

TEST REPORT

WPC RF Exposure for certification

APPLICANT

Socket Mobile, Inc.

REPORT NO.

HCT-SR-2405-FI001

DATE OF ISSUE

May. 25, 2024

Tested by Dong Sun, Kim

Technical Manager Yun Jeang, Heo

HCT CO., LTD. BongJai Huh

F-TP22-03 (Rev. 05) Page 1 of 50

HCT CO.,LTD.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO.

HCT-SR-2405-FI001

DATE OF ISSUE

May. 25, 2024

FCC ID

LUBMA41-X

ISED ID

2529A-MA41X

Applicant	Socket Mobile, Inc. 40675 Encyclopedia Cir., Fremont, CA 94538, U.S.A.
Product Name	XtremeScan Case
Model Name	XC100
Series Model	XG930, XG940, XS930, XS940
Date of Test	Apr.08, 2024
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si,
FCC Rule Part(s)	FCC Part 1 SUBPART I FCC Part 2 SUBPART J KDB 680106 D01
ISED Rule Part(s)	RSS-102:issue 6,RSS-102.SAR.Meas and RSS-216: Issue 2
Test Results	PASS [FCC MPE limit /ISED Safety code 6] Refer to the clause 5.

F-TP22-03 (Rev. 05) Page 2 of 50

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	Feb. 20, 2024	Initial Release

Notice

Content

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 05) Page 3 of 50

Contents

1 Test Location	5
2. DEVICE UNDER TEST DESCRIPTION	6
3. TEST EQUIPMENT	7
4. RF Exposure limit	8
5. TEST RESULTS	10
Appendix A. Measurement Data	13
Appendix B. System Check	15
Appendix C. Calibration Data	17
Appendix D. Test Setup Photo	49

1 Test Location

1.1 Test Laboratory.

Company Name:	HCT Co., LTD	
Address:	74. Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of Korea	
Telephone:	+82 31 645 6300	
Fax.:	+82 31 645 6401	

1.2 Test Facilities

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Labertale a CC a c	National Radio Research Agency (Designation No. KR0032)
Lab identifier	Company Number: 5944A

F-TP22-03 (Rev. 05) Page 5 of 50

2. DEVICE UNDER TEST DESCRIPTION

2.1. General information

Applicant Name:	Socket Mobile, Inc.
Model Name:	XC100
Series Model	XG930, XG940, XS930, XS940
Serial Number	001
EUT Type:	XtremeScan Case
FCC ID	LUBMA41-X
ISED ID	2529A-MA41X
Application Type:	Certification
RF Specification	Wireless Power Transfer
Transmitter Chain	1
Frequency Range	114.5 kHz
Max. Transmit Power	-0.3 dBuV/m @300 m
Number of Channels	1 Channel
Antenna Specification 1)	Loop antenna
Date(s) of Tests	Apr.08,2024

2.2. Test Configurations

METHODOLOGY	
FCC	680106 D01 Wireless Power Transfer v04.
ISED	RSS-102:issue 6,RSS-216

2.3 Description of DUT

A DUT is a case used in conjunction with a cell phone [iphone].

The DUT supports wireless charging to charge the installed cell phone at 114 kHz frequency from a wired DC power supply. Therefore, the wireless charging user condition of the DUT is Table Top, mobile condition. The report contains the measurement results of RF exposure of the charging case in the charging state.

The report contains the measured RF exposure results of the DUT's charging function under mobile usage conditions.

Charging cable

F-TP22-03 (Rev. 05) Page 6 of 50

3. TEST EQUIPMENT

The following test and measurement equipment was used for the tests documented in this report

Manufacturer	Model name	Description	S/N	Calib. Date	Calib.Due
SPEAG	MAGPy-8H3D+E3D	Near-Field Electric and Magnetic Field sensor Probe	3054	12/08/2024	12/08/2025
SPEAG	V-Coil350_85	Validation Source	1021	03/27/2024	03/27/2025

DASY6 Module WPT is optimized for evaluating compliance of inductive Wireless Power Transfer

(WPT) systems and any other magnetic-field sources operating in the 3 kHz–4MHz frequency range.

Module WPT V2.2 The MAGPy-8H3D+E3D V2 probe consists of eight isotropic H-field sub-probes and one isotropic E-field sub-probe that are all integrated inside the probe head with a flat tip. Each isotropic H-field sub-probe is comprised of three concentric orthogonal loop coil sensors. The isotropic E-field sub-probe is composed

of three orthogonal sensors (x and y sensors are dipoles, and the sensor measuring the z component is a monopole).

The uncertainty due to the anisotropy of the magnetic loops and the plates capacitors in the probe is described in the probe manufacturer's specification [1]

incation [i]				
Measurement probe specification				
Model	MAGPy-8H3D+E3D	SPR-002 issue 2		
Frequency	3 kHz – 10 MHz	3 kHz – 10 MHz		
Linearity	H: 0.1–3200 A/m	defined as a function of		
[A/m or V/m]	E: 0.1–2000 V/m	RL		
Linearity	H: <0.2 (typ.)	≤0.5		
error[dB]	E: <0.5 (typ.)			
Sensitivity	H: 0.1 A/m	H: ≤1 A/m		
[A/m or V/m]	E: 0.08 V/m	E: ≤1 V/m		
Sensor size[mm]	H: 10 mm	≤ dmeas /1.7		
	E: 50 mm			
Isotropy[dB]	<0.5 (typ.)	≤1		
Dimensions	110mm×635mm×35mm			
	(MAGPy-8H3D+E3D V2			
	& MAGPy-DAS V2)			
Application	Electric and Magnetic	Electric and Magnetic		
	field	field		
The sensitive elements are located				
approximately 7.5 mm below the external				
surface for H-Field				

F-TP22-03 (Rev. 05) Page 7 of 50

4. RF Exposure limit

4.1 MAXIMUM PERMISSIBLE RF EXPOSURE_FCC

1.13010 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency(RF) radiation as specified in 1.1307(b), except in the case of portable devices which shall be evaluated according the provisions of 2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	I/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34 1.34–30	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

F-TP22-03 (Rev. 05) Page 8 of 50

4.2 Electric and Magnetic Field Strength (3 kHz - 10 MHz)_ISED

The electric and magnetic field strength reference levels for devices employed by the general public (uncontrolled environment) and controlled-use devices (controlled environment) are summarized in table 5 and table 6.

Table 5: Electric field strength reference levels

Frequency range (MHz)	Reference level basis	Reference level (E _{RL}) for uncontrolled environment (V _{RMS} /m)	Reference level (E _{RL}) for controlled environment (V _{RMS} /m)	Reference period
0.003 -10	NS	83	170	Instantaneous
1.10-10	SAR	87/ f ^{0.5}	N/A	6 minutes
1.29-10	SAR	N/A	193/ f ^{0.5}	6 minutes

Note: f is frequency in MHz.

Table 6: Magnetic field strength reference levels

Frequency range (MHz)	Reference level basis	Reference level (H _{RL}) for uncontrolled environment (A _{RMS} /m)	Reference level (H _{RL}) for controlled environment (A _{RMS} /m)	Reference period
0.003-10	NS	90	180	Instantaneous
0.1-10	SAR	0.73/ f	1.6/ f	6 minutes

Note: f is frequency in MHz.

For both table 5 and table 6, refer to Health Canada's Safety Code 6 for relevant notes and additional information

F-TP22-03 (Rev. 05) Page 9 of 50

1.13

-0.027

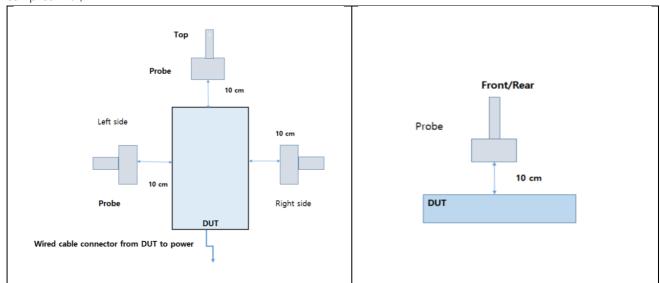
-0.014

5. TEST RESULTS

5.1 System check

A system check is typically performed prior to any compliance evaluation. For the DASY6 Module WPT, a set of four system validation sources (3 kHz, 85 kHz, 400 kHz and 6.78 MHz) are available. These sources consist of series resonant spiral coils, fed with an integrated current source. The current source consists of an oscillator and an amplifier at the appropriate frequency. A monitoring port in the form of a SMB connector is available on the device to monitor the current through the coil. The port offers the voltage across a 1Ω resistor connected in series with the coil, therefore the current I corresponds to the measured voltage Vtest port (I = Vtest port). The voltage on the port can thus be monitored with an oscilloscope and this should be equal to the current through the coil.

Freq	Date	Probe	Verificatio n Source	Distance	Peak H- Field	Peak Jind [A/m2, rms]	Peak	c Eind [V	/m, rms]	Peak H-Field	Peak Jind [A/m2, rms]	Peak	Eind [V/m	ı, rms]	Unc. [k=2]
						Targ	et Value				meas	ured Value	9		
		[S/N]	[S/N]	[mm]	[A/m]	Averg	Cube	local	Line .avg	[A/m]	Averg	Cube	local	Line .av g	[dB]
				0	209	2.39	3.41	3.45	3.45	202	2.38	3.39	3.43	3.43	4.40
					de	eviation from Ta	rget [dB]			-0.148	-0.018	-0.026	-0.025	-0.025	1.13
85 kHz	04/08/2024			Distance	Peak H- Field	Peak Jind [A/m2, rms]	Peak	c Eind [V	/m, rms]	Peak H-Field	Peak Jind [A/m2, rms]	Peak	Eind [V/m	ı, rms]	Unc. [k=2]
IN IZ		3054	1021			Targ	et Value				meas	ured Value	9		[12]
				[mm]	[A/m]	Averg	Cube	local	Line .avg	[A/m]	Averg	Cube	local	Line .av g	[dB]
				2	190	2.25	3.21	3.24	3.25	184	2.26	3.2	3.23	3.23	


deviation from Target [dB]

F-TP22-03 (Rev. 05) Page 10 of 50

5.2 Measurement results for the Maximum Exposure Configuration

To confirm compliance with all regulatory standards of FCC and ISED, the distance between the DUT and the probe was set to 10 cm, and the measurement results showed that all FCC and ISED limits were complied with,

Test conditions

Test	Frequency	Test distance	Maximum H-field [rms]	Maximum E-field [rms]	FCC I	₋imit	ISED	Limit
configuration	kHz	cm	A/m	V/m	A/m	V/m	A/m	V/m
Rear			0.24392	0.53942				
Front			0.09431	0.20251				
Left	114.5	10	0.06272	0.15448	1.63	614	6.38	83
Right			0.07187	0.18281				
Тор			0.06018	0.14203				
Rati	io of The wor	st case meas	urement results to li	mits[%]	14.96	0.09	3.83	0.65
	Exposure ra	tio of the wo	rst case for each Fie	ld	0.150	0.001	0.038	0.006

The side of the DUT was selected based on the screen side of the cell phone it is mounted on. and The bottom side was not measured because the DC power cable was connected to it.

The measurement results were in compliance with both FCC and ISED reference limits

F-TP22-03 (Rev. 05) Page 11 of 50

.5.3 Total Exposure-Thermal-based ER below 10 MHz

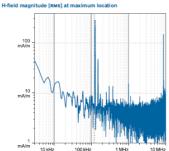
The exposure ratio EREH—SAR for transmitters operating between 100 kHz and 10 MHz for which compliance was determined against the SAR-based reference levels for the incident E- and/or H-fields is shown in equation (5).

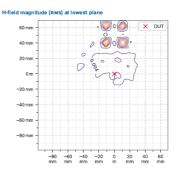
$$ER_{EH-SAR,a} = \left\{ egin{array}{ll} \left(rac{H_{SAR,a}}{H_{RL-SAR,a}}
ight)^2, & 100kHz \leq f_a < f_{env} \\ \max \left[\left(rac{E_{SAR,a}}{E_{RL-SAR,a}}
ight)^2, \left(rac{H_{SAR,a}}{H_{RL-SAR,a}}
ight)^2
ight], & f_{env} \leq f_a < 10MHz \end{array}
ight.$$
 (5)

 $ER_{EH-SAR,a} = Max[(0.038)^2,(0.006)^2] = 0.0015$

F-TP22-03 (Rev. 05) Page 12 of 50

Appendix A. Measurement Data


F-TP22-03 (Rev. 05) Page 13 of 50



cDASY6 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info:	DASY software version:	Center location:
not set	cDASY6 Module WPT 2.4.0.4346	x: 0.00 m, v: 0.00 m, z: 135.97 mm
Serial number:	Probe model, serial no. and configuration date:	Dimensions:
not set	MAGPy-8H3D+E3Dv2, WP000201, 2023/12/13	x: 169.0 mm, y: 169.0 mm, z: 36.7 mm
Scenario:	Software version:	Resolution:
not set	2.0.49, backend: 2.2.3	x: 7.33 mm, y: 7.33 mm, z: 7.33 mm
		Completed on: 2024/04/18 19:12:33

Measurement results Maximum H-field [Rests]: Maximum E-field [Rests]: Maximum E-field location relative to DUT: x: 62.91 mA/m, y: 60.43 mA/m, z: 227.79 mA/m Maximum H-field location relative to DUT: x: 2-56.7 mm, y: 11.00 mm, z: 23.17 mm Maximum E-field [Rest]: MAGNITUDE: \$39.41 mA/m x: 28.75 mA/m, y: 165.40 mA/m, z: 512.62 mA/m Maximum E-field location relative to DUT: x: -36.67 mm, y: 0.00 m, z: 15.67 mm Distance to -20.04B boundary: 7.33 mm

ncident fields, and induced quantities in the anatomical model (f=119.72 kHz, σ = 0.750 S/m, Essue density = 1,000 kg/m³)

	Peak incide	nt fields [RMS]		Peak E _{ind} [V/m, rus	1	Peak J _{ind} [A/m ² ,	psSAR	[mW/kg]	H-field extent			Errors
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.0	0.198	0.0406	0.000494	0.000532	0.000493	0.000252	0.0000000761	0.0000000319	39.1	8%	222%	100%

Standard compliance evaluation, Absolute (with multi-frequency enhancement, total field evaluation)

			ICNIRP	2010/2020		1	ICNIE	RP 1998			IEEI	2019			E	CC			HC (Code 6	
		RL	[RMS]	BR	[RMS]		RL [RMS]	BR	[RMS]	ER	L [RMS]	DR	L [RMS]	MI	PE [RMS]	BI	RMS]	RI	[RMS]	BR	[RMS]
Dist	lance	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pHinc	pEinc	pJ_{ind}	psSAR	pHinc	pEinc	pE_{ind}	psSAR	pHinc	pEinc	pE_{ind}	psSAR	pHinc	pEinc	pE_{ind}	psSAR
[mn	n]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[A/m ²]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]
0.0		0.198	0.0406	0.00049	5 0.000000	020199 8	0.0406	0.000253	3 0.000000	0201998	0.0406	0.00049	5 0.000000	0201998	0.0406	N/A	0.000000	0706198	0.0406	0.000533	3 0.00000007

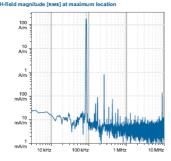
Standard compliance evaluation, Relative (with multi-frequency enhancement, total field evaluation)

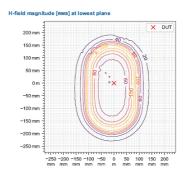
1		ICNIRP 2	010/2020 [d	B]		ICNIR	P 1998 [dB]			IEEE	2019 [dB]			F	CC [dB]			HC C	ode 6 [dB]	
		RL		BR		RL		BR		ERL		DRL		MPE		BR		RL		BR
Distance [mm]	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR
0.0	-40.5	-66.2	-90.3	-108.0	-28.0	-66.6	-59.5	-108.0	-58.3	-83.6	-94.1	-108.0	N/A	N/A	N/A	-103.2	-29.8	-66.2	-89.6	-103.2

Document generated at 2024/04/18 19:14:35, simulation performed at 2024/04/18 19:14:27 using Sim4Life version 7.2.4.14019

F-TP22-03 (Rev. 05) Page 14 of 50

Appendix B. System Check


F-TP22-03 (Rev. 05) Page 15 of 50



cDASY6 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info:	DASY software version:	Center location:
not set	cDASY6 Module WPT 2.4.0.4346	x: 0.00 m, y: 0.00 m, z: 35.51 mm
Serial number:	Probe model, serial no. and configuration date:	Dimensions:
not set	MAGPy-8H3D+E3Dv2, WP000201, 2023/12/13	x: 345.0 mm, y: 521.0 mm, z: 36.7 mm
Scenario:	Software version:	Resolution:
not set	2.0.49, backend: 2.2.3	x: 7.33 mm, y: 7.33 mm, z: 7.33 mm
		Completed on:

Measurement results Maximum H-field [nss]: MAGNITUDE: 132.26 A/m x: 111.99 A/m, v: 39.98 A/m, x: 58.09 A/m Maximum H-field location relative to DUT: x: -91.67 mm, v: 94.33 mm, x: 8.50 mm Maximum E-field [nss]: MAGNITUDE: 271.17 V/m Maximum E-field [nss]: MAGNITUDE: 271.17 V/m Maximum E-field location relative to DUT: x: 88.00 mm, v: 139.33 mm, z: 1.00 mm Distance to -20.0 dB boundary: 63.08 mm Offset relative to DUT: x: 0.00 m, v: 0.00 m, z: 1.00 mm

Incident fields, and induced quantities in the anatomical model (f = 85.00 kHz, σ = 0.750 S/m, issue density = 1,000 kg/m³)

		ent fields [aws]		Peak E _{ind} [V/m, s.m.		Peak J _{ind} [A/m ² ,		R [mW/kg]	H-field extent		Vector	Errors Boundary	
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	radius [mm]	Sign	potential	effect	
0.0	202.0	271.0	3.39	3.43	3.43	2.38	6.72	5.06	182.0	1%	69%	41%	
2.0	184.0	249.0	3.2	3.23	3.23	2.26	6.05	4.61	184.0	1%	69%	44%	

Standard compliance evaluation, Absolute (with multi-frequency enhancement, total field evaluation)

		ICNIRP	2010/2020			ICNI	RP 1998			IEE	E 2019				FCC		1	HC	Code 6		1
	. B	L [rms]	BF	R [nms]	· F	RL [RMS]	В	R [rms]	EF	RL [RMS]	DF	RL [nms]	M	PE [RMS]	В	R [rms]	R	L [RMS]	В	R [rus]	
Distance	pH _{inc}	pEinc	pE_{ind}	psSAR	pH _{inc}	pEinc	pJ_{ind}	psSAR	pH _{inc}	pE _{inc}	pE _{ind}	psSAR	pH _{inc}	pEinc	pE_{ind}	psSAR	pH _{inc}	pE _{inc}	pE _{ind}	psSAR	1
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[A/m ²]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	1
0.0	202.0	634.0	3.4	5.06	202.0	634.0	2.39	5.06	202.0	634.0	3.44	5.06	202.0	386.0	N/A	6.72	202.0	634.0	3.43	6.72	1
2.0	184.0	582.0	3.2	4.61	184.0	582.0	2.26	4.61	184.0	582.0	3.24	4.61	184.0	355.0	N/A	6.05	184.0	582.0	3.23	6.05	

Standard compliance evaluation, Relative (with multi-frequency enhancement, total field evaluation)

		ICNIRP 2	010/2020 [d	B]		ICNIR	P 1998 [dB]		IEEE :	2019 [dB]			F	CC [dB]			HC C	ode 6 [dB]	
		RL		BR		RL		BR		ERL		DRL		MPE		BR		RL		BR
Distance [mm]	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR
0.0	19.7	17.7	-10.5	-26.0	32.1	17.2	23.0	-26.0	1.9	0.3	-14.2	-26.0	7.0	13.4	N/A	N/A	27.4	17.7	-10.5	-23.8
Discument	n é8e9 ate	A offers	04/08118-45	3-22 6 Aulat	n 3 b årfn	rme #6 a 5 20	24/0 3/2 058 1	18:43219 4 sino	Slish41 it	e ve6k5an 7	2 4-14.619	-26.4	6.2	12.6	N/A	N/A	26.6	16.9	-11.0	-24.2

F-TP22-03 (Rev. 05) Page 16 of 50

Appendix C. Calibration Data

F-TP22-03 (Rev. 05) Page 17 of 50

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Gyeonggi-do, F	Republic of Korea CERTIFICAT		o:V-Coil350/85-1021_Ma
Object	V-Coil350/85 -	SN: 1021	
Calibration procedure(s)	QA CAL-47.v13 Calibration Prod	3 cedure for WPT Verification & Valid	dation Sources
Calibration date:	March 7, 2024		
Calibration Equipment used (N	M&TE critical for calibration		
Primary Standards MAGPy-8H3D+E3D/DAS	ID# SN: 3065/3056	Cal Date (Certificate No.) 06-Apr-23 (MAGPy-8H3D+E3D-3065)	Scheduled Calibration Apr-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
		결 답당자 기 2 1 호 작위/설명 Sw / 기 2 1 전 일 자 기 2 1 건 2	(J / 7/32/ 23 24.08.22
	Name	Function	Signature
Calibrated by:	Name Jingtian Xi	Function Project Leader	Signature
Calibrated by:	pomporemblenomenteroreman		Signature Jungtion SC
Approved by:	Jingtian Xi Sven Kühn	Project Leader	Jungtion Signature Signature Issued: March 12, 2024

F-TP22-03 (Rev. 05) Page 18 of 50

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Glossary:

WPT V&V wireless power transfer verification & validation

Calibration is Performed According to the Following Standards:

- Internal procedure QA CAL-47 Calibration procedure for WPT verification & validation sources from 3 kHz to 10 MHz
- IEC/IEEE 63164, "Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems – Models, instrumentation, measurement and computational methods and procedures (Frequency range 3 kHz to 30 MHz)", draft standard, 2023

Additional Documentation:

a) cDASY6/DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: The V&V source is switched on for at least 30 minutes.
- Source Positioning: The V&V source is placed in the center of the UniPV1 phantom such
 that the source surface is parallel to phantom surface. The probe location used for DUT
 teaching is the top center of the coil (marked on the source casing). The probe distance is
 verified using mechanical gauges placed on the source surface.
- H-field distribution: H-field is measured in the volume above the V&V source in a rectilinear grid with a uniform grid step of 7.33 mm.

Calibrated Quantity

 Spatial peak of H-field (RMS value) at d mm from the DUT surface (extrapolated from measurements)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: V-Coil350/85-1021_Mar24

Page 2 of 5

Measurement Conditions

	cDASY6 Module WPT	2.4.0.4346
Software version	Notebook GUI	2.4.0.2
	Sim4Life	7.2.4
	Grid dimensions	x: 609 mm, y: 609 mm, z: 36.7 mm
Scan setup	Grid resolutions	dx, dy, dz: 7.33 mm
Nominal frequency	85 kHz	

Calibrated Quantities

Distance (relative to source surface) (mm)	Peak H-field (A/m)	Uncertainty (k=2) (dB)		
0	209	1.13		
2	190	1.13		

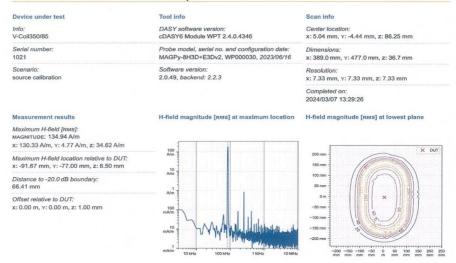
Appendix (Additional assessments outside the scope of SCS 0108)

Peak values of induced fields1

Distance (relative to	Induced peak current	Induced	peak E-fie	peak spatial SAR (mW/kg)		
source surface) (mm)	density, 1cm ² area avg. (A/m ²)	2mm cube avg.	Local	5mm line avg.	1g avg.	10g avg.
0	2.39	3.41	3.45	3.45	6.69	4.95
2	2.25	3.21	3.24	3.25	5.97	4.48

Voltage measurement

Total voltage (V)	Voltages at harmonics (dBc)
0.409	Highest harmonic: -46.5 2 nd highest harmonic: -47.9


Certificate No: V-Coil350/85-1021_Mar24

 $^{^{1}}$ determined for a virtual half-space phantom with tissue properties ϵ_{r} = 55, σ = 0.75 S/m, ρ =1000 kg/m 3

Measurement report

cDASY6 Module WPT Measurement Report

Incident fields, and induced quantities in the anatomical model $(f = 85.00 \, \text{kHz}, \sigma = 0.750 \, \text{S/m}, \, tissue \, density = 1,000 \, kg/m^3)$

	Peak incident fields [RMs]	incident			Peak J _{ind} [A/m ² , _{RMS}]	psSA	AR [mW/kg]	H-field extent			Errors
Distance [mm]		Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.0	209.0	3.41	3.45	3.45	2.39	6.69	4.95	181.0	1%	97%	35%
2.0	190.0	3.21	3.24	3.25	2.25	5.97	4.48	183.0	1%	97%	37%

Standard compliance evaluation, Absolute (with multi-frequency enhancement, total field evaluation, coverage evaluation)

	ICN	IRP 2010	/2020	1	CNIRP 19	98		IEEE 20	19		FCC			HC Code	6
	RL [RMS]	BF	R [RMS]	RL [RMS]	BR	[RMS]	ERL [RMS]	DR	L [RMS]	MPE [RMS]	BF	R [RMS]	RL [RMS]	BF	[RM3]
Distance [mm]	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc} [A/m]	pJ _{ind} [A/m ²]	psSAR [mW/kg]	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc}	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc}	pE _{ind}	psSAR [mW/kg
0.0	209.0	25.6	4.95	209.0	2.4	4.95	209.0	13.4	4.95	209.0	N/A	6.69	209.0	36.6	6.69
2.0	190.0	24.2	4.48	190.0	2.26	4.48	190.0	12.6	4.48	190.0	N/A	5.97	190.0	34.5	5.97

Standard compliance evaluation, Relative (with multi-frequency enhancement, total field evaluation, coverage evaluation

	ICNI	RP 2010/2	2020 [dB]	IC	NIRP 199	8 [dB]	1	EEE 2019	[dB]	1	FCC [dl	3]	1 1	HC Code 6	[dB]
	RL		BR	RL		BR	ERL		DRL	MPE		BR	RL		BR
Distance [mm]	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pJ _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR
0.0	20.0	7.0	-26.1	32.4	23.0	-26.1	2.2	-2.5	-26.1	7.3	N/A	N/A	27.7	10.1	-23.8
2.0	19.1	6.5	-26.5	31.6	22.5	-26.5	1.3	-3.0	-26.5	6.5	N/A	N/A	26.9	9.6	-24.3

Document generated at 2024/03/07 14:01:30, simulation performed at 2024/03/07 13:58:59 using Sim4Life version 7.2.4.14019

Certificate No: V-Coil350/85-1021_Mar24

Page 5 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

HCT

Gyeonggi-do, Republic of Korea

Certificate No.

MAGPy-8H3D-3054

CALIBRATION CERTIFICATE

Object

MAGPy-8H3D+E3D SN:3054 MAGPy-DAS SN:3054

Calibration procedure(s)

QA CAL-46.v1

Calibration Procedure for MAGPy-8H3D+E3D

Near-field Electric and Magnetic Field Sensor System

Calibration date

December 08, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Oscilloscope	SN: 112135	25-Sep-23 (No. 17A1162175)	Sep-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-23 (No. 217-03527)	Apr-24
Type-N mismatch	SN: 310982 / 06327	04-Apr-23 (No. 217-03528)	Apr-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Network Analyzer E5061B	SN: MY49810822	In house check: Nov-23	In house check: Nov-24
TEM Cell	SN: S6029i	In house check: Nov-23	N.A
Plate Capacitor	SN: 6028i	In house check: Nov-23	In house check: Nov-24
Resonator (160kHz)	SN: 6030i	In house check: Nov-23	In house check: Nov-24

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Engineer	Ten
Approved by	Sven Kühn	Technical Manager	5-10-

Issued: December 08, 202 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: MAGPy-8H3D-3054

Page 1 of 26

절 답당자 확인자 제 80 VL / 보기 CJ / 뇌용생 일 자 204 / 이 의 2014 / 이 의

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst C
 - Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

MAGPy-8H3D-E3D Magnetic Amplitude and Gradient Probe - Eight H-field Sensors, Single E-field sensor MAGPy-DAS Magnetic Amplitude and Gradient Data Acquisition System

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2013, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", November 2013

Methods Applied and Interpretation of Parameters

- · Calibration has been performed after the adjustment of the device.
- · Linearity: Calibration of the linearity of the field reading over the specified dynamic range at 161.75 kHz. Influence of offset voltage is included in this measurement.
- Frequency response: Calibration of the field reading over the specified frequency range from 3.0 kHz to 10.0 MHz.
- Receiving Pattern: Assessed for H-field polarizations θ , and $\phi = 0^{\circ} ... 360^{\circ}$; $\theta = 90^{\circ}$, and $\phi = 0^{\circ} ... 360^{\circ}$; for the XYZ sensors (in TEM-Cell at 4 kHz, 40 kHz, 400 kHz and 4 MHz).
- Receiving Pattern: Assessed for E-field polarizations ϑ , and $\phi = 0^{\circ} ...360^{\circ}$; $\vartheta = 90^{\circ}$, and $\phi = 0^{\circ} ...360^{\circ}$; for the XYZ sensor (in parallel plate capacitor at 4 kHz, 40 kHz, 400 kHz and 4 MHz).

Calibration Uncertainty

The calibration uncertainty is 0.7 dB for the H-field readings and 1.06 dB for the E-field readings. The calibration uncertainty is specified over the frequency range from 3.0 kHz to 10.0 MHz and a dynamic range from 0.1 A/m to 3200 A/m and from 0.08 V/m to 2000 V/m respectively.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

December 08, 2023

Measurement Conditions

Unit Type	MAGPy-8H3D+E3D (SP MGY 303 AA)	3054
	MAGPy-DAS (SE UMS 303 AC)	3054
	MAGPy FPGA Board	WP000201
Adjustment Date	Last MAGPy Adjustment	December 08, 2023
Firmware SW Version	MAGPy Firmware	Ver. 1.00
Backend SW Version	MAGPy Backend	Ver. 1.0.2
Calibration SW Version	MAGACAP	Ver. 1.0

Dynamic Range

Dynamic Range, H-field, Channel 0

H-fie	eld/(A/m) Ap	plied	H-fie	Id/(A/m) Re	ading	Dif	ference/(dB)	
X	У	z	x	У	Z	x	У	z	Tolerance/(dB
0.400	0.390	0.380	0.420	0.390	0.400	0.42	0.00	0.45	±1.00
0.550	0.530	0.520	0.560	0.530	0.540	0.16	0.00	0.33	±1.00
0.750	0.730	0.710	0.730	0.720	0.740	-0.23	-0.12	0.36	±1.00
0.980	0.950	0.920	0.970	0.950	0.940	-0.09	0.00	0.19	±1.00
1.32	1.29	1.25	1.35	1.30	1.25	0.20	0.07	0.00	±1.00
1.82	1.77	1.72	1.84	1.79	1.71	0.09	0.10	-0.05	±1.00
2.42	2.36	2.29	2.45	2.38	2.30	0.11	0.07	0.04	±0.20
3.24	3.15	3.06	3.25	3.18	3.04	0.03	0.08	-0.06	±0.20
4.39	4.28	4.15	4.40	4.29	4.17	0.02	0.02	0.04	±0.20
5.94	5.78	5.62	5.94	5.80	5.63	0.00	0.03	0.02	±0.20
8.00	7.78	7.56	7.98	7.80	7.57	-0.02	0.02	0.01	±0.20
10.7	10.4	10.1	10.7	10.4	10.1	0.00	0.00	0.00	±0.20
14.4	14.0	13.6	14.4	14.0	13.6	0.00	0.00	0.00	±0.20
19.4	18.9	18.4	19.4	18.9	18.4	0.00	0.00	0.00	±0.20
26.2	25.5	24.8	26.2	25.6	24.8	0.00	0.03	0.00	±0.20
35.0	34.1	33.1	35.1	34.2	33.3	0.02	0.03	0.05	±0.20
47.3	46.1	44.7	47.4	46.2	44.9	0.02	0.02	0.04	±0.20
63.9	62.3	60.5	64.2	62.6	60.8	0.04	0.04	0.04	±0.20
87.8	85.5	83.0	87.5	85.3	82.7	-0.03	-0.02	-0.03	±0.20
115	112	109	115	111	108	0.00	-0.08	-0.08	±0.20
158	154	149	157	153	149	-0.06	-0.06	0.00	±0.20
218	213	207	218	213	207	0.00	0.00	0.00	±0.20
302	294	286	297	289	281	-0.15	-0.15	-0.15	±0.20
444	433	421	440	428	416	-0.08	-0.10	-0.10	±0.20
611	596	579	609	593	576	-0.03	-0.04	-0.05	±0.20
909	886	861	915	892	866	0.06	0.06	0.05	±0.20
1370	1340	1300	1400	1360	1320	0.19	0.13	0.13	±0.30
1880	1830	1780	1940	1890	1840	0.27	0.28	0.29	±0.30
3020	2950	2870	3160	3080	2990	0.39	0.37	0.36	±0.50
3630	3540	3450	3820	3720	3620	0.44	0.43	0.42	±0.50

- SPEAG H-field linearity tolerance criteria¹: $\pm 1.0\,\text{dB}$ for applied H-fields < 2.0 A/m $\pm 0.2\,\text{dB}$ for applied H-fields $\geq 2.0\,\text{A/m}$ and < $1000\,\text{A/m}$ $\pm 0.3\,\text{dB}$ for applied H-fields $\geq 1000\,\text{A/m}$ and < $2000\,\text{A/m}$ $\pm 0.4\,\text{dB}$ for applied H-fields $\geq 2000\,\text{A/m}$ and < $3000\,\text{A/m}$ $\pm 0.5\,\text{dB}$ for applied H-fields $\geq 3000\,\text{A/m}$

Certificate No: MAGPy-8H3D-3054

¹Calibration uncertainty not taken into account (shared risk 50%).

December 08, 2023

Dynamic Range, H-field, Channel 1

H-field/(A/m) Applied			H-fie	eld/(A/m) Re	ading	Dif	ference/	LE WELL	
X	У	Z	х	У	Z	X	у	Z	Tolerance/(dB
0.400	0.400	0.390	0.420	0.410	0.410	0.42	0.21	0.43	±1.00
0.550	0.540	0.540	0.570	0.550	0.560	0.31	0.16	0.32	±1.00
0.750	0.740	0.730	0.760	0.760	0.760	0.12	0.23	0.35	±1.00
0.980	0.970	0.960	0.970	0.990	0.960	-0.09	0.18	0.00	±1.00
1.33	1.31	1.30	1.32	1.33	1.29	-0.07	0.13	-0.07	±1.00
1.82	1.79	1.78	1.82	1.81	1.78	0.00	0.10	0.00	±1.00
2.43	2.39	2.37	2.41	2.38	2.39	-0.07	-0.04	0.07	±0.20
3.25	3.20	3.17	3.25	3.18	3.17	0.00	-0.05	0.00	±0.20
4.41	4.34	4.31	4.42	4.33	4.31	0.02	-0.02	0.00	±0.20
5.97	5.87	5.82	5.97	5.84	5.85	0.00	-0.04	0.04	±0.20
8.03	7.90	7.83	8.01	7.90	7.85	-0.02	0.00	0.02	±0.20
10.7	10.5	10.4	10.7	10.6	10.5	0.00	0.08	0.08	±0.20
14.5	14.2	14.1	14.5	14.3	14.1	0.00	0.06	0.00	±0.20
19.5	19.2	19.1	19.5	19.2	19.1	0.00	0.00	0.00	±0.20
26.3	25.9	25.7	26.4	26.0	25.7	0.03	0.03	0.00	±0.20
35.1	34.6	34.3	35.3	34.7	34.5	0.05	0.03	0.05	±0.20
47.5	46.7	46.4	47.6	46.9	46.4	0.02	0.04	0.00	±0.20
64.2	63.2	62.7	64.5	63.5	63.0	0.04	0.04	0.04	±0.20
88.1	86.8	86.1	87.8	86.5	85.8	-0.03	-0.03	-0.03	±0.20
115	113	113	115	113	112	0.00	0.00	-0.08	±0.20
158	156	155	158	156	154	0.00	0.00	-0.06	±0.20
219	216	214	219	216	214	0.00	0.00	0.00	±0.20
303	298	296	298	293	291	-0.14	-0.15	-0.15	±0.20
446	440	436	441	434	432	-0.10	-0.12	-0.08	±0.20
614	605	600	610	601	598	-0.06	-0.06	-0.03	±0.20
912	899	892	918	905	900	0.06	0.06	0.08	±0.20
1370	1360	1350	1400	1380	1380	0.19	0.13	0.19	±0.30
1890	1860	1850	1950	1920	1910	0.27	0.28	0.28	±0.30
3030	2990	2970	3170	3120	3110	0.39	0.37	0.40	±0.50
3640	3590	3570	3830	3770	3760	0.44	0.42	0.45	±0.50

- SPEAG H-field linearity tolerance criteria¹: $\pm 1.0\,\text{dB}$ for applied H-fields < 2.0 A/m $\pm 0.2\,\text{dB}$ for applied H-fields $\geq 2.0\,\text{A/m}$ and < $1000\,\text{A/m}$ $\pm 0.3\,\text{dB}$ for applied H-fields $\geq 1000\,\text{A/m}$ and < $2000\,\text{A/m}$ $\pm 0.4\,\text{dB}$ for applied H-fields $\geq 2000\,\text{A/m}$ and < $3000\,\text{A/m}$ $\pm 0.5\,\text{dB}$ for applied H-fields $\geq 3000\,\text{A/m}$

¹Calibration uncertainty not taken into account (shared risk 50%).

December 08, 2023

Dynamic Range, H-field, Channel 2

H-field/(A/m) Applied			H-fie	Id/(A/m) Rea	ading	Dif	ference/(
X	У	z	x	У	z	х	У	z	Tolerance/(dB
0.410	0.400	0.400	0.440	0.410	0.400	0.61	0.21	0.00	±1.00
0.560	0.540	0.540	0.600	0.550	0.550	0.60	0.16	0.16	±1.00
0.770	0.740	0.740	0.800	0.760	0.760	0.33	0.23	0.23	±1.00
1.00	0.970	0.960	1.00	0.980	0.980	0.00	0.09	0.18	±1.00
1.35	1.31	1.30	1.36	1.31	1.31	0.06	0.00	0.07	±1.00
1.86	1.80	1.79	1.87	1.79	1.78	0.05	-0.05	-0.05	±1.00
2.47	2.39	2.38	2.48	2.39	2.40	0.04	0.00	0.07	±0.20
3.31	3.20	3.19	3.31	3.21	3.20	0.00	0.03	0.03	±0.20
4.49	4.35	4.33	4.49	4.34	4.33	0.00	-0.02	0.00	±0.20
6.07	5.88	5.86	6.06	5.89	5.87	-0.01	0.01	0.01	±0.20
8.17	7.91	7.88	8.18	7.92	7.88	0.01	0.01	0.00	±0.20
10.9	10.6	10.5	10.9	10.6	10.5	0.00	0.00	0.00	±0.20
14.7	14.3	14.2	14.7	14.3	14.2	0.00	0.00	0.00	±0.20
19.9	19.2	19.2	19.9	19.3	19.1	0.00	0.05	-0.05	±0.20
26.8	25.9	25.9	26.9	26.0	25.8	0.03	0.03	-0.03	±0.20
35.8	34.6	34.5	35.9	34.8	34.6	0.02	0.05	0.03	±0.20
48.3	46.8	46.6	48.5	46.9	46.7	0.04	0.02	0.02	±0.20
65.3	63.3	63.0	65.6	63.6	63.3	0.04	0.04	0.04	±0.20
89.7	86.9	86.6	89.4	86.7	86.3	-0.03	-0.02	-0.03	±0.20
117	114	113	117	113	113	0.00	-0.08	0.00	±0.20
161	156	156	161	156	155	0.00	0.00	-0.06	±0.20
223	216	216	223	216	215	0.00	0.00	-0.04	±0.20
308	299	298	303	294	293	-0.14	-0.15	-0.15	±0.20
454	440	439	449	435	434	-0.10	-0.10	-0.10	±0.20
625	606	604	621	602	601	-0.06	-0.06	-0.04	±0.20
929	900	897	934	906	904	0.05	0.06	0.07	±0.20
1400	1360	1350	1430	1390	1380	0.18	0.19	0.19	±0.30
1920	1860	1860	1980	1920	1920	0.27	0.28	0.28	±0.30
3090	3000	2990	3220	3130	3120	0.36	0.37	0.37	±0.50
3710	3600	3590	3900	3780	3780	0.43	0.42	0.45	±0.50

SPEAG H-field linearity tolerance criteria 1 : $\pm 1.0\,\mathrm{dB}$ for applied H-fields $< 2.0\,\mathrm{A/m}$

±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

 $\pm 0.3\,\mathrm{dB}$ for applied H-fields $\geq 1000\,\mathrm{A/m}$ and $< 2000\,\mathrm{A/m}$ $\pm 0.4\,\mathrm{dB}$ for applied H-fields $\geq 2000\,\mathrm{A/m}$ and $< 3000\,\mathrm{A/m}$ $\pm 0.5\,\mathrm{dB}$ for applied H-fields $\geq 3000\,\mathrm{A/m}$

Certificate No: MAGPy-8H3D-3054

Page 5 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).

December 08, 2023

Dynamic Range, H-field, Channel 3

H-fie	eld/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Dif	ference/(dB)	
X	У	Z	x	У	z	х	у	z	Tolerance/(dB)
0.410	0.400	0.390	0.440	0.400	0.400	0.61	0.00	0.22	±1.00
0.560	0.540	0.520	0.560	0.550	0.550	0.00	0.16	0.49	±1.00
0.770	0.740	0.720	0.770	0.760	0.720	0.00	0.23	0.00	±1.00
1.01	0.970	0.940	1.00	0.990	0.940	-0.09	0.18	0.00	±1.00
1.36	1.31	1.27	1.36	1.32	1.26	0.00	0.07	-0.07	±1.00
1.87	1.80	1.74	1.86	1.78	1.75	-0.05	-0.10	0.05	±1.00
2.49	2.40	2.32	2.49	2.38	2.31	0.00	-0.07	-0.04	±0.20
3.33	3.21	3.10	3.31	3.20	3.09	-0.05	-0.03	-0.03	±0.20
4.52	4.36	4.21	4.51	4.33	4.20	-0.02	-0.06	-0.02	±0.20
6.11	5.89	5.69	6.10	5.89	5.69	-0.01	0.00	0.00	±0.20
8.22	7.93	7.66	8.20	7.91	7.64	-0.02	-0.02	-0.02	±0.20
11.0	10.6	10.2	11.0	10.6	10.2	0.00	0.00	0.00	±0.20
14.8	14.3	13.8	14.8	14.3	13.8	0.00	0.00	0.00	±0.20
20.0	19.3	18.6	20.0	19.3	18.6	0.00	0.00	0.00	±0.20
27.0	26.0	25.1	27.0	26.1	25.1	0.00	0.03	0.00	±0.20
36.0	34.7	33.5	36.1	34.9	33.7	0.02	0.05	0.05	±0.20
48.6	46.9	45.3	48.8	47.0	45.5	0.04	0.02	0.04	±0.20
65.7	63.4	61.3	66.0	63.8	61.6	0.04	0.05	0.04	±0.20
90.2	87.1	84.1	90.0	86.9	83.8	-0.02	-0.02	-0.03	±0.20
118	114	110	118	114	110	0.00	0.00	0.00	±0.20
162	157	151	162	156	151	0.00	-0.06	0.00	±0.20
225	217	210	224	217	209	-0.04	0.00	-0.04	±0.20
310	300	290	305	295	285	-0.14	-0.15	-0.15	±0.20
457	441	426	452	436	421	-0.10	-0.10	-0.10	±0.20
628	607	587	625	604	583	-0.04	-0.04	-0.06	±0.20
934	902	872	940	909	878	0.06	0.07	0.06	±0.20
1410	1360	1320	1440	1390	1340	0.18	0.19	0.13	±0.30
1930	1870	1810	1990	1920	1860	0.27	0.23	0.24	±0.30
3100	3010	2900	3240	3110	3030	0.38	0.28	0.38	±0.50
3730	3610	3490	3920	3750	3670	0.43	0.33	0.44	±0.50

SPEAG H-field linearity tolerance criteria 1 : $\pm 1.0\,\text{dB}$ for applied H-fields $< 2.0\,\text{A/m}$ $\pm 0.2\,\text{dB}$ for applied H-fields $\geq 2.0\,\text{A/m}$ and $< 1000\,\text{A/m}$ $\pm 0.3\,\text{dB}$ for applied H-fields $\geq 1000\,\text{A/m}$ and $< 2000\,\text{A/m}$ $\pm 0.4\,\text{dB}$ for applied H-fields $\geq 2000\,\text{A/m}$ and $< 3000\,\text{A/m}$ $\pm 0.5\,\text{dB}$ for applied H-fields $\geq 3000\,\text{A/m}$

Certificate No: MAGPy-8H3D-3054

¹Calibration uncertainty not taken into account (shared risk 50%).

December 08, 2023

Page 29 of 50

Dynamic Range, H-field, Channel 4

H-fie	H-field/(A/m) Applied			Id/(A/m) Rea	ading	Dif	ference/(
X	У	Z	х	У	Z	х	У	z	Tolerance/(dB
0.410	0.400	0.400	0.430	0.420	0.410	0.41	0.42	0.21	±1.00
0.560	0.550	0.540	0.570	0.580	0.550	0.15	0.46	0.16	±1.00
0.770	0.750	0.740	0.760	0.750	0.740	-0.11	0.00	0.00	±1.00
1.00	0.980	0.970	1.00	0.980	0.960	0.00	0.00	-0.09	±1.00
1.35	1.33	1.31	1.35	1.34	1.31	0.00	0.07	0.00	±1.00
1.86	1.82	1.80	1.86	1.84	1.80	0.00	0.09	0.00	±1.00
2.48	2.43	2.40	2.47	2.44	2.41	-0.04	0.04	0.04	±0.20
3.31	3.25	3.21	3.30	3.26	3.21	-0.03	0.03	0.00	±0.20
4.50	4.41	4.35	4.50	4.41	4.36	0.00	0.00	0.02	±0.20
6.08	5.97	5.89	6.08	5.97	5.89	0.00	0.00	0.00	±0.20
8.18	8.03	7.92	8.17	8.04	7.93	-0.01	0.01	0.01	±0.20
10.9	10.7	10.6	10.9	10.7	10.6	0.00	0.00	0.00	±0.20
14.7	14.5	14.3	14.8	14.5	14.3	0.06	0.00	0.00	±0.20
19.9	19.5	19.3	19.9	19.6	19.2	0.00	0.04	-0.05	±0.20
26.9	26.4	26.0	26.9	26.4	26.0	0.00	0.00	0.00	±0.20
35.8	35.2	34.7	35.9	35.3	34.9	0.02	0.02	0.05	±0.20
48.4	47.5	46.9	48.5	47.7	47.0	0.02	0.04	0.02	±0.20
65.4	64.2	63.4	65.7	64.6	63.7	0.04	0.05	0.04	±0.20
89.8	88.2	87.0	89.6	88.0	86.7	-0.02	-0.02	-0.03	±0.20
117	115	114	117	115	114	0.00	0.00	0.00	±0.20
161	159	156	161	158	156	0.00	-0.05	0.00	±0.20
223	220	217	223	219	217	0.00	-0.04	0.00	±0.20
309	303	300	303	298	295	-0.17	-0.14	-0.15	±0.20
455	447	441	450	441	436	-0.10	-0.12	-0.10	±0.20
625	615	607	623	611	604	-0.03	-0.06	-0.04	±0.20
930	914	902	936	920	909	0.06	0.06	0.07	±0.20
1400	1380	1360	1430	1410	1390	0.18	0.19	0.19	±0.30
1920	1890	1870	1990	1950	1930	0.31	0.27	0.27	±0.30
3090	3040	3000	3230	3170	3140	0.38	0.36	0.40	±0.50
3710	3650	3610	3900	3830	3800	0.43	0.42	0.45	±0.50

SPEAG H-field linearity tolerance criteria¹:

Certificate No: MAGPy-8H3D-3054

 $[\]pm 1.0 \, dB$ for applied H-fields $< 2.0 \, A/m$

 $[\]pm 0.2$ dB for applied H-fields ≥ 2.0 A/m and < 1000A/m

 $[\]pm 0.3$ dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

December 08, 2023

Dynamic Range, H-field, Channel 5

H-fie	H-field/(A/m) Applied			eld/(A/m) Rea	Difference/(dB)				
x	У	Z	x	у	z	х	У	z	Tolerance/(dB)
0.410	0.410	0.410	0.410	0.410	0.420	0.00	0.00	0.21	±1.00
0.560	0.550	0.560	0.550	0.560	0.560	-0.16	0.16	0.00	±1.00
0.770	0.760	0.770	0.770	0.770	0.780	0.00	0.11	0.11	±1.00
1.00	0.990	1.00	1.00	1.00	1.02	0.00	0.09	0.17	±1.00
1.35	1.34	1.35	1.37	1.33	1.37	0.13	-0.07	0.13	±1.00
1.86	1.84	1.86	1.88	1.83	1.87	0.09	-0.05	0.05	±1.00
2.48	2.45	2.47	2.51	2.45	2.48	0.10	0.00	0.04	±0.20
3.31	3.27	3.31	3.34	3.27	3.31	0.08	0.00	0.00	±0.20
4.50	4.44	4.49	4.52	4.46	4.49	0.04	0.04	0.00	±0.20
6.09	6.01	6.07	6.10	6.06	6.08	0.01	0.07	0.01	±0.20
8.19	8.09	8.17	8.20	8.16	8.17	0.01	0.07	0.00	±0.20
10.9	10.8	10.9	10.9	10.9	10.9	0.00	0.08	0.00	±0.20
14.8	14.6	14.7	14.8	14.7	14.7	0.00	0.06	0.00	±0.20
19.9	19.7	19.9	19.9	19.7	19.8	0.00	0.00	-0.04	±0.20
26.9	26.5	26.8	26.9	26.6	26.8	0.00	0.03	0.00	±0.20
35.9	35.4	35.8	35.9	35.6	36.0	0.00	0.05	0.05	±0.20
48.4	47.9	48.3	48.6	48.0	48.5	0.04	0.02	0.04	±0.20
65.5	64.7	65.4	65.8	65.0	65.7	0.04	0.04	0.04	±0.20
89.9	88.9	89.8	89.7	88.6	89.5	-0.02	-0.03	-0.03	±0.20
118	116	117	117	116	117	-0.07	0.00	0.00	±0.20
162	160	161	161	159	161	-0.05	-0.05	0.00	±0.20
224	221	224	224	221	223	0.00	0.00	-0.04	±0.20
309	306	309	304	300	304	-0.14	-0.17	-0.14	±0.20
455	450	455	450	445	450	-0.10	-0.10	-0.10	±0.20
626	619	626	623	616	623	-0.04	-0.04	-0.04	±0.20
931	920	930	937	927	937	0.06	0.07	0.07	±0.20
1400	1390	1400	1430	1420	1430	0.18	0.19	0.18	±0.30
1930	1910	1930	1990	1960	1990	0.27	0.22	0.27	±0.30
3090	3070	3100	3230	3200	3240	0.38	0.36	0.38	±0.50
3720	3680	3730	3910	3860	3920	0.43	0.41	0.43	±0.50

- SPEAG H-field linearity tolerance criteria¹: $\pm 1.0 \, \text{dB}$ for applied H-fields < $2.0 \, \text{A/m}$ $\pm 0.2 \, \text{dB}$ for applied H-fields $\geq 2.0 \, \text{A/m}$ and < $1000 \, \text{A/m}$ $\pm 0.3 \, \text{dB}$ for applied H-fields $\geq 1000 \, \text{A/m}$ and < $2000 \, \text{A/m}$ $\pm 0.4 \, \text{dB}$ for applied H-fields $\geq 2000 \, \text{A/m}$ and < $3000 \, \text{A/m}$ $\pm 0.5 \, \text{dB}$ for applied H-fields $\geq 3000 \, \text{A/m}$

Certificate No: MAGPy-8H3D-3054

Page 8 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).