

RF TEST REPORT FCC / ISED

APPLICANT

Socket Mobile, Inc.

MODEL NAME DuraScan D600

FCC ID LUBD600-1

ISED ID 2529A-D6001

REPORT NUMBER HA211208-SOC-004-R02

Date of Issue February 18, 2022

TEST REPORT

Test Site Hyundai C-Tech, Inc. dba HCT America, Inc. 1726 Ringwood Ave, San Jose, CA 95131, USA

Applicant	Socket Mobile, Inc.
Applicant Address	39700 Eureka Drive, Newark, CA 94560, U.S.A.
FCC ID	LUBD600-1
ISED ID	2529A-D6001
Model Name	DuraScan D600
EUT Type	NFC & RFID Contactless Reader/Writer
Modulation Type	13.56 MHz (ASK) / Bluetooth V5.0 LE (GFSK)
FCC Classification	Low Power Communication Device Transmitter
FCC Rule Part(s)	Part 15.225
ISED Rule Part(s)	RSS-210 Issue 10 (April 2020)

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures required. The results of testing in this report apply only to the product which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Hyundai C-Tech, Inc. dba HCT America, Inc. certifies that no party to application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

Tested By

Yongsoo Park

Test Engineer

Reviewed By

Dally

Sunwoo Kim

Technical Manager

1 / 33

REVISION HISTORY

The revision history for this document is shown in table.

TEST REPORT NO.	DATE	DESCRIPTION
HA211208-SOC-004-R02	02/18/2022	Initial Issue

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
2. METHODOLOGY	5
3. INSTRUMENT CALIBRATION	5
4. FACILITIES AND ACCREDITATIONS	6
5. ANTENNA REQUIREMENTS	7
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY OF TEST RESULTS	18
9. TEST RESULT	19
9.1 20 dB BANDWIDTH / 99% BANDWIDTH	19
9.2 FREQUENCY STABILITY	
9.3 RADIATED SPURIOUS EMISSIONS	21
9.4. POWERLINE CONDUCTED EMISSIONS	
10. LIST OF TEST EQUIPMENT	30
APPENDIX A. TEST SETUP PHOTOS	31
APPENDIX B. PHOTOGRAPHS OF EUT	32

1. GENERAL INFORMATION

EUT DESCRIPTION

Model	DuraScan D600		
S/N	Conducted : C42E1426B24F Radiated : FC33AC759510		
EUT Туре	NFC & RFID Contactless Reader/Writer		
Power Supply	Battery Charging : 5 V d.c. Lithium-Ion Battery ; 3.7 VDC, 1400 mAh		
RF Specification	13.56 MHz : ASK Bluetooth LE V5.0 (1 Mbps) : GFSK		
Bluetooth LE V5.0	Model: BGM13P32 FCC ID: QOQBGM13P IC ID: 5123A-BGM13P		
Operating Environment	Indoor		
Operating Temperature ⁽¹⁾	-20 °C ~ 70 °C		

RF SPECIFICATION SUBJECT TO THE REPORT

Operating Frequency Range	13.56 MHz	
RF Specification (Modulation)	13.56 MHz (ASK)	
Number of Channels	13.56 MHz : 1 channel	
Antenna Specification	Loop antenna	
Firmware Version ⁽²⁾	v1.51 (Build 52)	
Hardware Version ⁽²⁾	Rev F	
Date(s) of Tests	January 03, 2022 ~ January 10, 2022	

Note :

1. Operating temperature is declared by the manufacturer.

2. Firmware and Hardware Version are as received by the client.

2. METHODOLOGY

The measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.225 under the FCC Rules Part 15 Subpart C and RSS-GEN issue 5, RSS-210 issue 10.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. Also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. To find out the maximum emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested per test setup instruction provided by the manufacturer under continuous Tx operating condition. Testing was performed at the Tx mode using the key card provided by the manufacturer. 'Tera-Term' was used to make sure the device is properly connected and recognized by the computer.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC (Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at 1726 Ringwood Avenue, San Jose, California 95131, USA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

This document may not be copied or reproduced (reprinted) without written consent by Hyundai C-Tech, Inc. dba HCT America, Inc. Hyundai C-Tech, Inc. dba HCT America, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antenna of this E.U.T is permanently attached and there is no provision for connection to an external antenna.(2) The E.U.T Complies with the requirement of §15.203

Report No.: HA211208-SOC-004-R02

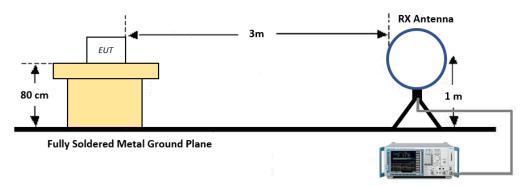
6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)		
Occupied Bandwidth	± 12.4 kHz		
Radiated Emissions (below 1 GHz)	± 6.09 dB		

7. DESCRIPTION OF TESTS


7.1. 20 dB BANDWIDTH / 99 % BANDWIDTH

<u>Limit</u>

20 dB bandwidth : According to §15.215(c), the bandwidth at 20 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

99% Bandwidth : Section 6.7, RSS-Gen Issue 5

Test Configuration

Spectrum Analyzer / Receiver

Test Procedure (20 dB Bandwidth)

The Spectrum Analyzer setting :

- RBW = 1 kHz
- VBW \geq 3 x RBW
- Detector = Peak
- Trace mode = max hold
- Sweep = auto couple
- Allow the trace to stabilize

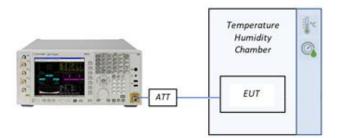
Test Procedure (99 % Bandwidth)

The transmitter output is connected to the spectrum analyzer.

- RBW = 1 kHz
- VBW ≒ 3 x RBW
- Detector = Peak
- Trace mode = max hold
- Sweep = auto couple
- Allow the trace to stabilize

Note :

Bandwidth measurement feature in the spectrum analyzer was used to measure 20 dB bandwidth (X dB bandwidth function) and 99 % bandwidth.



7.2. FREQUENCY STABILITY

<u>Limit</u>

§15.225 (e), RSS-210 Issue 10 The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency.

Test Configuration

Test Procedure

For battery operated equipment, the equipment tests shall be performed using a new battery.

- 1) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
- 2) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
- 3) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.
- 4) Frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

Note:

- Temperature humidity chamber is used to adjust the temperature between -20°C and + 50°C
- The primary supply voltage was adjusted between 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

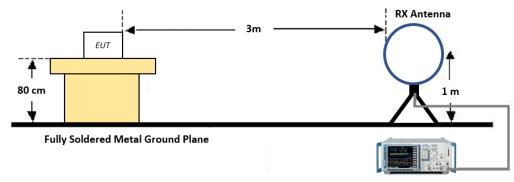
7.3. RADIATED EMISSION

Radiated Emission Limits

FCC : 47 CFR § 15.209					
Frequency (MHz)	z) Field Strength (uV/m) Measurement				
0.009 – 0.490	2400/F(kHz)	300			
0.490 - 1.705	24000/F(kHz) 30				
1.705 – 30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200 3				
Above 960	500	3			

ISED : RSS-GEN Section 8.9				
Frequency (MHz)	Field Strength (uV/m) Measurement Distance			
0.009 - 0.490	6.37/F(kHz)	300		
0.490 - 1.705	63.7/F(kHz)	30		
1.705 – 30	0.08	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Operation within the band 13.110 MHz – 14.010 MHz


FCC : 47 CFR § 15.225 (a), (b), (c), (d) / ISED : RSS-210 ANNEX B.6					
Frequency (MHz)	Field Strength (uV/m) Measurement Distance (m)				
13.553 – 13.567	15,848 30				
13.410 ≤ f ≤ 13.553 13.567 ≤ f ≤ 13.710	334	30			
$13.110 \le f \le 13.410$ $13.710 \le f \le 14.010$	106	30			

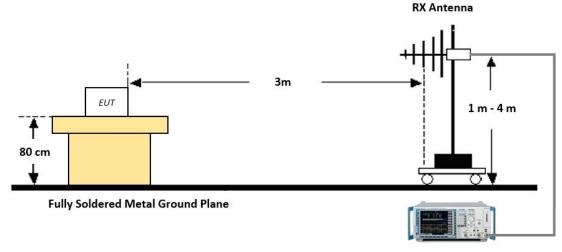
Test Configuration

Below 30 MHz

Spectrum Analyzer / Receiver

Test Procedure of Radiated spurious emissions (Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor (0.009 MHz 0.490 MHz) = 40*log(3 m/300 m) = 80 dB Measurement Distance: 3 m
- 7. Distance Correction Factor (0.490 MHz 30 MHz) = 40*log(3 m/30 m) = 40 dB Measurement Distance: 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 9 kHz
 - VBW ≥ 3*RBW


9. Total = Reading Value + Antenna Factor (A.F) + Cable Loss (C.L) + Distance Factor (D.F)

Adequate comparison measurements were confirmed against an open field site since the test was performed at alternative site (3m SAC) other than the open area test site. Sufficient test was made to demonstrate that the alternative site produces result that correlate with the one of test made at the open field site based on KDB 414788.

30 MHz - 1 GHz

Spectrum Analyzer / Receiver

Test Procedure of Radiated spurious emissions (Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. Spectrum Setting

(1) Measurement Type (Peak):

- Measured Frequency Range: 30 MHz 1 GHz
- Detector = Peak
- Trace = Max hold
- RBW = 100 kHz
- VBW ≥ 3*RBW

(2) Measurement Type(Quasi-peak):

- Measured Frequency Range: 30 MHz 1 GHz
- Detector = Quasi-Peak
- RBW = 120 kHz

In general, the method (1) is mainly used

6. Total = Reading Value + Antenna Factor (A.F) + Cable Loss (C.L)

7.4. AC LINE CONDUCTED EMISSIONS

<u>Limit</u>

47 CFR § 15.207, RSS-GEN Section 8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)			
Frequency Range (MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

According to FCC KDB 174176 D01 Line Conducted FAQ v01r01 :

Devices Operating Above 30 MHz

For a device with a permanent or detachable antenna operating above 30 MHz, measurements must be performed with the antenna connected as specified in clause 6.2 of ANSI C63.10-2013.

Devices Operating Below 30 MHz

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

- (1) Perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band;
- (2) Retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band. All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

Report No.: HA211208-SOC-004-R02

This document may not be copied or reproduced (reprinted) without written consent by Hyundai C-Tech, Inc. dba HCT America, Inc. Hyundai C-Tech, Inc. dba HCT America, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

7.5. TEST CONFIGURATION

WORST CASE TEST MODE

Radiated test

Measurement loop antenna polarization and EUT azimuth were varied to find the maximum level of emissions out of the EUT. In addition, all X, Y, and Z positions were investigated to find the worst-case position.

Final test was performed by placing the EUT at the position (Y) which gives the maximum emission.

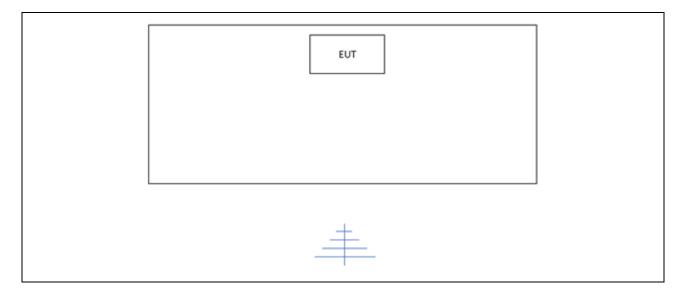
The device contains Lithium-Ion rechargeable battery at the bottom of the product and the RF function does not work when the EUT is operating in battery charging mode.

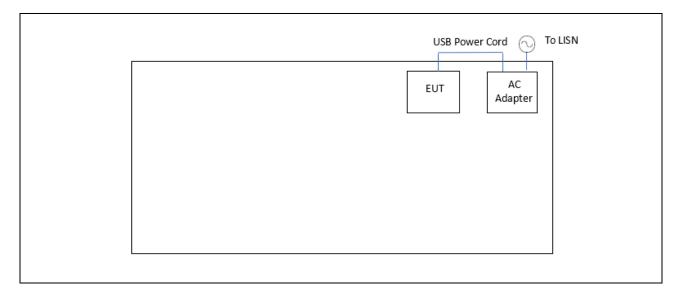
All key cards (Type A, B and V) provided by the manufacturer were investigated with the EUT to find the worst combination.

Final test were performed with Type B key card.

Conducted test

AC Line conducted emission test was performed without the RF function operating.


- AC Line conducted emission test was performed in two modes because the EUT operates below 30 MHz
- (1) Ante Device with antenna connected
- (2) Device with antenna terminated with dummy load



EUT CONFIGURATION

Radiated Emission

Conducted Emission

Note:

A contactless type B keycard was placed on the EUT for 13.56 MHz RFID transmission during the radiated emission testing.

LIST OF SUPPORT EQUIPMENT

Equipment Type	Model No.	Serial Number	Manufacturer	Qty	Note
USB Power Cord (1m) ¹⁾	8100-00287-A	1813	-	1	-
AC Adapter ¹⁾	F8M731	150229-11	Belkin	1	100-240 VAC, 0.5A 50-60Hz

Note :

1) AC Line conducted emission test only

8. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	IC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.215 (c)	-	N/A		PASS
Occupied Bandwidth	-	Section 6.7 RSS-GEN	N/A		PASS
Radiated E-Field Emissions 13.553 MHz - 13.567 MHz	§15.225 (a)	Annex B.6 (a)(i) RSS-210	cf. Section 7.3		PASS
Radiated E-Field Emissions 13.410 MHz ≤ f ≤ 13.553 MHz 13.567 MHz ≤ f ≤ 13.710 MHz	§15.225 (b)	Annex B.6 (a)(ii) RSS-210	cf. Section 7.3	Radiated	PASS
Radiated E-Field Emissions 13.110 MHz \leq f \leq 13.410 MHz 13.710 MHz \leq f \leq 14.010 MHz	§15.225 (c)	Annex B.6 (a)(iii) RSS-210	cf. Section 7.3		PASS
Radiated Spurious Emissions	15.209	Section 8.9 RSS-GEN	cf. Section 7.3		PASS
Frequency Stability	§15.225 (e)	RSS-210, B.6	cf. Section 7.2		PASS
AC Power line Conducted Emissions	§15.207	RSS-GEN, 8.8	cf. Section 7.4	Conducted	PASS

9. TEST RESULT

9.1 20 dB BANDWIDTH / 99% BANDWIDTH

н	IF	20 dB Bandwidth (kHz)	99% Bandwidth (kHz)	Limit	
Mode Frequency (MHz)		Result	Result	Linint	
ASK	13.56	0.698	1.100	N/A	

TEST PLOTS

HF (ASK) : 20dB BW	HF (ASK) : 99%	6 OBW
Ref 70 dBµV *Att 0 dB	*RBW 200 Hz Marker 1 [T1] *VBW 10 kHz 40.26 dB; SWT 105 ms 13.560516000 MS	* VBW	<pre># 200 Hz Marker 1 [T1] # 10 kHz</pre>
	JWT LUS MB 10.5003.0000 PG ndB [T1] _ 24.00 dl BW 650.0000000000 100 H Temp 1 (T1 nB1 20.24 dB 20.24 dB 20.24 dB 20.24 dB 20.24 dB 20.24 dB 20.26 dB 20.24 dB 20.25 dB 20.24 dB 20.25 dB 20.24 dB 20.24 dB 20.25 dB 20.24 dB 20.24 dB 20.25 dB 20.24 dB 20.25 dB 20.24 dB 20.25 dB 20.24 dB 20.25 dB 20.2	P8 600 AC	OBM 1.100004000 Htt Temp 1 (T1 oJM) 15.79 dBuy 1 3.559974000 Mtt Temp 2 (T1 oJM) 23.561074000 Mtt 23.561074000 Mtt 24.96 dBuy 24.66 dBuy 24.66 dBuy 25.6074000 Mtt 25.6074000 Mtt 26.66 dBuy 26.66 dB
-20 -30 Center 13.560514 MHz	200 Hz/ Span 2 kl	20 -30 Center 13.560514 MHz 200 Hz/	Span 2 kHz

9.2 FREQUENCY STABILITY

Operating Frequency	13.56 MHz
Reference Voltage	5 VDC
Limit	100 PPM = 1356 Hz

Voltage (%)	Power (VDC)	Temp. (°C)	Frequency [MHz]	Frequency Dev. (Hz)	Frequency (ppm)
100%		-20	13.560398	398.1	29.36
100%		-10	13.560408	408.4	30.12
100%		0	13.560498	497.7	36.70
100%	5	+10	13.560498	498.4	36.76
100%	5	+20 (Ref.)	13.560515	515.4	38.01
100%		+30	13.560503	502.6	37.06
100%		+40	13.560515	514.9	37.97
100%		+50	13.560532	532.1	39.24
115%	5.75	+20	13.560517	517.1	38.13
85%	4.25	+20	13.560518	518.3	38.22

9.3 RADIATED SPURIOUS EMISSIONS

Radiated Electric Field Emission within band 13.110 – 14.010 MHz

13.553 MHz-13.567 MHz

Frequency (MHz)	Polarization	Reading (dBuV)	Corr. ⁽¹⁾ (dB)	Total (dBuV/m)	Limit ⁽²⁾ (dBuV/m)	Margin (dB)	Measurement Type
13.560	180°	40.3	19.6	59.9	124	64.1	QP
13.561	90°	35.5	19.6	55.1	124	68.9	QP

13.410 MHz-13.553 MHz and 13.567 MHz-13.710 MHz

Frequency (MHz)	Polarization	Reading (dBuV)	Corr. ⁽¹⁾ (dB)	Total (dBuV/m)	Limit ⁽²⁾ (dBuV/m)	Margin (dB)	Measurement Type
13.496	180°	8.6	19.6	28.2	90.5	62.3	QP
13.481	90°	7.2	19.6	26.8	90.5	63.7	QP
13.697	180°	8.6	19.6	28.2	90.5	62.3	QP
13.707	90°	5.8	19.6	25.4	90.5	65.1	QP

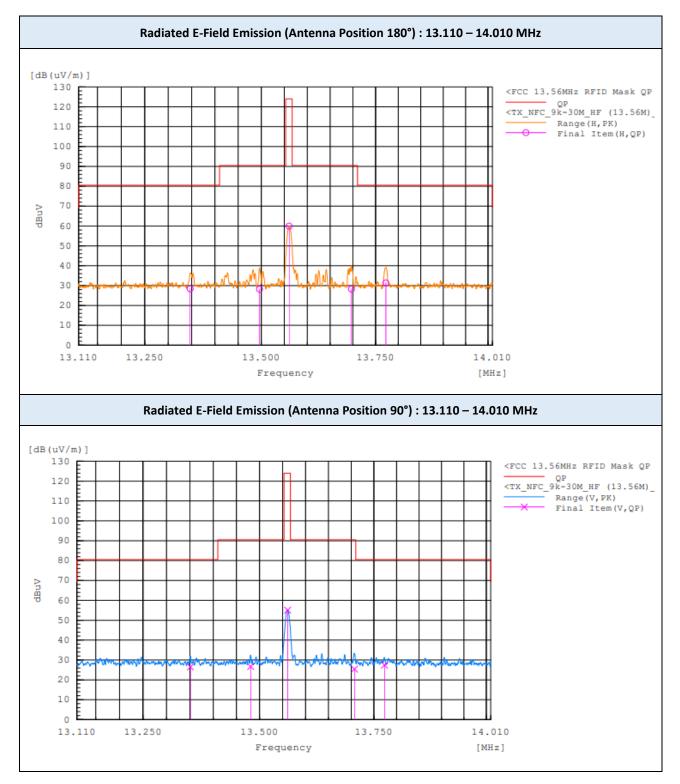
13.110 MHz – 13.410 MHz and 13.710 MHz-14.010 MHz

Frequency (MHz)	Polarization Reading (dBuV)		Polarization		Limit ⁽²⁾ (dBuV/m)	Margin (dB)	Measurement Type
13.347	180°	8.8	19.6	28.4	80.5	52.1	QP
13.351	90°	6.9	19.6	26.5	80.5	54.0	QP
13.773	180°	11.8	19.6	31.4	80.5	49.1	QP
13.773	90°	7.9	19.6	27.5	80.5	53.0	QP

Notes:

1. Correction Factor: Antenna Factor + Cable loss

2. Limit = specific Limits (dBuV) + Distance extrapolation factor


• The measurement distance is 3 meters.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB)

TEST PLOTS

Radiated Spurious Emission

Test Mode	HF (ASK)
Operating Frequency	13.56 MHz

Frequency Range : 9 kHz – 30MHz

Frequency (MHz)	Polarization	ReadingCorr. (1)(dBuV)(dB)		Total (dBuV/m)	Limit ⁽²⁾ (dBuV/m)	Margin (dB)	Measurement Type			
	No major peak found									

Notes:

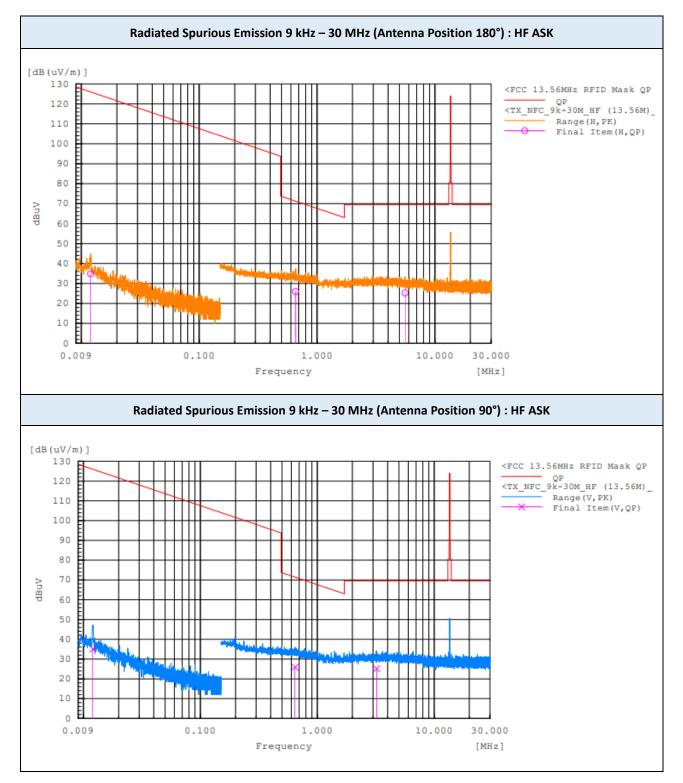
1. Correction Factor: Antenna Factor + Cable loss

2. Limit = specific Limits (dBuV) + Distance extrapolation factor

- The measurement distance is 3 meters.
- Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Test result for AC charging mode is provided as the worst case after pre-testing.

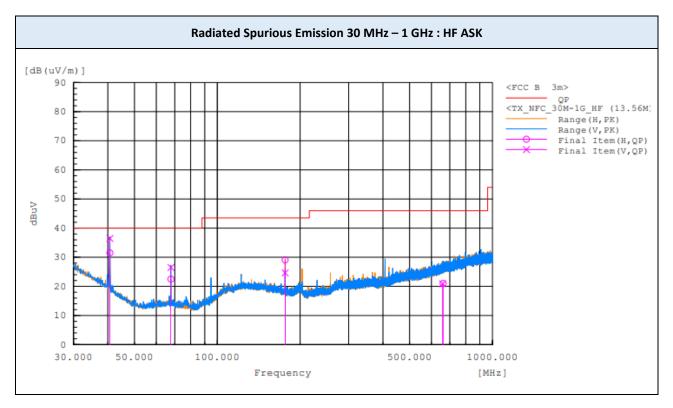
Frequency Range : Below 1 GHz

Frequency (MHz)	Polarization	Reading (dBuV)	Corr. ⁽¹⁾ (dB)	Total (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Measurement Type
40.673	Н	39.0	-7.5	31.5	40	8.5	QP
40.678	V	44.0	-7.5	36.5	40	3.5	QP
67.794	V	39.2	-12.7	26.5	40	13.5	QP
67.816	Н	35.2	-12.7	22.5	40	17.5	QP
176.288	V	32.8	-8.1	24.7	43.5	18.8	QP
176.290	Н	37.2	-8.1	29.1	43.5	14.4	QP


Notes:

1. Correction Factor: Antenna Factor + Cable loss

TEST PLOTS



This document may not be copied or reproduced (reprinted) without written consent by Hyundai C-Tech, Inc. dba HCT America, Inc. Hyundai C-Tech, Inc. dba HCT America, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

TEST PLOTS

9.4. POWERLINE CONDUCTED EMISSIONS

AC Main : Device with antenna connected

Frequency	Line	Reading (dBμV)		Corr. ¹⁾	-	vel µV)		nit μV)	Ma (d	-
(MHz)		QP	CAV	(dB)	QP	CAV	QP	CAV	QP	CAV
0.159	L1	34.0	13.6	9.7	43.7	23.3	65.5	55.5	21.8	32.2
0.202	L1	31.0	10.7	9.7	40.7	20.4	63.5	53.5	22.8	33.1
0.747	L1	24.0	12.3	9.7	33.7	22.0	56	46	22.3	24.0
1.504	L1	17.3	5.3	9.7	27.0	15.0	56	46	29.0	31.0
6.210	L1	10.0	0.9	9.8	19.8	10.7	60	50	40.2	39.3
11.146	L1	9.9	1.6	10.1	20.0	11.7	60	50	40.0	38.3

Frequency	Line	Reading Line (dBµV)	Corr. ¹⁾	_	vel µV)		nit μV)	Maı (d	-	
(MHz)		QP	CAV	(dB)	QP	CAV	QP	CAV	QP	CAV
0.153	N	32.7	12.0	9.7	42.4	21.7	65.8	55.8	23.4	34.1
0.242	Ν	28.3	8.4	9.7	38.0	18.1	62	52	24.0	33.9
0.748	N	19.9	8.7	9.7	29.6	18.4	56	46	26.4	27.6
1.832	Ν	13.9	6.2	9.7	23.6	15.9	56	46	32.4	30.1
13.471	Ν	14.7	3.3	10.1	24.8	13.4	60	50	35.2	36.6
22.565	Ν	9.7	1.5	10.3	20.0	11.8	60	50	40.0	38.2

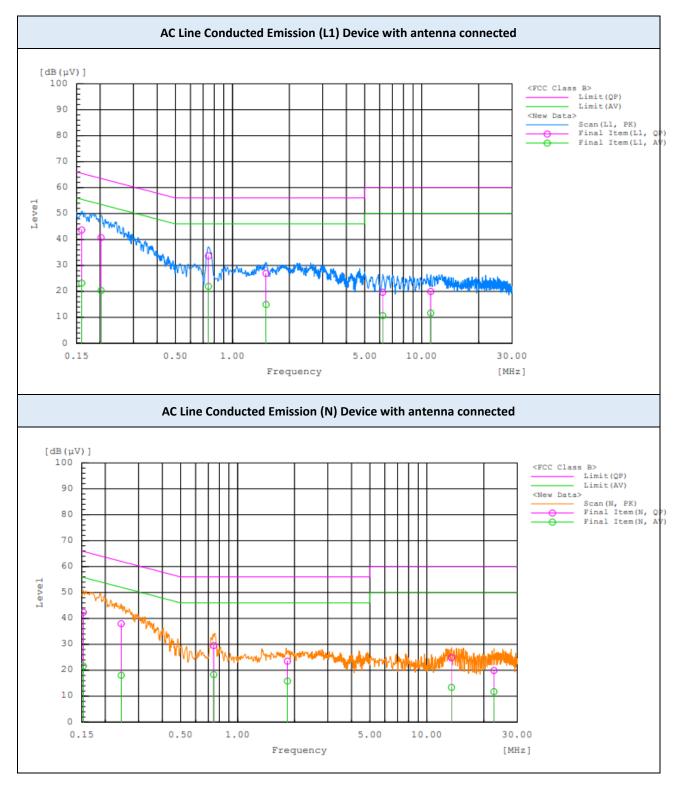
Note :

1. Quasi-peak(Final Result) = Reading Value + Correction Factor

AC Main : Device with antenna terminated with dummy load

Frequency (MHz)	Line	Reading (dBμV)		Corr. ¹⁾	Level (dBµV)		Limit (dBµV)		Margin (dB)	
		QP	CAV	(dB)	QP	CAV	QP	CAV	QP	CAV
0.155	L1	32.2	11.7	9.7	41.9	21.4	65.7	55.7	23.8	34.3
0.195	L1	30.1	10.4	9.7	39.8	20.1	63.8	53.8	24.0	33.7
0.752	L1	24.5	12.8	9.7	34.2	22.5	56	46	21.8	23.5
1.519	L1	18.0	6.5	9.7	27.7	16.2	56	46	28.3	29.8
6.749	L1	11.0	1.8	9.9	20.9	11.7	60	50	39.1	38.3
12.878	L1	11.0	2.7	10.1	21.1	12.8	60	50	38.9	37.2

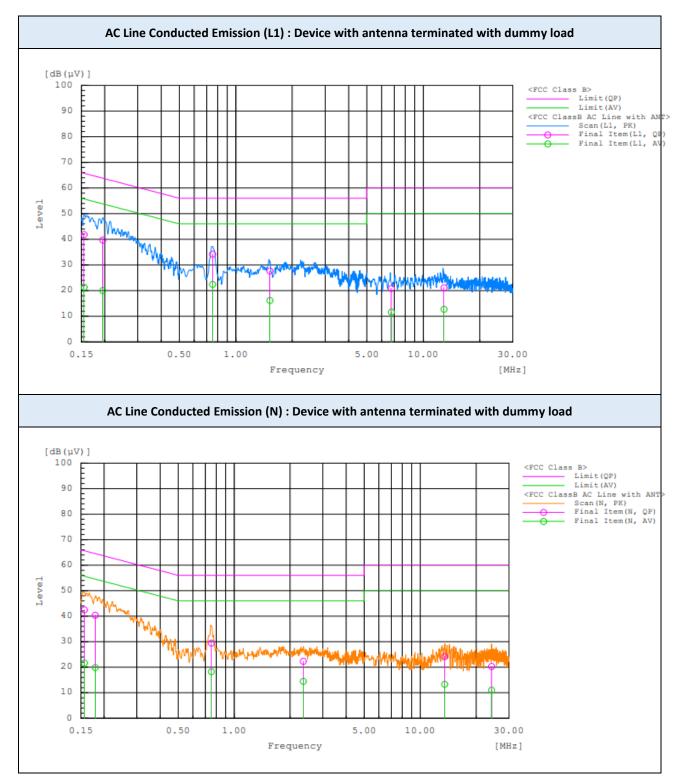
Frequency (MHz)	Line	Reading (dBµV)		Corr. ¹⁾	Level (dBμV)		Limit (dBµV)		Margin (dB)	
		QP	CAV	(dB)	QP	CAV	QP	CAV	QP	CAV
0.157	Ν	32.8	12.0	9.7	42.5	21.7	65.6	55.6	23.1	33.9
0.179	Ν	30.7	10.2	9.7	40.4	19.9	64.5	54.5	24.1	34.6
0.754	Ν	19.8	8.6	9.7	29.5	18.3	56	46	26.5	27.7
2.351	Ν	12.6	4.8	9.7	22.3	14.5	56	46	33.7	31.5
13.523	Ν	14.0	3.3	10.1	24.1	13.4	60	50	35.9	36.6
24.182	Ν	9.9	0.6	10.4	20.3	11.0	60	50	39.7	39.0


Note :

1. Quasi-peak(Final Result) = Reading Value + Correction Factor

TEST PLOTS

Note :


Peak at 13.56 MHz is a fundamental frequency of NFC.

Report No.: HA211208-SOC-004-R02

TEST PLOTS

This document may not be copied or reproduced (reprinted) without written consent by Hyundai C-Tech, Inc. dba HCT America, Inc. Hyundai C-Tech, Inc. dba HCT America, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

10. LIST OF TEST EQUIPMENT

No.	Instrument	Model No.	Calibration Due (mm/dd/yy)	Manufacture	Serial No.	
\boxtimes	Signal Analyzer (20 Hz ~ 40.0 GHz)	ESU40	12/03/2022	Rohde & Schwarz	100529	
	Signal Analyzer (1 Hz - 44 GHz)	ESW44	10/25/2022	Rohde & Schwarz	102015	
\boxtimes	Signal Analyzer (10 Hz ~ 26.5 GHz)	N9020A	11/04/2022	Keysight	MY52091291	
	Attenuator (20 dB, DC ~ 26.5 GHz)	CFADC262002	01/13/2023	CERNEX	-	
	Attenuator (10 dB, DC ~ 26.5 GHz)	CFADC261002	01/13/2023	CERNEX	-	
\boxtimes	Loop Antenna (0.009 ~ 30 MHz)	HLA 6121	09/15/2023	TESEQ	43964	
\boxtimes	BI-LOG Antenna (30 MHz ~ 1 GHz)	JB6	10/26/2022	Sunol	A071116	
\boxtimes	LNA (30 MHz ~ 1GHz)	8447D	07/26/2022	HP	2443A03587	
\boxtimes	EMI Test Receiver	ESR3	12/03/2022	Rohde & Schwarz	102363	
\boxtimes	LISN	ENV216	01/19/2023	Rohde & Schwarz	101349	
\square	Temp & Humidity Chamber	SH-641	06/17/2022	ESPEC	92002929	

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date

APPENDIX A. TEST SETUP PHOTOS

The setup photos are provided as a separate document

APPENDIX B. PHOTOGRAPHS OF EUT

B.1. EXTERNAL PHOTOS

The external photos are provided as a separate document

B.2. INTERNAL PHOTOS

The internal photos are provided as a separate document

Report No.: HA211208-SOC-004-R02 32 This document may not be copied or reproduced (reprinted) without written consent by Hyundai C-Tech, Inc. dba HCT America, Inc. Hyundai C-Tech, Inc. dba HCT America, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

END OF TEST REPORT