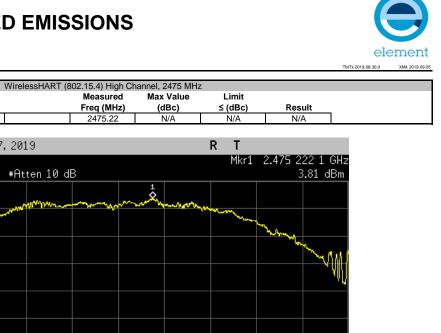
TEST DESCRIPTION

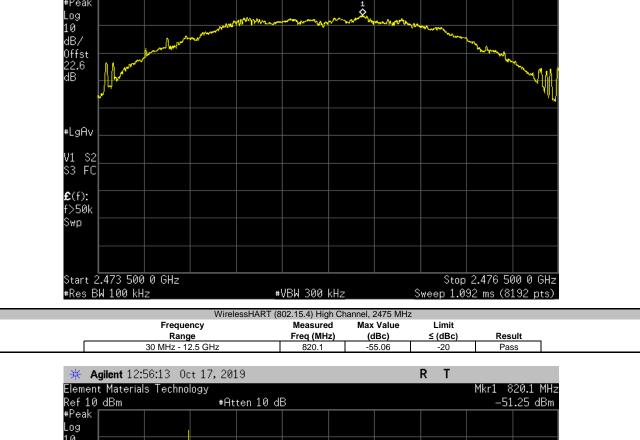

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.


EUT: Mo	odel 248DX				Work Order:	EMPM0071	
Serial Number: 00	09561				Date:	17-Oct-19	
Customer: En	nerson Automation Solutions/Ro	semount Inc.			Temperature:	23.7 °C	
Attendees: Me	erritt Pulkrabek				Humidity:	36.3% RH	
Project: No	one				Barometric Pres.:	1018 mbar	
Tested by: Du	ustin Sparks		Power: Battery		Job Site:	MN08	
TEST SPECIFICATION	IS		Test Method				
FCC 15.247:2019			ANSI C63.10:2013				
COMMENTS							
None							
DEVIATIONS FROM T	EST STANDARD						
DEVIATIONS FROM TE	EST STANDARD						
	EST STANDARD		A constant				
	EST STANDARD		Sintin Don la				
None		Signature	Dustingoals				
None		Signature	Nutur grands Frequency	Measured	Max Value	Limit	
lone		Signature	-{	Measured Freq (MH2)	Max Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #		Signature	Frequency				Result N/A
None Configuration # WirelessHART (802.15.	3	Signature	Frequency Range	Freq (MHz)	(dBc)	≤ (dBc)	
None Configuration # VirelessHART (802.15. VirelessHART (802.15.	3 .4) Low Channel, 2405 MHz	Signature	Frequency Range Fundamental	Freq (MHz) 2405.23	(dBc) N/A	≤ (dBc) N/A	N/A
Vone Configuration # WirelessHART (802.15. WirelessHART (802.15. WirelessHART (802.15.	3 .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2405.23 2394.3	(dBc) N/A -53.65	≤ (dBc) N/A -20	N/A Pass
Ione Configuration # VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15.	3 .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2405.23 2394.3 24911.5	(dBc) N/A -53.65 -52.73	≤ (dBc) N/A -20 -20	N/A Pass Pass
VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15.	3 .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz .4) Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Freq (MHz) 2405.23 2394.3 24911.5 2440.23	(dBc) N/A -53.65 -52.73 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15. VirelessHART (802.15.	3 .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz .4) Low Channel, 2405 MHz .4) Mid Channel, 2440 MHz .4) Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2405.23 2394.3 24911.5 2440.23 2878.4	(dBc) N/A -53.65 -52.73 N/A -55.27	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
None Configuration # WirelessHART (802.15. WirelessHART (802.15. WirelessHART (802.15. WirelessHART (802.15. WirelessHART (802.15. WirelessHART (802.15.	3 4) Low Channel, 2405 MHz 4) Low Channel, 2405 MHz 4) Low Channel, 2405 MHz 4) Mid Channel, 2440 MHz 4) Mid Channel, 2440 MHz 4) Mid Channel, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2405.23 2394.3 24911.5 2440.23 2878.4 22544.6	(dBc) N/A -53.65 -52.73 N/A -55.27 -52.65	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass

Frequency

Range


Fundamental


Agilent 12:55:15 Oct 17, 2019

Element Materials Technology

*

Ref 10 dBm #Peak

Measured

Freq (MHz)

2475.22

#Atten 10 dB

Max Value

(dBc)

N/A

ement Materials Tech			-					20.1 M
əf 10_dBm	#Ati	ten 10 d	B				-51	.25 dBi
Peak								
ia 🛛								
37								
fst								
2.6								
3								
gAv								
<u> </u>								
. S2 1								
FC and the address of the latter	i a statistica da s	which have a construction of the second s		a at the state	العندوريان وريبولياء	կ _{ան ու} ս մենսերեր	ater a tellatal	
the first sector sector	and the first states	And Bellin to a	a na ang ang ang ang ang ang ang ang ang	and a start of the second	and all all a start of the second	ALCONTRACTOR DE	the lifet of the lifet	المرجوب والمرابع
.t):								
un 🛛								
an di								
art 30.0 MHz						S	top 12.50	00 0 GH
es BW 100 kHz		#	VBW 300	kHz .		Sween 1.	192 s (8	192 nts

	WirelessHART	(802.15.4) High	Channel, 24	75 MHz				
	Frequency		Measured Max Value Freq (MHz) (dBc)		Limit	_		
	Range 12.5 GHz - 25 GHz) (dB -52.0		<u>≤ (dBc)</u> -20	Res Pas		
12.5 0		24897.8	52.	02	20	10	55	
🔆 Agilent 12:57:10	Oct 17, 2019				RT			
Element Materials Tec					М		97 8 GHz	
Ref 10 dBm	#Atten 10	dB	B -48.81 dBm					
#Peak								
Log 10		_						
dB/								
Offst								
22.6 dB								
4D								
#LgAv		_						
U1 00							1	
V1 S2 S3 FC Novel Val		والمراجعين القريم والمرار	a parti sela da childa ca	n <mark>, di dan mana</mark>		Hangler Hangs and the	, internet internet	
No. 1 Contraction of the second	the state of the big of the state of the sta	in the second	فمرعا حادوا مغادهم و	ha an ann an Iord an an	and a straight of the	n a dina di la dia	and the still a second s	
£ (f):								
FTun								
Swp								
Start 12.500 0 GHz						: ton 25.0	00 0 GHz	
#Res BW 100 kHz		#VBW 300 k	Hz		Sweep 1.			