

Test report No.: 23C0510R-RFUSV01S-B

TEST REPORT

Product Name	Car Infotainment Unit
Trademark	APTIV
Model and /or type reference	IHP
FCC ID	LTQIHP
Applicant's name / address	Aptiv Services Deutschland GmbH Am Technologiepark 1 D–42119 Wuppertal Germany
Manufacturer's name	Aptiv Services Deutschland GmbH
Test method requested, standard	FCC CFR Title 47 Part 15 Subpart C ANSI C63.4: 2014, ANSI C63.10: 2013
Verdict Summary	IN COMPLIANCE
Documented By (Senior Project Specialist / April Chen)	April Chen
Tested By (Senior Engineer / Ivan Chuang)	April Chen Ivan Chuang Seeven Isas
Approved By (Senior Engineer / Steven Tsai)	Seaven Tsai
Date of Receipt	2023/12/14
Date of Issue	2024/01/26
Report Version	V1.0

DEKRA

INDEX

		Page
1. G	eneral Information	6
1.1.	EUT Description	6
1.2.	Tested System Details	8
1.3.	Configuration of Tested System	8
1.4.	EUT Exercise Software	8
1.5.	Test Facility	9
1.6.	List of Test Equipment	
1.7.	Uncertainty	
2. Co	onducted Emission	12
2.1.	Test Setup	
2.2.	Limits	
2.3.	Test Procedure	
2.4.	Test Result of Conducted Emission	14
3. Pe	eak Power Output	15
3.1.	Test Setup	
3.2.	Limit	
3.3.	Test Procedure	
3.4.	Test Result of Peak Power Output	16
4. Ra	adiated Emission	
4.1.	Test Setup	
4.2.	Limits	
4.3.	Test Procedure	
4.4.	Test Result of Radiated Emission	
5. R	F Antenna Conducted Test	
5.1.	Test Setup	
5.2.	Limits	
5.3.	Test Procedure	
5.4.	Test Result of RF Antenna Conducted Test	27
6. Ba	and Edge	29
6.1.	Test Setup	
6.2.	Limit	
6.3.	Test Procedure	
6.4.	Test Result of Band Edge	

DEKRA

7.	6dB	Bandwidth	38
7	.1.	Test Setup	38
7	.2.	Limits	38
7	.3.	Test Procedure	38
7	.4.	Test Result of 6dB Bandwidth	39
8.	Pow	er Density	41
8	.1.	Test Setup	41
8	.2.	Limits	41
8	.3.	Test Procedure	41
8	.4.	Test Result of Power Density	42
9.	Duty	y Cycle	44
9	.1.	Test Setup	44
9	.2.	Test Procedure	44
9	.3.	Test Result of Duty Cycle	45
A	ppend	lix 1: EUT Test Photographs	

Appendix 2: Product Photos-Please refer to the file: 23C0510R-Product Photos

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Report No.	Version	Description	Issued Date
23C0510R-RFUSV01S-B	V0.1-Draft	Initial issue of report.	2024/01/10

1. General Information

1.1. EUT Description

Product Name	Car Infotainment Unit
Trademark	APTIV
Model and /or type	IHP
reference	
EUT Rated Voltage	DC 12V by Battery
EUT Test Voltage	DC 12V by Battery
Frequency Range	2402 - 2480 MHz
Channel Number	40
Type of Modulation	GFSK (1 Mbps, 2 Mbps)
Channel Control	Auto
Blockchain verified	
QR code	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	AMOTECH	AMO-PHA-AP001	PIFA	1.94 dBi for 2400 MHz

Note:

1. The antenna of EUT conforms to FCC 15.203.

2. The antenna gain as by the manufacturer provided.

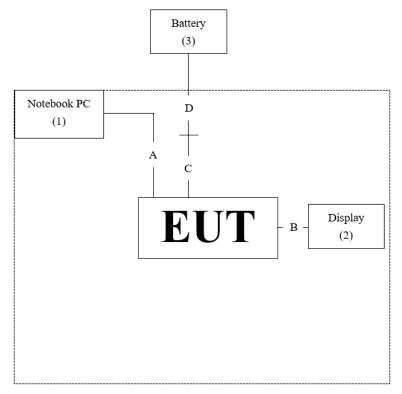
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	01	2404	02	2406	03	2408
04	2410	05	2412	06	2414	07	2416
08	2418	09	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

Center Frequency of Each Channel:

Note:

- 1. The EUT is a Car Infotainment Unit with built-in WLAN and Bluetooth transceiver, this report for BLE.
- 2. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 3. The spectrum plot against conducted item only shows the worst case.
- 4. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 5. DEKRA has evaluated each test mode. Only the worst case is shown in the report.
- 6. These tests were conducted on a sample for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.

		Transmit - 1 Mbps
Test Mode	Mode 1	Transmit - 2 Mbps


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	Lenovo	TP00067C	PF-0EW0C3	N/A
2	Display	N/A	IHP DISPLAY	N/A	N/A
3	Battery	BOSCH	60044	N/A	N/A

Cabl	е Туре	Cable Description
А	USB Cable	Shielded, 1m
В	4 Pin cable	Non-shielded, 1m
С	Power Cable	Non-shielded, 2m
D	Power Cable	Non-shielded, 2m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

1	Setup the EUT as shown in Section 1.3.
2	Execute software "cmd Ver. 10.0.19045.3803" on the Notebook PC.
3	Configure the test mode, the test channel, and the data rate.
4	Press "OK" to start the continuous transmit.
5	Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
	Temperature (°C)	10~40 °C	23.7 °C
Radiated Emission	Humidity (%RH)	10~90 %	34.0 %
	Temperature (°C)	10~40 °C	27.5 °С
Conductive	Humidity (%RH)	10~90 %	58.0 %

USA	FCC Registration Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.
	Linkou Laboratory
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.
Phone Number	+886-3-275-7255
Fax Number	+886-3-327-8031

1.6. List of Test Equipment

For Conducted Measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103465	2023/06/14	2024/06/13
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2023/05/15	2024/05/14
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240002	2023/05/18	2024/05/17
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240003	2023/05/18	2024/05/17

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.0.14.

For Radiated Measurements /HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date	
V	Loop Antenna	AMETEK	HLA6121	49611	2023/02/21	2024/02/20	
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08	
V	Horn Antenna	Com-Power	AH-840	101100	2023/10/02	2025/10/01	
V	Horn Antenna	RF SPIN	DRH18-E	210507A18ES	2023/05/11	2024/05/10	
V	Pre-Amplifier	SGH	SGH0301-9	20211007-11	2023/01/10	2024/01/09	
V	Pre-Amplifier	SGH	PRAMP118	20200701	2023/01/10	2024/01/09	
V	Pre-Amplifier	EMCI	EMC05820SE	980310	2023/01/10	2024/01/09	
	Pre-Amplifier	EMCI	EMC184045SE	980369	2023/01/10	2024/01/09	
V	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314			
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242			
V	Filter	MICRO TRONICS	BRM50702	G269	2023/01/05	2024/01/04	
	Filter	MICRO TRONICS	BRM50716	G196	2023/01/05	2024/01/04	
V	EMI Test Receiver	R&S	ESR3	102793	2023/12/11	2024/12/10	
V	Spectrum Analyzer	R&S	FSV3044	101113	2023/02/04	2024/02/03	
	Coaxial Cable	SGH	SGH18	2021005-1	2023/01/10	2024/01/09	
V	Coaxial Cable	SGH	SGH18	202108-4			
V	Coaxial Cable	SGH	HA800	GD20110223-1			
V	Coaxial Cable	SGH	HA800	GD20110222-3			

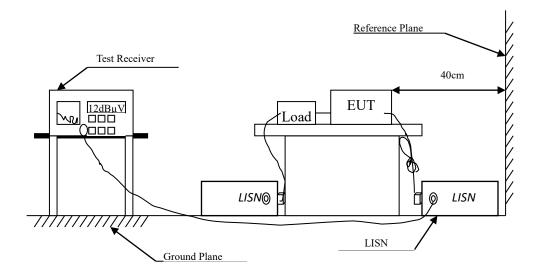
Note:

- 1. Bi-Log Antenna and Horn Antenna (AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 230303 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system but are based on the results of the compliance measurement.

Test item	Uncertainty
Conducted Emission	±3.50 dB
Deals Derven Outmut	Spectrum Analyzer: ±2.14 dB
Peak Power Output	Power Meter: ±1.05 dB
	9 kHz~30 MHz: ±3.88 dB
Radiated Emission	30 MHz~1 GHz: ±4.42 dB
Radiated Emission	1 GHz~18 GHz: ±4.28 dB
	18 GHz~40 GHz: ±3.90 dB
RF Antenna Conducted Test	±2.14 dB
	For Radiated:
	9 kHz~30 MHz: ±3.88 dB
Dand Edge	30 MHz~1 GHz: ±4.42 dB
Band Edge	1 GHz~18 GHz: ±4.28 dB
	18 GHz~40 GHz: ±3.90 dB
	For Conducted: ±2.14 dB
6dB Bandwidth	±1580.61 Hz
Power Density	±2.14 dB
Duty Cycle	±0.53 %

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit				
Frequency	Limits			
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

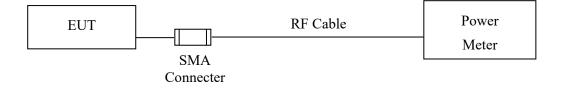
2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.



2.4. Test Result of Conducted Emission

Owing to the DC operation of EUT, this test item is not performed.

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

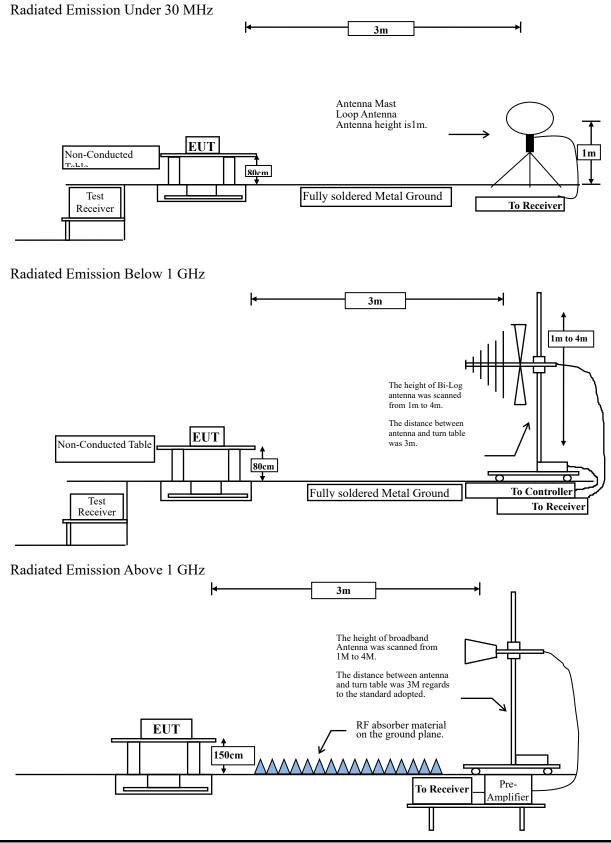
3.3. Test Procedure

The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

3.4. Test Result of Peak Power Output

Product	:	Car Infotainment Unit
Test Item	:	Peak Power Output
Test Mode	:	Transmit - 1 Mbps
Test Date	:	2023/12/20

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
00	2402	5.81	1 Watt= 30 dBm	Pass
19	2440	6.15	1 Watt= 30 dBm	Pass
39	2480	6.13	1 Watt= 30 dBm	Pass


Product	:	Car Infotainment Unit
Test Item	:	Peak Power Output
Test Mode	:	Transmit - 2 Mbps
Test Date	:	2023/12/20

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
00	2402	5.70	1 Watt= 30 dBm	Pass
19	2440	6.15	1 Watt= 30 dBm	Pass
39	2480	6.10	1 Watt= 30 dBm	Pass

4. Radiated Emission

4.1. Test Setup

Page: 18 of 46

4.2. Limits

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits				
Frequency	Field strength	Measurement distance		
MHz	(microvolts/meter)	(meter)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remarks:

- 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1 GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1 GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30 MHz setting on the field strength meter is 9 kHz and 30 MHz~1 GHz is 120 kHz and above 1 GHz is 1 MHz.

Radiated emission measurements below 30 MHz are made using Loop Antenna and 30 MHz~1 GHz are made using broadband Bilog antenna and above 1 GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range from 9 kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

VBW \geq 3 x RBW.

Table 1 — RBW as a function of frequency

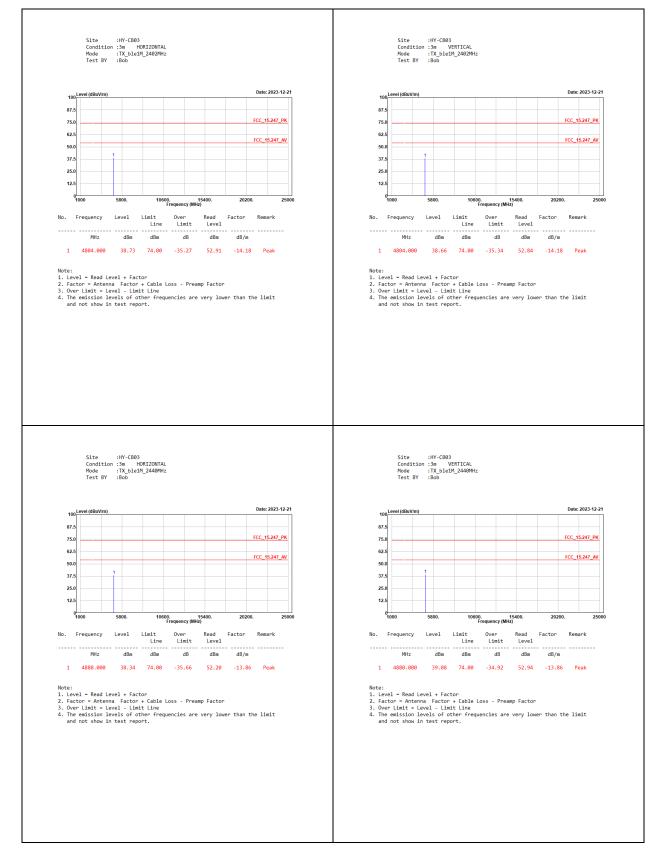
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

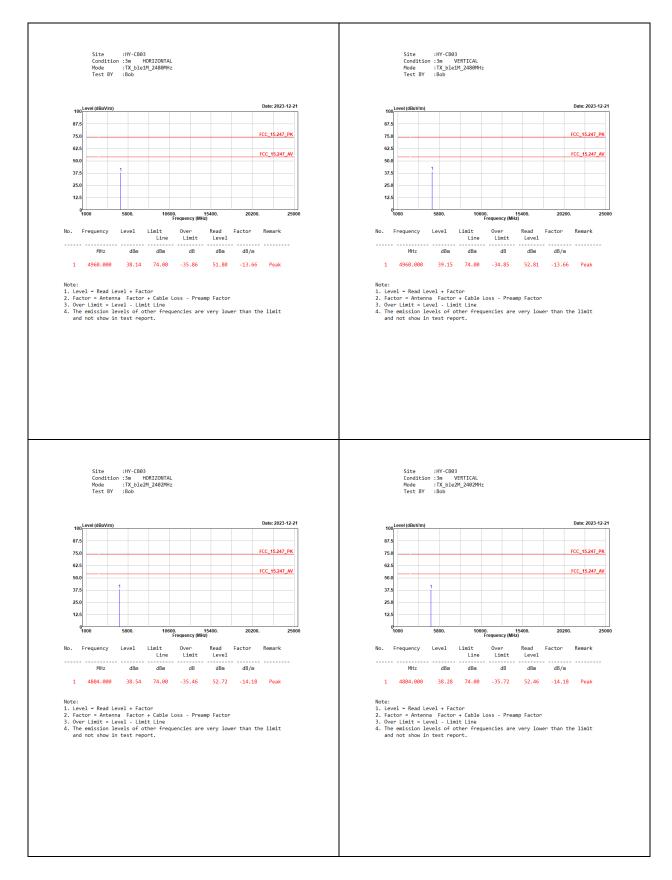
RBW = 1 MHz.

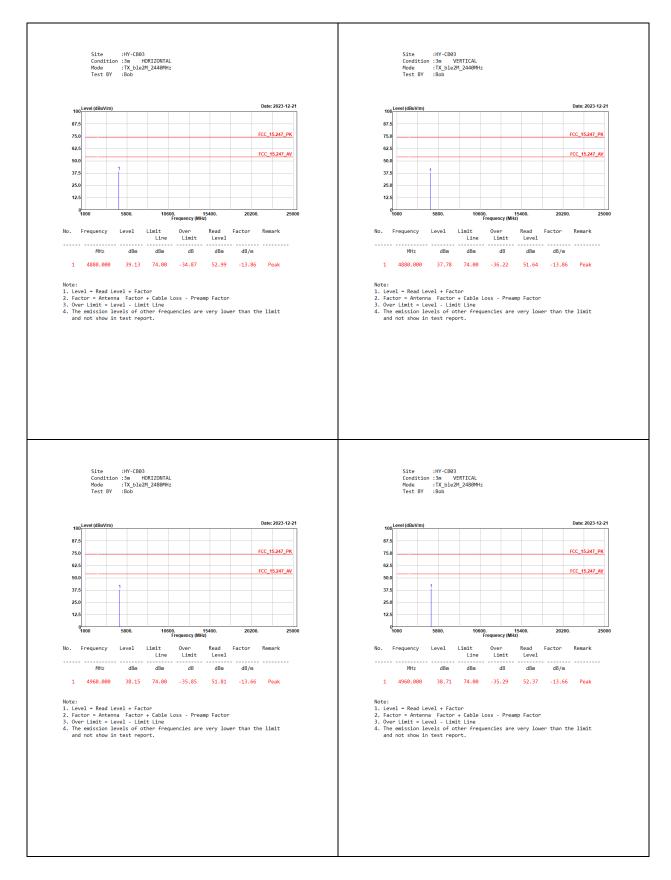
VBW = 10 Hz, when duty cycle \ge 98 %

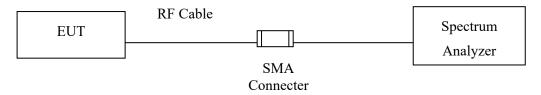
VBW $\geq 1/T$, when duty cycle < 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE (1 Mbps)	61.60	0.3850	2597	3000
BLE (2 Mbps)	32.00	0.2000	5000	10000


Note: Duty Cycle Refer to Section 9.


4.4. Test Result of Radiated Emission



5. **RF Antenna Conducted Test**

5.1. Test Setup

5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.4. Test Result of RF Antenna Conducted Test

Product	:	Car Infotainment Unit
Test Item	:	RF Antenna Conducted Test
Test Mode	:	Transmit - 1 Mbps
Test Date	:	2023/12/19

Spectrun	n								
Ref Leve	1 20.00 dBm	Offset 1	L.20 dB 😑 R	. BW 100 kH	z				
🗕 Att	30 dB	SWT	265 ms 👄 🛛	' BW 300 kH	z Mode /	Auto Swe	ер		
SGL Count	30/30								
●1Pk View									
					M	1[1]			51.01 dBm
10 dBm								6.9	63590 GHz
0 dBm									
-10 dBm—	D1 -14.710	dD							
-20 dBm	DI -14.710	abm							
-30 dBm—									
-40 dBm									
-50 dBm—		M1			1.61		1		
المعرفين والأنفري		California California	والمعروس فالقرور ومرا	and the second second			(Jacob Lalins, State Direct) a company of a state of the state	الار الشريط المشروس	ومعالك والرياف شام
		1	an taga di si da mandi di Tinina Mandalari di Santa di					بيدافيي انجيد الريا الليانا	
-70 dBm—									
Start 30.0	MHz			3000	1 pts			Stop	26.5 GHz
Marker									
Type Re M1	f Trc	X-value	9 GHz	Y-value -51.01 dB	Funct	tion	Fund	tion Result	
		0,903	00 0.12	51,61 05		eadv		436	9.12.2023

Figure Channel 19:

Date: 19.DEC.2023 03:32:53

Product	:	Car Infotainment Unit

Test Item : RF Antenna Conducted Test

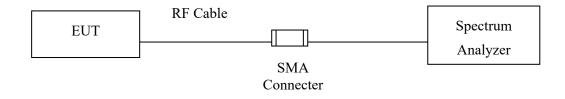
Transmit - 2 Mbps

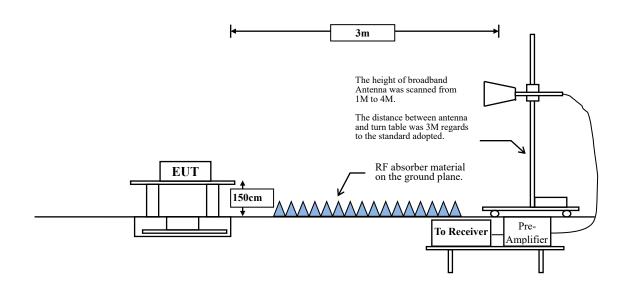
Test Mode :

Test Date : 2023/12/19

		8			
Spectrum					
Ref Level 20.00 dBi	m 🛛 Offset 1.20 dB 👄	RBW 100 kHz			· · · · ·
Att 30 d	B SWT 265 ms 👄	VBW 300 kHz	Mode Auto Swee	p	
SGL Count 30/30					
∋1Pk View					
			M1[1]		-50.80 dBr
10 dBm					6.945060 GH
TO UBIII					
0 dBm					
5 dbin					
-10 dBm					
D1 -14.58	J dBm	_			
-20 dBm					
-30 dBm					
-40 dBm					
	M1				
-50 dBm	14				
and a second	Stranger Lake Lander Marth	والمساوية المتحصيل والالاردام		and the second second second second second	المعرمة بالعرال أقرعاني فالرعص
and the second size of the secon	Cologie Consultation of				فيصله بالعديمة وعنياتها مديناته والعدومتين. ا
-70 dBm					
Start 30.0 MHz		30001 p	its		Stop 26.5 GHz
Marker					
Type Ref Trc	X-value	Y-value	Function	Functi	on Result
M1 1	6.94506 GHz	-50.80 dBm			
			Ready		19.12.2023

Figure Channel 19:


Date: 19.DEC.2023 03:43:43


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

VBW \geq 3 x RBW.

Table 1 — RBW as a function of frequency

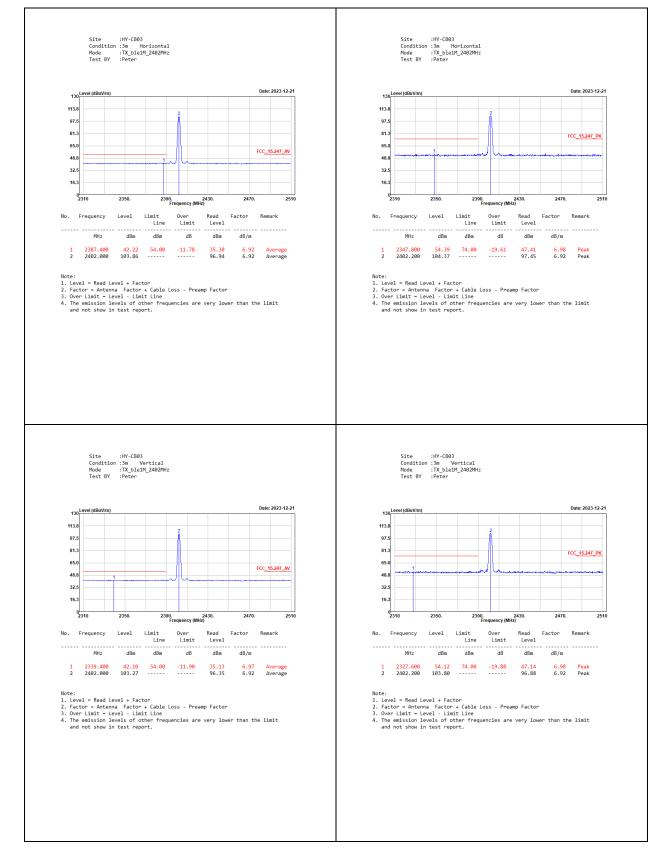
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

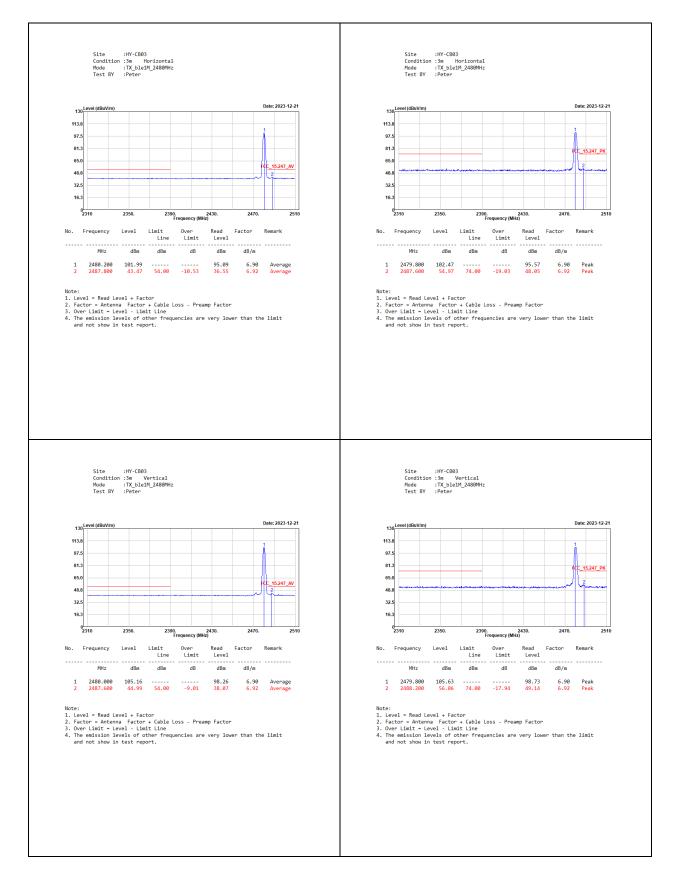
RBW = 1 MHz.

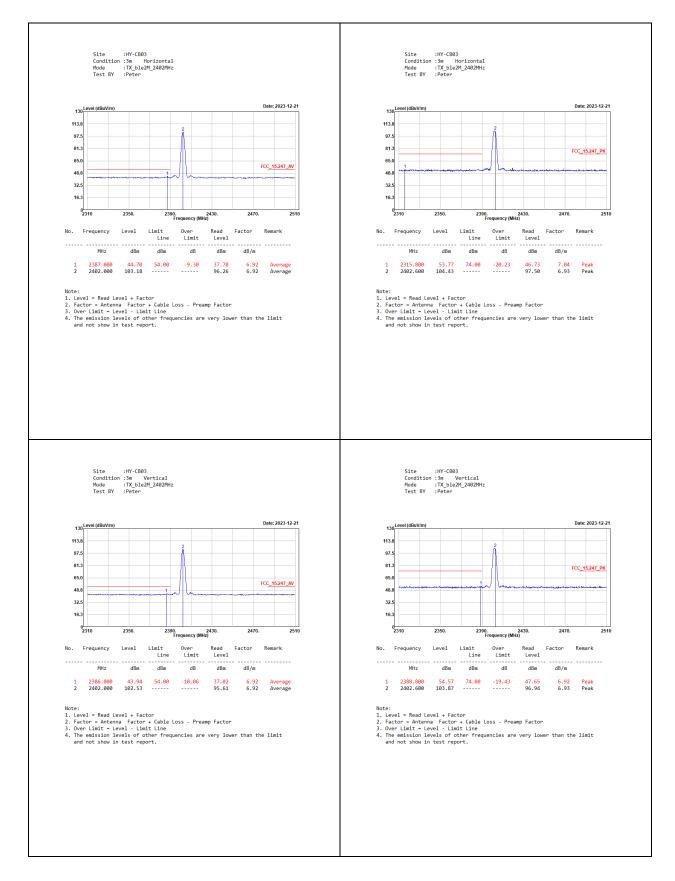
VBW = 10 Hz, when duty cycle \ge 98 %

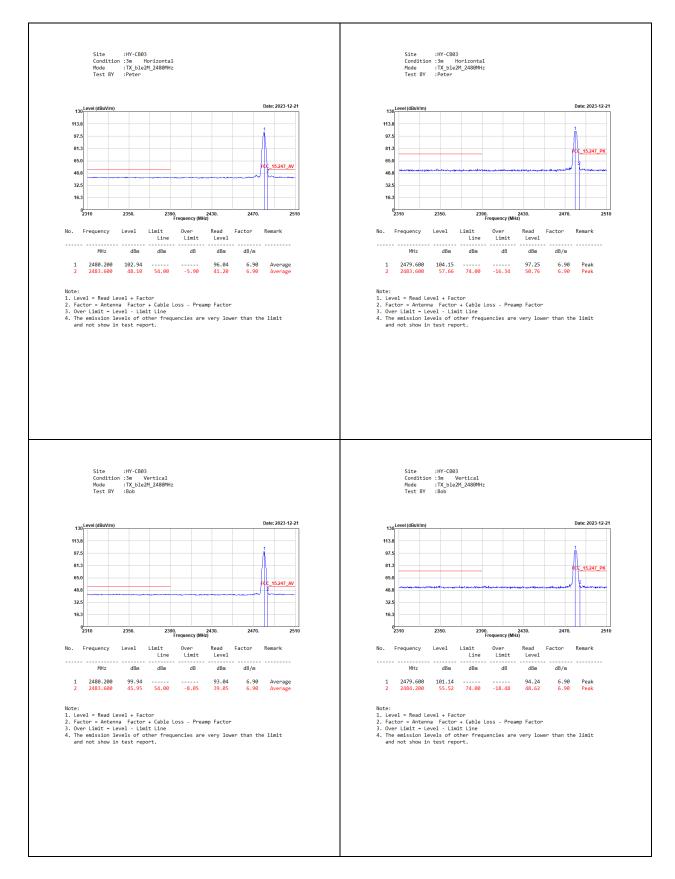
VBW $\geq 1/T$, when duty cycle < 98 %

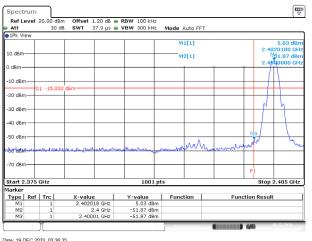

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

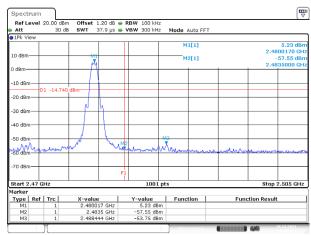
2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE (1 Mbps)	61.60	0.3850	2597	3000
BLE (2 Mbps)	32.00	0.2000	5000	10000


Note: Duty Cycle Refer to Section 9.


6.4. Test Result of Band Edge





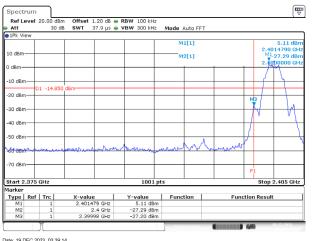

nent Unit
Mbps

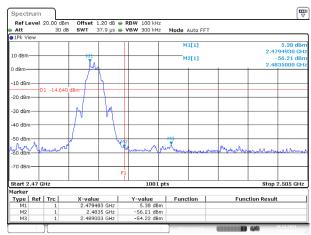
Measurement Level	Result
Δ (dB)	
> 20	PASS

Channel 00

Channel 39

Date: 19.DEC.2023 03:26:25

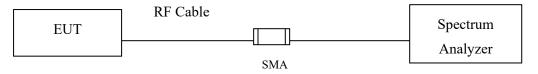

Date: 19.DEC.2023 03:34:52


t Unit
ps

Measurement Level	Result
Δ (dB)	
> 20	PASS

Channel 00

Channel 39



Date: 19.DEC.2023 03:39:14

Date: 19.DEC.2023 03:54:01

7. 6dB Bandwidth

7.1. Test Setup

7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

The EUT was tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.

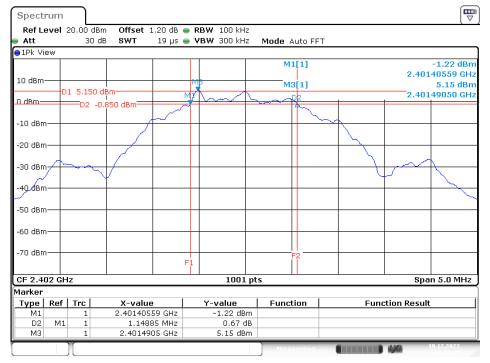
7.4. Test Result of 6dB Bandwidth

Product	:	Car Infotainment Unit
Test Item	:	6dB Bandwidth Data
Test Mode	:	Transmit - 1 Mbps
Test Date	:	2023/12/19

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	699	>500	Pass
19	2440	699	>500	Pass
39	2480	694	>500	Pass

Spect	rum												
Ref L	evel	20.00	dBm	Offset 1	L.20 dB	e RB	W 100 kHz						
🗕 Att		3	0 dB	SWT	19 µs	e VB	W 300 kHz	Mod	ie /	Auto FFT			
😑 1Pk Vi	ew												
10 dBm							MS		_	1[1] 3[1]		2.4	-0.74 dBm 7963537 GHz 5.26 dBm
		1 5.26	50 dBr	n			M1/~~~	\sim	2	0[1]		2.4	8000500 GHz
0 dBm-			-0.74	40 dBm			*		_		+		
-10 dBm	۱ <u> </u>		_			Ă			<u> </u>				
-20 dBn	1		+			4							
-30 dBm	ı—		-		\sim								
-40 dBm	י												
-50 dBm	` \	~~~	-1									<u>►</u>	h
-60 dBm													
-70 dBn	۱ <u> </u>						F1	F2	2 —				
CF 2.4	B GHz	2					1001	pts				S	pan 5.0 MHz
Marker													
Туре	Ref	Trc		X-value		1	r-value	Fu	unc	tion	Fun	ction Res	ult
M1		1		2.479635			-0.74 dBm						
D2	M1	1			31 kHz		0.30 dB						
M3		1		2.4800	05 GHz		5.26 dBn	ו	_				
		J							Mea	suring		1.10	19.12.2023

Figure Channel 39:


Date: 19.DEC.2023 03:34:15

:	Car Infotainment Unit
:	6dB Bandwidth Data
:	Transmit - 2 Mbps
:	2023/12/19
	: : :

Channel No.	Frequency	Measurement Level	Required Limit	Result
Channel No.	(MHz)	(kHz)	(kHz)	Kesun
00	2402	1149	>500	Pass
19	2440	1149	>500	Pass
39	2480	1149	>500	Pass



Date: 19.DEC.2023 03:38:38

8. **Power Density**

8.1. Test Setup

8.2. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)

8.4. Test Result of Power Density

Product	:	Car Infotainment Unit
Test Item	:	Power Density Data
Test Mode	:	Transmit - 1 Mbps
Test Date	:	2023/12/19

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	-11.98	\leq 8dBm	Pass
19	2440	-9.67	\leq 8dBm	Pass
39	2480	-9.85	\leq 8dBm	Pass

Spectrum		_			
Ref Level 20.00 dB			_		· · · · ·
● Att 30 d ● 1Pk View	B SWT 631.9 µs	VBW 10 kHz	Mode Auto FFT		
			M1[1]		-9.67 dBm 2.43996540 GHz
10 dBm					
0 dBm					
-10 dBm	1 1 1 m 1	M1			
	Manyman	N. Mulling Area	MAMM	Mr MAAMA	MAMAAAA
H3D dBm				1 V	W WWW
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.44 GHz		1001 pt	s		Span 1.05 MHz
Marker Type Ref Trc	X-value	Y-value	Function	Function F	Docult (
Type Ref Trc M1 1	2.4399654 GHz	-9.67 dBm	Function	Function	(esuit
			Measuring		19.12.2023 03:32:04

Figure Channel 19:

Date: 19.DEC.2023 03:32:04

Product	:	Car Infotainment Unit
Test Item	:	Power Density Data
Test Mode	:	Transmit - 2 Mbps
Test Date	:	2023/12/19

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	-12.72	\leq 8dBm	Pass
19	2440	-12.64	\leq 8dBm	Pass
39	2480	-12.80	\leq 8dBm	Pass

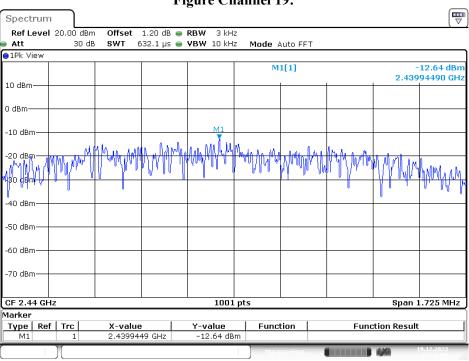
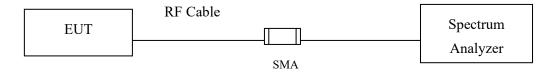



Figure Channel 19:

Date: 19.DEC.2023 03:42:55

9. Duty Cycle

9.1. Test Setup

9.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product	:	Car Infotainment Unit
Test Item	:	Duty Cycle
Test Mode	:	Transmit - 1 Mbps

Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)

2.4GHz Band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
BLE (1 Mbps)	0.3850	0.6250	61.60	2.10

Spectrum										
Ref Level Att		lBm Offset dB = SWT		RBW 10 MHz						
1Pk View	10	ab – 5 111	5 115	75N 10 1012						
20 dBm-					M1[1]			3.58 dBn 535.00 μ 1.91 di 385.00 μ		
10 dBm	41	D2								
0 dBm		24 Dβ			[
-10 dB n										
-20 dBm										
-30 dB	u	huma	hirden	Hub (mar)	hower		Weekun	Waterer	ultury	
-40 dBm										
-50 dBm										
-60 dBm										
CF 2.402 G	Hz				ts				 500.0 μs/	
larker										
Type Ref				Y-value	Function	on	Function Result			
M1	1			3.58 dBm						
D2 M D3 M			85.0 μs 25.0 μs	1.91 dB -2.87 dB						
					Measu	iring.		144	19.12.2023	

BLE 1M

Date: 19.DEC.2023 03:24:29

Product	:	Car Infotainment Unit
Test Item	:	Duty Cycle
Test Mode	:	Transmit - 2 Mbps

Formula: Duty Cycle = Ton / (Ton + Toff) Duty Factor = 10 Log (1/Duty Cycle)

2.4GHz Band	Ton	Ton + Toff	Duty Cycle	Duty Factor	
	(ms)	(ms)	(%)	(dB)	
BLE (2 Mbps)	0.2000	0.6250	32.00	4.95	

Spectrum)								
Ref Level 30.0		1.20 dB 👄 R							
Att 1Pk View	40 dB 👄 SWT	5 ms 🔳 🛛	BW 10 MH	Z				,	
OIPK VIEW			1	м	1[1]			5.49 dBm	
					-[-]			L70.00 μs	
20 dBm				D	D2[1]			-0.01 dB	
10/dBm							2	200.00 µs	
		- I				-1	- I		
0 d <mark>8</mark> m									
-10 dBm									
-10 aBm									
-20 dBm									
and dBm the physical and the second s	at hand hand	Murayungput	- Landrage	yyth yw	Maryan	manut	tragendenter	wining	
-40 dBm						U			
-50 dBm									
-60 dBm									
CF 2.402 GHz			1001	pts			50)0.0 µs/	
Marker	- 1	1		1		F		1	
Type Ref Tro		0.0 μs	<u>Y-value</u> 5.49 dBr		Function		ion Result		
D2 M1	1 20	200.0 µs -0.01 (
D3 M1	1 62	5.0 µs	-0.42 d	в					
				Mea	suring		1 /0 ¹⁹ .	12.2023	

BLE 2M

Date: 19.DEC.2023 03:38:13