

Test Report

Test report no.: 22037042-26423-1

Date of issue: 2022-10-26

Test result: The test item - passed - and complies with below listed standards.

Applicant

Aptiv Services Deutschland GmbH

Manufacturer

Aptiv Services Deutschland GmbH

Test Item

2R5TR

RF-Spectrum Testing according to:

FCC 47 CFR Part 95

Personal radio services, Subpart M – The 76-81 GHz Band Radar Service

Tested by (name, function, signature)

Karsten Geraldy Lab Manager RF

signature

Approved by (name, function, signature)

Andreas Bender
Deputy Managing Director

signature

Applicant and Test item details		
Applicant	Aptiv Services Deutschland GmbH Am Technologiepark 1 42119, Wuppertal, Germany Phone: +49 2261 971 415	
Manufacturer	Aptiv Services Deutschland GmbH Am Technologiepark 1 42119, Wuppertal, Germany	
Test item description	Short Range Radar (SRR5)	
Model/Type reference	2R5TR	
FCC ID	LTQ2R5TR	
Frequency	76.0 GHz to 77.0 GHz	
Antenna	integrated patch antenna	
Power supply	9.0 to 16.0 V DC	
Temperature range	-40 °C to +85 °C	

Disclaimer and Notes

The content of this test report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full.

The last valid version is available at TAMSys®.

Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a \boxtimes point / \square comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take test samples. The samples used for testing are provided by the applicant.

Decision rule:

Decision rule based on simple acceptance without guard bands, binary statement, based on mutually agreed uncertainty tolerances with expansion factor k=2 according to ILAC-G8:09/2019

IBL-Lab GmbH 2 / 71

TABLE OF CONTENTS

1

1	TABLE OF CONTENTS	3
2	GENERAL INFORMATION	
2.1	Administrative details	4
2.2	Possible test case verdicts	4
2.3	Observations	5
2.4	Opinions and interpretations	5
2.5	Revision history	5
2.6	Further documents	5
3	ENVIRONMENTAL & TEST CONDITIONS	6
3.1	Environmental conditions	6
3.2	Normal and extreme test conditions	6
4	TEST STANDARDS AND REFERENCES	6
5	EQUIPMENT UNDER TEST (EUT)	7
5.1	Product description	7
5.2	Description of test item	7
5.3	Technical data of test item	7
5.4	Additional information	7
5.5	Operating conditions	8
5.6	Antenna characteristics	8
6	SUMMARY OF TEST RESULTS	g
7	TEST RESULTS	10
7.1	RF power output (§2.1046 & §95.3367)	10
7.2	Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars)	22
7.3	Occupied bandwidth (§2.1049 & §95.3379)	23
7.4	Field strength of spurious radiation (§2.1053 & §95.3379)	30
7.5	Frequency stability (§2.1055 & §95.3379(b))	47
8	Test Setup Description	60
8.1	Semi Anechoic Chamber with Ground Plane	61
8.2	Fully Anechoic Chamber	63
8.3	Radiated measurements > 18 GHz	65
8.4	Radiated measurements > 50 GHz	65
8.5	Radiated measurements under extreme conditions	65
9	Measurement procedures	67
9.1	Radiated spurious emissions from 9 kHz to 30 MHz	67
9.2	Radiated spurious emissions from 30 MHz to 1 GHz	
9.3	Radiated spurious emissions from 1 GHz to 18 GHz	69
9.4	Radiated spurious emissions above 18 GHz	70
10	MEASUREMENT UNCERTAINTIES	71

2 GENERAL INFORMATION

2.1 Administrative details	3			
Testing laboratory	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany Fon: +49 6894 38938-0 Fax: +49 6894 38938-99 URL: www.ib-lenhardt.de E-Mail: info@ib-lenhardt.de			
Accreditation		The testing laboratory is accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025:2018.		
	Electronics	D-PL-21375-01-01		
	Electromagnetic Compatibility	D-PL-21375-01-02		
	 Electromagnetic Compatibility and Telecommunication (FCC requirements) Testing Laboratory Designation Number Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards ISED Company Number Testing Laboratory CAB Identifier Telecommunication (TC) 	D-PL-21375-01-03 DE0024 D-PL-21375-01-04 27156 DE0020 D-PL-21375-01-05		
	Website DAkkS: https://www.dakks.de/ The Deutsche Akkreditierungsstelle GmbH (Dathe ILAC Mutual Recognition Arrangement	AkkS) is also a signatory to		
Tosting location	IBL-Lab GmbH			
Testing location	Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany			
Date of receipt of test samples	2022-07-25			
Start – End of tests	2022-07-25 – 2022-08-01			

2.2 Possible test case verdicts		
Test sample meets the requirements	P (PASS)	
Test sample does not meet the requirements	F (FAIL)	
Test case does not apply to the test sample	N/A (Not applicable)	
Test case not performed	N/P (Not performed)	

IBL-Lab GmbH 4 / 71

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision history

-0 Initial Version

-1 Revision: technical modification

Product Description removed from chapter 5.5 & 5.6 per customer request.

Reference to manufacturer's documentation added at these places.

This test report 22037042-26423-1 replaces the previous test report 22037042-26423-0.

Utilisation, publication and control of previous report editions is under responsibility of the applicant.

2.6 Further documents

List of further applicable documents belonging to the present test report:

Photographs: TR-Annex 22037042-26423-0

IBL-Lab GmbH 5 / 71

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions		
Temperature	20°C ± 5°C	
Relative humidity	25-75% r.H.	
Barometric Pressure	860-1060 mbar	
Power supply	230 V AC ± 5%	

3.2 Normal and extreme test conditions			
	minimum	normal	maximum
Temperature	-40 °C	20 °C	+85 °C
Relative humidity	-/-	45 % r.h.	-/-
Power supply	9.0 V DC	13.2 V DC	16.0 V DC

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
FCC 47 CFR Part 95	Personal radio services, Subpart M – The 76-81 GHz Band Radar Service

Reference	Description
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
KDB 653005 D01, V01, R02	Equipment Authorization Guidance for 76-81 GHz Radar Devices

IBL-Lab GmbH 6 / 71

5 EQUIPMENT UNDER TEST (EUT)

5.1 Product description

Short Range Radar (SRR5)

5.2 Description of test item		
Model name*	2R5TR	
Serial number*	284N07758RT1S0000017	
PCB identifier*	24163532	
Hardware status*	E1	
Software status*	0.0.4	

^{*:} as declared by applicant

5.3 Technical data of test item			
Operational frequency band*	76.0 GHz to 77.0 GHz		
Type of radio transmission*	modulated carrier		
Modulation type*	FMCW		
Number of channels*	1		
Channel bandwidth*	< 1 GHz		
Duty cycle*	28.6 %		
Antenna*	integrated patch antenna		
Rated RF output power*	< 50 dBm		
Power supply*	9.0 to 16.0 V DC		
Temperature range*	-40 °C to +85 °C		

^{*:} as declared by applicant

5.4 Additional information	
Model differences	- none -
Ancillaries tested with	- none -
Additional equipment used for testing	notebook with special test software to change Tx frequency and Tx bandwidth

IBL-Lab GmbH 7 / 71

■ INGENIEURBÜRO
■ LENHARDT

5.5 Operating conditions

Operating conditions are described in following document(s) as provided by applicant:

- Summary of technical data 2R5TR.pdf, dated 2022-08-25

- Technical Data for 2R5TR.pdf, dated 2022-07-20

5.6 Antenna characteristics

Detailed antenna characteristics are described in following document(s) as provided by applicant:

- Antenna Specification with dBi Value.pdf, dated 2022-09-13

Antenna specifications

Frequency: 76 - 77 GHz

Modulation: FMCW

Antenna type: Integrated patch antenna

Antenna brand: APTIV

Antenna Manufacturer: Aptiv Services Deutschland GmbH

Antenna peak gain: 15.6 dBi

IBL-Lab GmbH 8 / 71

SUMMARY OF TEST RESULTS

Test specification

FCC 47 CFR Part 95 - Subpart M

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§2.1046 §95.3367 (a) (b)	RF power output	Nominal	20.2 dBm mean 29.4 dBm peak	Р
§2.1047	Modulation characteristics	Nominal		Р
§2.1049 §95.3379 (b)	Occupied bandwidth	Nominal	593.1 MHz	Р
§2.1051	Spurious emissions at antenna terminals	Nominal	see note	N/A
§2.1053 §95.3379 (a)(1) §95.3379 (a)(2) §95.3379 (a)(3)	Field strength of spurious radiation	Nominal	< limit	Р
§2.1055 §95.3379 (b)	Frequency stability	Nominal Extreme	within band	Р

Notes

FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

Comments and observations

– none –

IBL-Lab GmbH 9 / 71

7 TEST RESULTS

7.1 RF power output (§2.1046 & §95.3367)

Description

§2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

Limits

§95.3367 76-81 GHz Band Radar Service radiated power limits

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

- (a) The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).
- (b) The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Test procedure

Mean Power

Method with spectrum analyser

A spectrum analyser with the following settings is used as measuring receiver in the test set-up:

- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: 3 MHz.
- Detector mode: RMS.
- Display mode: clear write.
- Averaging time: larger than one EUT cycle time.
- Sweep time: averaging time × number of sweep points.

Channel Power function needs to be used to calculate the average power. Boundaries for the calculation needs to be defined. This is typically the operating frequency range.

Method with power meter

The power meter shall be connected to the measurement antenna. The frequency correction factor shall be taken into account. The power meter shall be a true RMS power meter. The measurement time shall be equal or longer than the EUT cycle time.

KDB 653005 D01 76-81 GHz Radars v01r02, 4. b)

The maximum fundamental emission power (EIRP) shall be measured using a power averaging (rms) detector with a 1 MHz resolution bandwidth (RBW) and integrated over the full 99% occupied bandwidth (OBW) to obtain the data necessary to demonstrate compliance to the 50 dBm limit.

IBL-Lab GmbH 10 / 71

Test procedure

Peak Power

Method with a spectrum analyser

A spectrum analyser with the following settings is used as measuring receiver in the test set-up:

- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- · Video bandwidth: 3 MHz.
- · Detector mode: Peak detector.
- · Display mode: Maxhold.
- Sweep time: EUT cycle time × number of sweep points.
- Measurement is done until trace is stabilised.

The peak power to be considered is the maximum value recorded.

KDB 653005 D01 76-81 GHz Radars v01r02, 4. c)

The maximum peak fundamental emission power (EIRP) measurement shall be performed by sweeping over the transmitted occupied bandwidth using a positive peak power detector with peak hold activated, and a 1 MHz RBW. Power integration is not to be used in performing this measurement. The resultant peak power spectral density (maximum in any 1 MHz) data shall be used to demonstrate compliance to the 55 dBm/MHz limit.

Peak power measurements of swept frequency radar implementations (e.g., high sweep rate FMCW) may require a desensitization correction factor to be applied to the measurement results. See relevant Application Note(s) from the measurement instrumentation vendor for details.

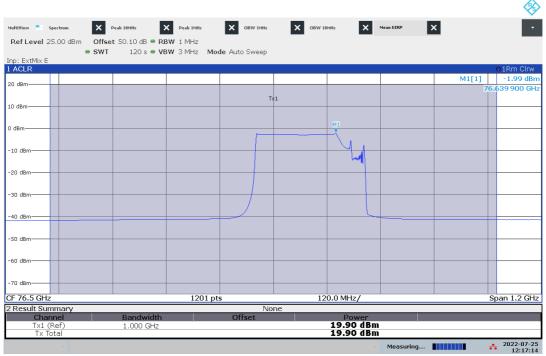
Test procedure used: Method with Spectrum Analyzer

Test setup: 8.3

IBL-Lab GmbH 11 / 71

Test results					
Test environment	EUT mode	Test distance	Radiated Mean Power (EIRP) [dBm]	Radiated Peak Power (EIRP) [dBm]	
T _{nom} / V _{nom}	1, f _{low}	1 m	20.2	29.4	
T _{nom} / V _{nom}	1, f _{mid}	1 m	19.9	27.4	
T _{nom} / V _{nom}	1, f _{high}	1 m	20.0	27.6	
T _{nom} / V _{nom}	2, f _{low}	1 m	20.2	29.4	
T_{nom} / V_{nom}	2, f _{mid}	1 m	20.1	27.3	
T _{nom} / V _{nom}	2, f _{high}	1 m	19.8	27.6	
T _{nom} / V _{nom}	3, flow	1 m	20.2	29.4	
T_{nom} / V_{nom}	3, f _{mid}	1 m	20.0	27.5	
T_{nom} / V_{nom}	3, f _{high}	1 m	20.0	27.6	

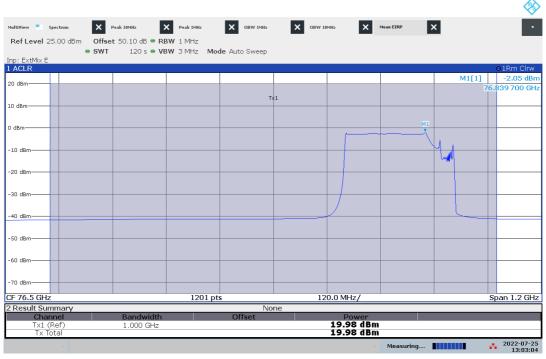
IBL-Lab GmbH 12 / 71



Plot no. 1: Mean Power EIRP, RMS detector / Channel Power, Mode 1, flow, Tnom

11:05:11 07/25/2022

Plot no. 2: Mean Power EIRP, RMS detector / Channel Power, Mode 1, fmid, Tnom



12:17:14 07/25/2022

IBL-Lab GmbH 13 / 71

Plot no. 3: Mean Power EIRP, RMS detector / Channel Power, Mode 1, fhigh, Tnom

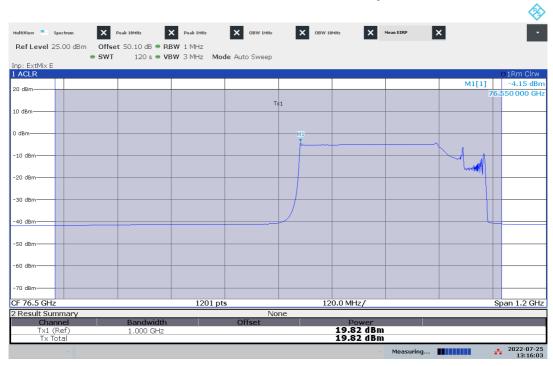
01:03:05 07/25/2022

Plot no. 4: Mean Power EIRP, RMS detector / Channel Power, Mode 2, flow, Tnom



11:43:16 07/25/2022

IBL-Lab GmbH 14 / 71



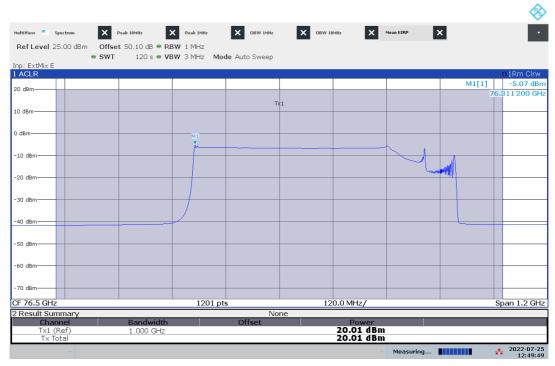
Plot no. 5: Mean Power EIRP, RMS detector / Channel Power, Mode 2, fmid, Tnom

12:32:49 07/25/2022

Plot no. 6: Mean Power EIRP, RMS detector / Channel Power, Mode 2, fnigh, Tnom

01:16:03 07/25/2022

IBL-Lab GmbH 15 / 71



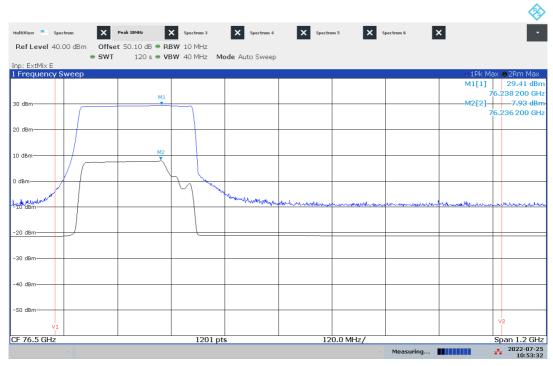
Plot no. 7: Mean Power EIRP, RMS detector / Channel Power, Mode 3, flow, Tnom

12:02:15 07/25/2022

Plot no. 8: Mean Power EIRP, RMS detector / Channel Power, Mode 3, fmid, Tnom

12:49:50 07/25/2022

IBL-Lab GmbH 16 / 71



Plot no. 9: Mean Power EIRP, RMS detector / Channel Power, Mode 3, fhigh, Tnom

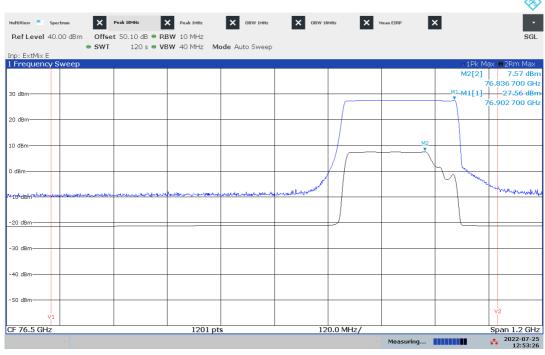
01:31:37 07/25/2022

Plot no. 10: Peak Power EIRP, Peak detector, Mode 1, flow, Tnom



10:53:32 07/25/2022

IBL-Lab GmbH 17 / 71



Plot no. 11: Peak Power EIRP, Peak detector, Mode 1, fmid, Tnom

12:06:49 07/25/2022

Plot no. 12: Peak Power EIRP, Peak detector, Mode 1, fhigh, Tnom

12:53:27 07/25/2022

IBL-Lab GmbH 18 / 71

Plot no. 13: Peak Power EIRP, Peak detector, Mode 2, flow, Tnom

11:31:36 07/25/2022

Plot no. 14: Peak Power EIRP, Peak detector, Mode 2, fmid, Tnom

12:23:02 07/25/2022

IBL-Lab GmbH 19 / 71

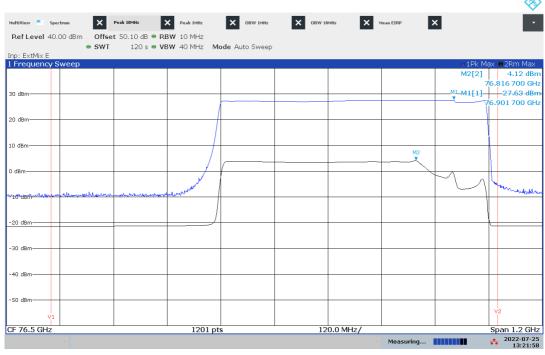
Plot no. 15: Peak Power EIRP, Peak detector, Mode 2, fhigh, Tnom

01:06:54 07/25/2022

Plot no. 16: Peak Power EIRP, Peak detector, Mode 3, flow, Tnom

11:47:37 07/25/2022

IBL-Lab GmbH 20 / 71



Plot no. 17: Peak Power EIRP, Peak detector, Mode 3, fmid, Tnom

12:40:08 07/25/2022

Plot no. 18: Peak Power EIRP, Peak detector, Mode 3, fhigh, Tnom

01:21:59 07/25/2022

IBL-Lab GmbH 21 / 71

7.2 Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars)

Description

§2.1047 Modulation characteristics

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

KDB 653005 D01 76-81 GHz Radars v01r02, 3. g)

Concerning the Section 2.1047 modulation characteristics requirement, the following information should be provided:

- 1) Pulsed radar: pulse width and pulse repetition frequency (if PRF is variable, then report maximum and minimum values).
- 2) Non-pulsed radar (e.g., FMCW): modulation type (i.e., sawtooth, sinusoid, triangle, or square wave) and sweep characteristics (sweep bandwidth, sweep rate, sweep time).

Statement of applicant / manufacturer concerning modulation characteristics of EUT

Please see chapter 5.5 of this test report.

IBL-Lab GmbH 22 / 71

■ INGENIEURBÜRO
■ LENHARDT

TR no.: **22037042-26423-1 2022-10-26**

7.3 Occupied bandwidth (§2.1049 & §95.3379)

Description

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Limits

§95.3379 (b)

Fundamental emissions (i.e. 99% emission bandwidth) must be contained within the frequency bands specified in this section during all conditions of operation.

Test procedure

ANSI C63.26, 5.4.4

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
 - Note: Step a) through step c) may require iteration to adjust within the specified tolerances.
- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s)

KDB 653005 D01 76-81 GHz Radars v01r02, 4. d)

The occupied bandwidth of the radar device shall be measured, reported, and shown to be fully contained within the designated 76-81 GHz frequency band under normal operating conditions as well as under those extreme ambient temperature and input voltage conditions as described in Section 2.1057.

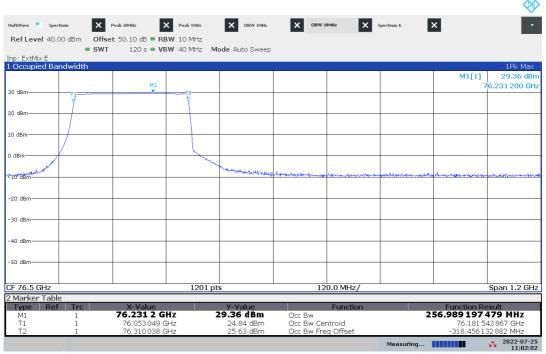
The OBW measurement of an FMCW radar shall be performed with the transmitter operating in normal mode (i.e., with frequency sweep or step active).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.26, chapter D2: general considerations).

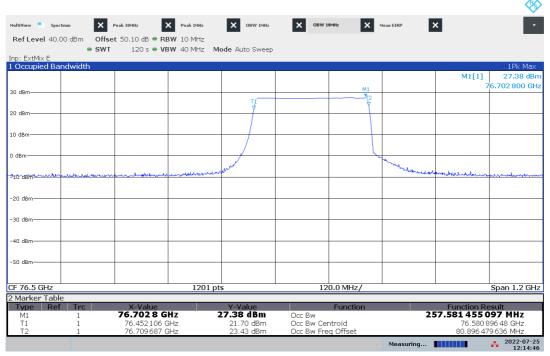
Test setup: 8.3, 8.4

IBL-Lab GmbH 23 / 71



EUT mode	Test conditions	f∟ [GHz]	f _H [GHz]	99% OBW [MHz]
1, f _{low}	T _{nom} / V _{nom}	76.053	76.310	256.989
1, f _{mid}	T _{nom} / V _{nom}	76.452	76.710	257.581
1, f _{high}	T _{nom} / V _{nom}	76.652	76.910	257.104
2, f _{low}	T _{nom} / V _{nom}	76.092	76.516	423.651
2, f _{mid}	T _{nom} / V _{nom}	76.241	76.667	425.185
2, f _{high}	T _{nom} / V _{nom}	76.541	76.966	424.511
3, f _{low}	T _{nom} / V _{nom}	76.079	76.671	592.846
3, f _{mid}	T _{nom} / V _{nom}	76.303	76.896	592.797
3, f _{high}	T _{nom} / V _{nom}	76.379	76.972	593.055

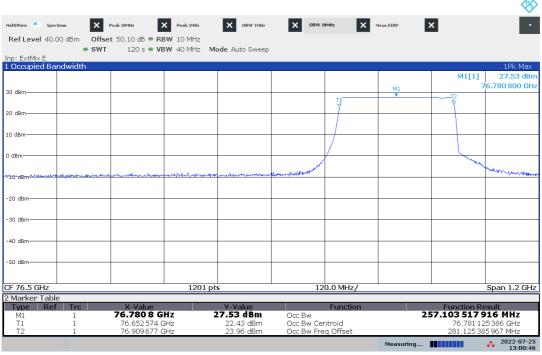
IBL-Lab GmbH 24 / 71



Plot no. 19: OBW, Peak detector, Mode 1, flow, Tnom

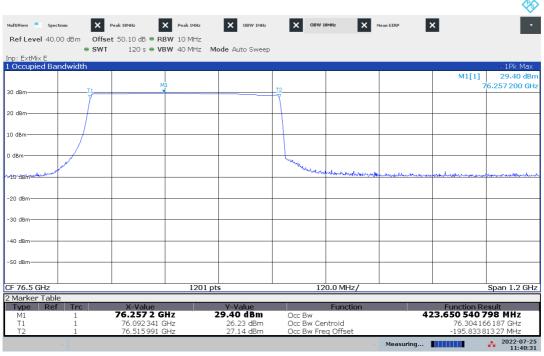
11:02:02 07/25/2022

Plot no. 20: OBW, Peak detector, Mode 1, fmid, Tnom



12:14:46 07/25/2022

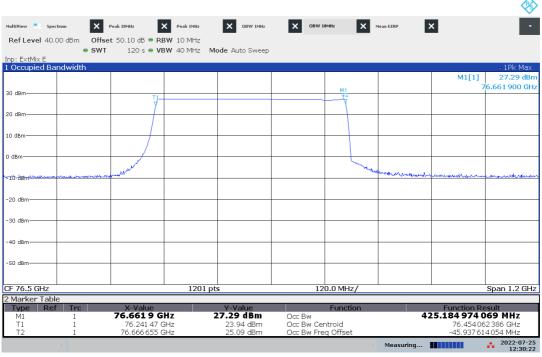
IBL-Lab GmbH 25 / 71



Plot no. 21: OBW, Peak detector, Mode 1, fhigh, Tnom

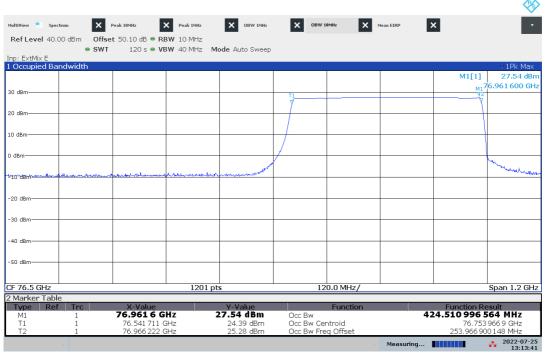
01:00:46 07/25/2022

Plot no. 22: OBW, Peak detector, Mode 2, flow, Tnom



11:40:31 07/25/2022

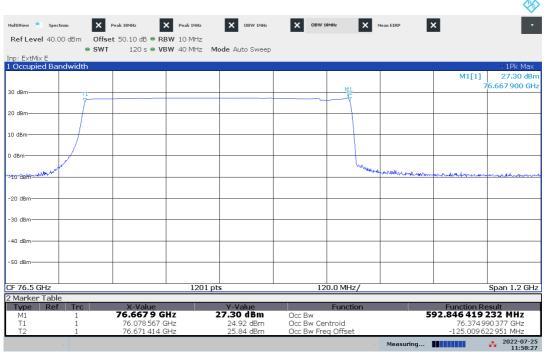
IBL-Lab GmbH 26 / 71



Plot no. 23: OBW, Peak detector, Mode 2, fmid, Tnom

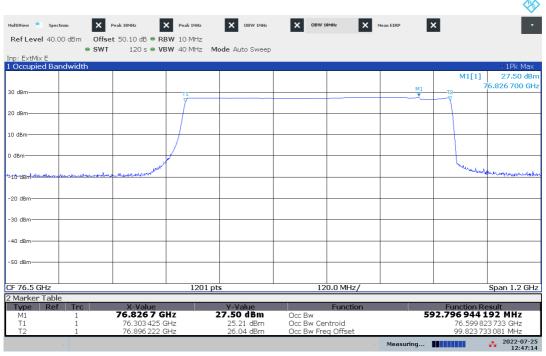
12:30:22 07/25/2022

Plot no. 24: OBW, Peak detector, Mode 2, fhigh, Tnom



01:13:41 07/25/2022

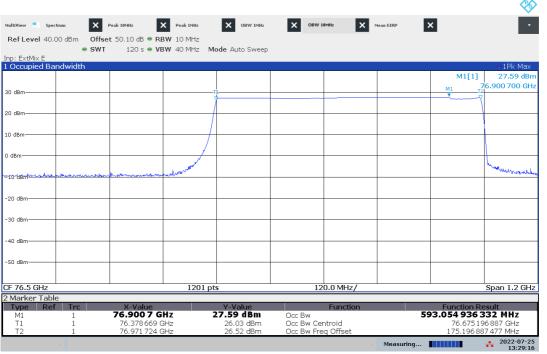
IBL-Lab GmbH 27 / 71



Plot no. 25: OBW, Peak detector, Mode 3, flow, Tnom

11:58:27 07/25/2022

Plot no. 26: OBW, Peak detector, Mode 3, fmid, Tnom



12:47:14 07/25/2022

IBL-Lab GmbH 28 / 71

Plot no. 27: OBW, Peak detector, Mode 3, fhigh, Tnom

01:29:16 07/25/2022

IBL-Lab GmbH 29 / 71

7.4 Field strength of spurious radiation (§2.1053 & §95.3379)

Description

§2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the farfield at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

Limits

§95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

- (a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:
- (1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency [MHz]	Field Strength [µV/m] / [dBµV/m]	Measurement distance [m]
0.009 - 0.490	2400/F[kHz]	300
0.490 – 1.705	24000/F[kHz]	30
1.705 – 30.0	30.0 / 29.5	30
30 – 88	100 / 40.0	3
88 – 216	150 / 43.5	3
216 – 960	200 / 46.0	3
960 – 40 000	500 / 54.0	3

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

Frequency [GHz]	Power Density / EIRP	Measurement distance [m]
40 – 200	600 pW/cm ² → -1.7 dBm	3
200 – 243	1000 pW/cm ² → +0.5 dBm	3

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.26, chapter D2: general considerations).

IBL-Lab GmbH 30 / 71

Calculation of the far field distance (Rayleigh distance):

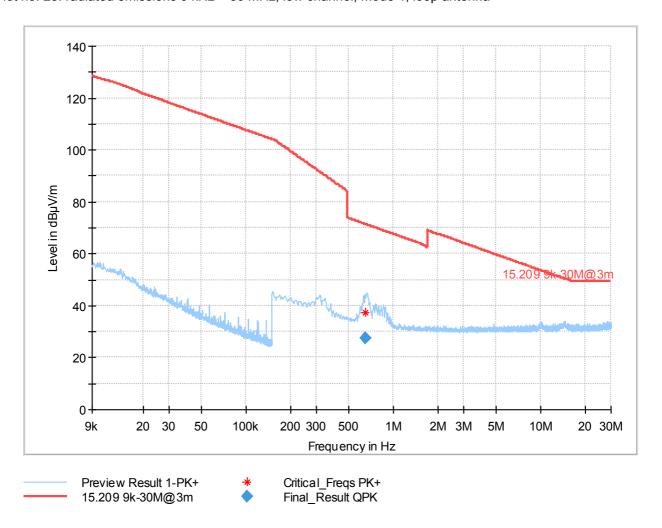
The aperture dimensions of these horn antennas shall be small enough so that the measurement distance in meters is equal to or greater than the Rayleigh distance (i.e. $R_m = 2D^2 / \lambda$), where D is the largest linear dimension (i.e. width or height) of the antenna aperture in m and λ is the free-space wavelength in meters at the frequency of measurement.

Antenna type	Frequency range	D [m]	Highest frequency	Far field distance
	[GHz]		in use [GHz]	R _m [m]
20240-20	18.0 – 26.5	0.0520	26.5	0.478
22240-20	26.5 – 40.0	0.0342	40	0.312
23240-20	33.0 - 50.0	0.0280	50	0.261
24240-20	40.0 - 60.0	0.0230	60	0.212
25240-20	50.0 - 75.0	0.0185	75	0.171
26240-20	60.0 - 90.0	0.0150	90	0.135
27240-20	75.0 – 110	0.0124	110	0.113
28240-20	90.0 – 140	0.0100	140	0.093
29240-20	110 – 170	0.0085	170	0.082
30240-20	140 – 220	0.0068	220	0.068
32240-20	220 – 325	0.00446	243	0.032

Used test distances

Up to 18 GHz: 3.00 m 18 – 40 GHz: 0.50 m 40 – 75 GHz: 0.25 m 75 – 78 GHz: 1.00 m 78 – 90 GHz: 0.25 m 90 – 140 GHz: 0.15 m 140 – 243 GHz: 0.10 m In-band / OOB: 1.00 m

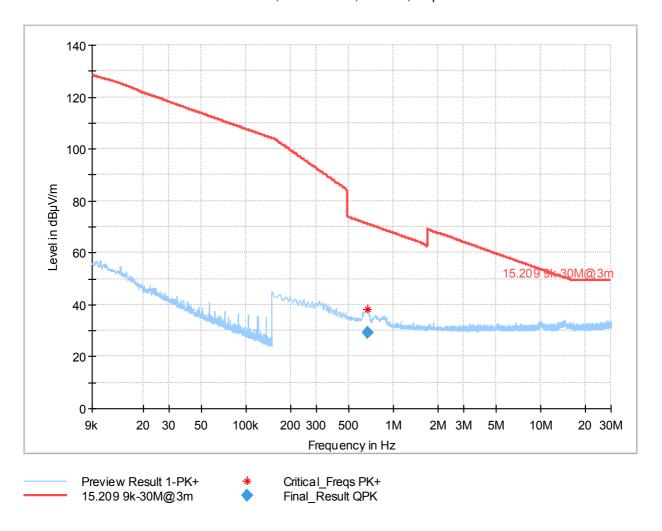
Test setup: 8.1 - 8.4 (in case of field strength measurements below 40 GHz: test distance correction factor of 20dB/decade is already considered in the plots / test result table)


Test results

Channel / Mode	Frequency [GHz]	Detector	Test distance [m]	Level [dBµV/dBm]	Limit [dBµV/dBm]	Margin [dB]
		No critical pea	ks found. Please	refer to plots.		

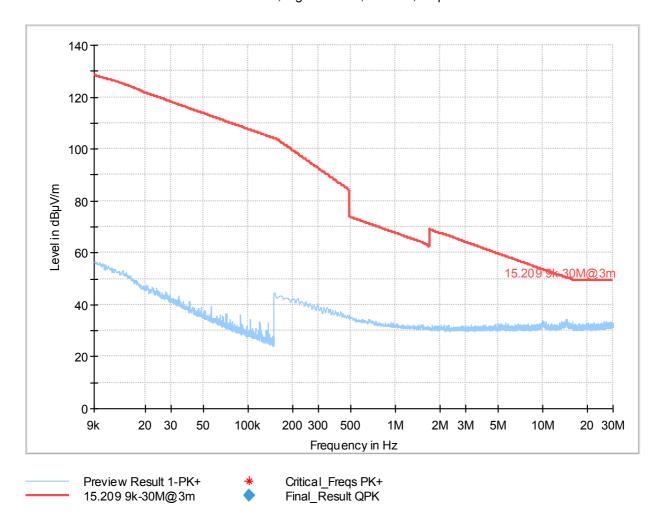
IBL-Lab GmbH 31 / 71

Plot no. 28: radiated emissions 9 kHz - 30 MHz, low channel, Mode 1, loop antenna

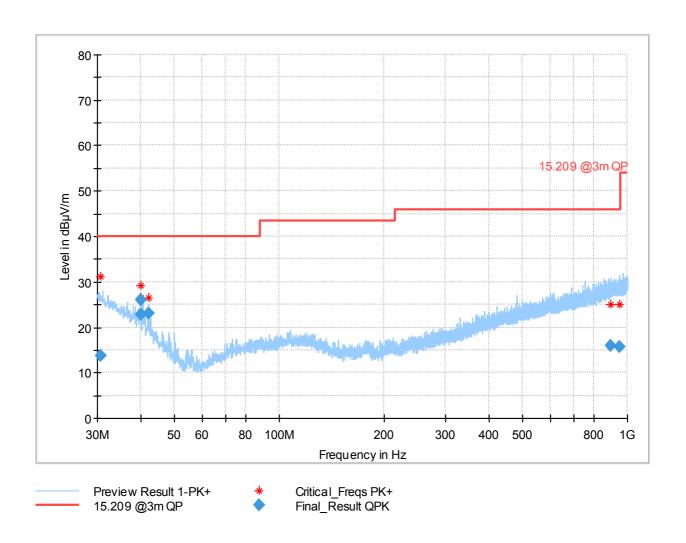

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.647250	27.57	71.41	43.84	100.0	9.000	Н	300.0	20.4

IBL-Lab GmbH 32 / 71

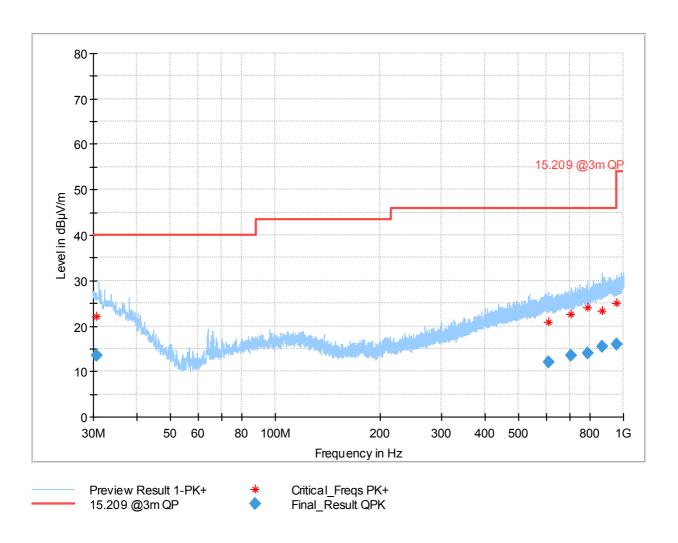

Plot no. 29: radiated emissions 9 kHz - 30 MHz, mid channel, Mode 1, loop antenna

IBL-Lab GmbH 33 / 71


Plot no. 30: radiated emissions 9 kHz - 30 MHz, high channel, Mode 1, loop antenna

IBL-Lab GmbH 34 / 71

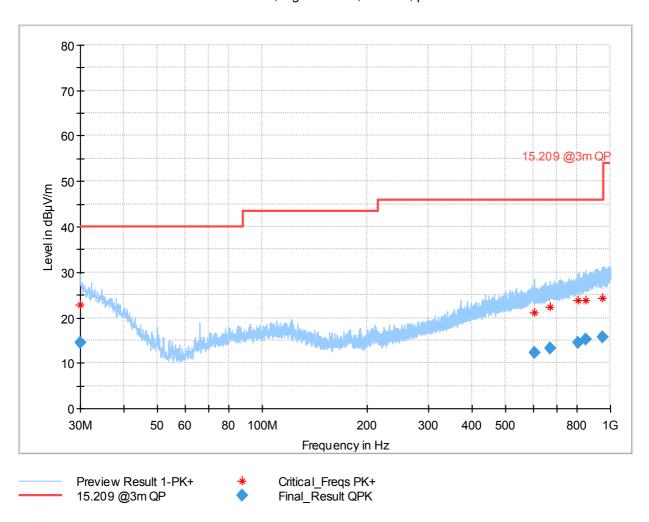
Plot no. 31: radiated emissions 30 MHz – 1 GHz, low channel, Mode 1, polarization vertical / horizontal


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.665500	13.82	40.00	26.18	100.0	120.000	344.0	٧	332.0
39.991000	22.88	40.00	17.12	100.0	120.000	153.0	V	285.0
40.005500	26.05	40.00	13.95	100.0	120.000	100.0	V	70.0
42.004500	23.02	40.00	16.98	100.0	120.000	100.0	V	181.0
892.087500	15.83	46.00	30.17	100.0	120.000	136.0	V	47.0
951.882000	15.81	46.00	30.19	100.0	120.000	246.0	Н	283.0

IBL-Lab GmbH 35 / 71

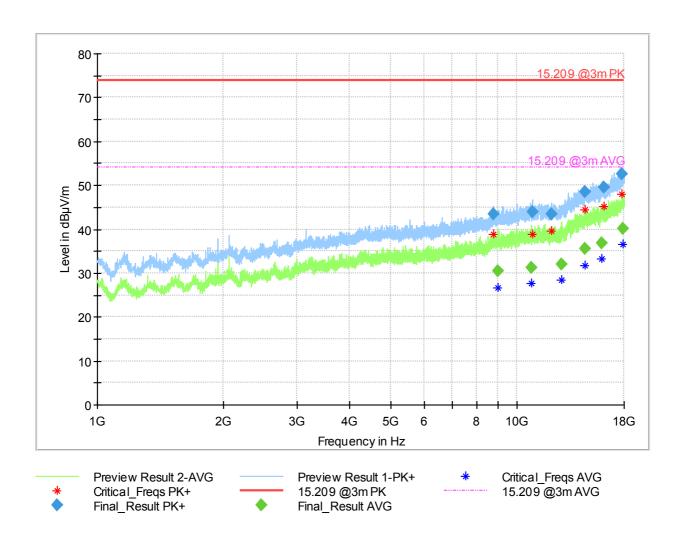
Plot no. 32: radiated emissions 30 MHz - 1 GHz, mid channel, Mode 1, polarization vertical / horizontal


Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.615500	13.42	40.00	26.58	100.0	120.000	235.0	Н	30.0
608.439000	12.05	46.00	33.95	100.0	120.000	150.0	V	186.0
708.554500	13.49	46.00	32.51	100.0	120.000	250.0	٧	79.0
790.128500	14.01	46.00	31.99	100.0	120.000	148.0	٧	124.0
872.241000	15.45	46.00	30.55	100.0	120.000	153.0	Н	245.0
959.242500	15.93	46.00	30.07	100.0	120.000	287.0	Н	95.0

IBL-Lab GmbH 36 / 71

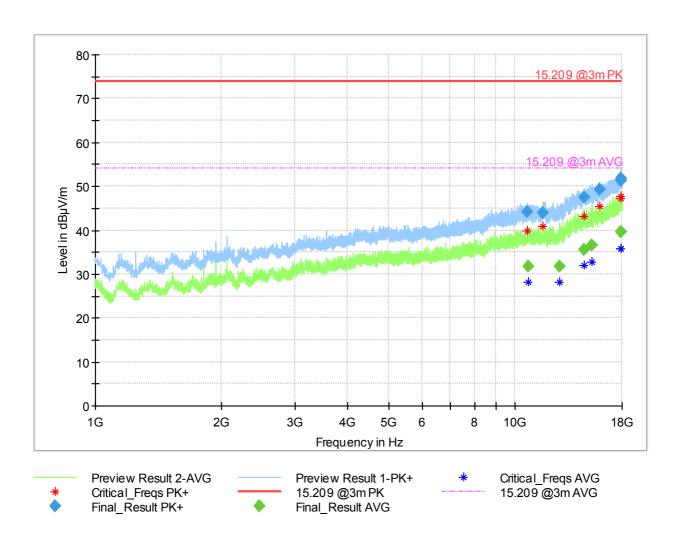
Plot no. 33: radiated emissions 30 MHz - 1 GHz, high channel, Mode 1, polarization vertical / horizontal


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.100000	14.56	40.00	25.44	100.0	120.000	131.0	٧	358.0
604.932500	12.15	46.00	33.85	100.0	120.000	250.0	Н	20.0
671.941500	13.25	46.00	32.75	100.0	120.000	119.0	V	212.0
805.334000	14.46	46.00	31.54	100.0	120.000	153.0	Н	188.0
848.915000	15.15	46.00	30.85	100.0	120.000	154.0	V	150.0
947.005500	15.82	46.00	30.18	100.0	120.000	250.0	Н	88.0

IBL-Lab GmbH 37 / 71

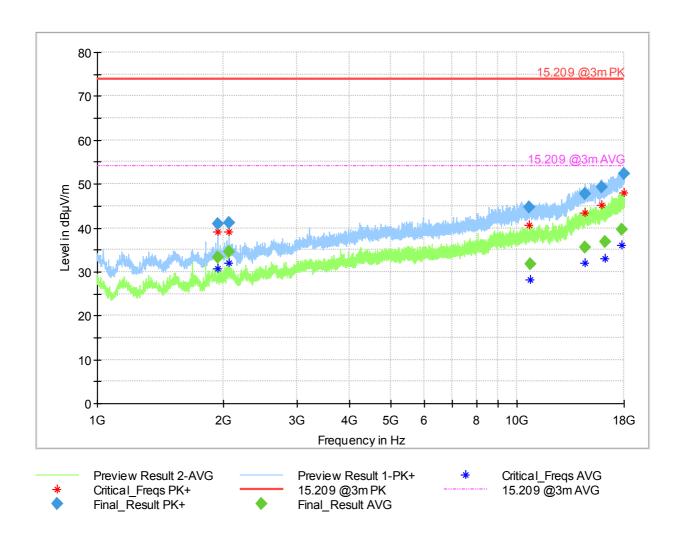
Plot no. 34: radiated emissions 1 GHz – 18 GHz, low channel, Mode 1, polarization vertical / horizontal


Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
8800.136111	43.40		74.00	30.60	100.0	1000.000	150.0	Н
8999.925000		30.50	54.00	23.50	100.0	1000.000	150.0	٧
10834.111111		31.31	54.00	22.69	100.0	1000.000	150.0	٧
10866.041667	43.92		74.00	30.08	100.0	1000.000	150.0	Н
12065.336111	43.40		74.00	30.60	100.0	1000.000	150.0	Н
12790.700000		32.12	54.00	21.88	100.0	1000.000	150.0	Н
14524.144444	48.47		74.00	25.53	100.0	1000.000	150.0	V
14534.938889		35.48	54.00	18.52	100.0	1000.000	150.0	Н
15957.855556		36.93	54.00	17.07	100.0	1000.000	150.0	Н
16164.988889	49.53		74.00	24.47	100.0	1000.000	150.0	V
17746.363889	52.70		74.00	21.30	100.0	1000.000	150.0	Н
17922.886111		40.14	54.00	13.86	100.0	1000.000	150.0	Н

IBL-Lab GmbH 38 / 71

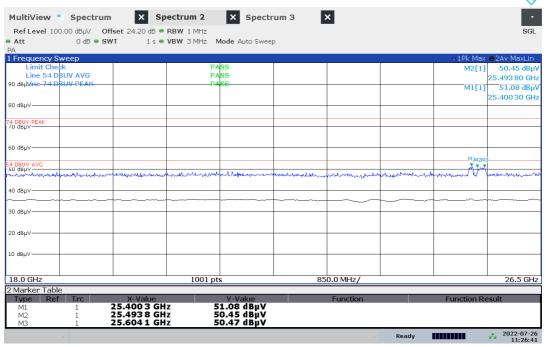
Plot no. 35: radiated emissions 1 GHz - 18 GHz, mid channel, Mode 1, polarization vertical / horizontal


Final Result

	1							
Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
10704.691667	44.12		74.00	29.88	100.0	1000.000	150.0	V
10748.811111		31.73	54.00	22.27	100.0	1000.000	150.0	V
11677.169444	44.06		74.00	29.94	100.0	1000.000	150.0	V
12742.833333		31.78	54.00	22.22	100.0	1000.000	150.0	V
14573.091667		35.47	54.00	18.53	100.0	1000.000	150.0	Н
14589.072222	47.43		74.00	26.57	100.0	1000.000	150.0	٧
15238.938889		36.45	54.00	17.55	100.0	1000.000	150.0	٧
15945.833333	49.20		74.00	24.80	100.0	1000.000	150.0	٧
17841.077778		39.58	54.00	14.42	100.0	1000.000	150.0	Н
17841.602778	51.25		74.00	22.75	100.0	1000.000	150.0	Н
17841.602778		39.54	54.00	14.46	100.0	1000.000	150.0	Н
17843.402778	51.82		74.00	22.18	100.0	1000.000	150.0	Н

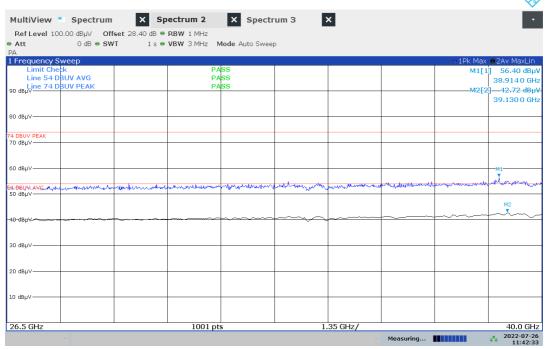
IBL-Lab GmbH 39 / 71

Plot no. 36: radiated emissions 1 GHz – 18 GHz, high channel, Mode 1, polarization vertical / horizontal


Final Result

Frequency	MaxPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
1937.563889		33.30	54.00	20.70	100.0	1000.000	150.0	V
1937.713889	40.96		74.00	33.04	100.0	1000.000	150.0	V
2062.455556	41.17		74.00	32.83	100.0	1000.000	150.0	V
2062.575000	-	34.62	54.00	19.38	100.0	1000.000	150.0	V
10715.905556	44.61		74.00	29.39	100.0	1000.000	150.0	V
10749.305556		31.84	54.00	22.16	100.0	1000.000	150.0	Н
14493.308333	47.64		74.00	26.36	100.0	1000.000	150.0	Н
14504.222222	-	35.65	54.00	18.35	100.0	1000.000	150.0	V
15940.091667	49.26		74.00	24.74	100.0	1000.000	150.0	V
16207.833333	-	36.77	54.00	17.23	100.0	1000.000	150.0	V
17785.205556	I	39.72	54.00	14.28	100.0	1000.000	150.0	Н
17949.405556	52.43		74.00	21.57	100.0	1000.000	150.0	٧

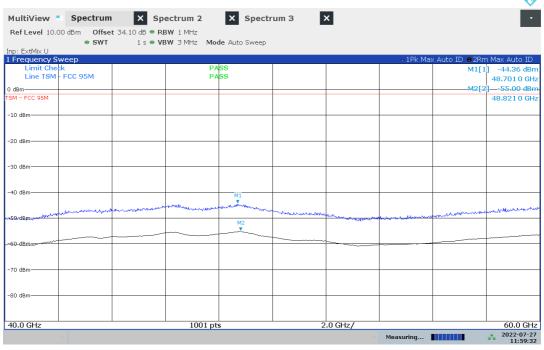
IBL-Lab GmbH 40 / 71



Plot no. 37: radiated emissions 18 GHz - 26.5 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal

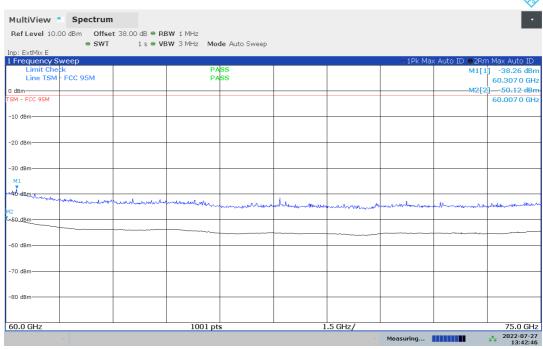
11:26:41 07/26/2022

Plot no. 38: radiated emissions 26.5 GHz - 40 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal



11:42:34 07/26/2022

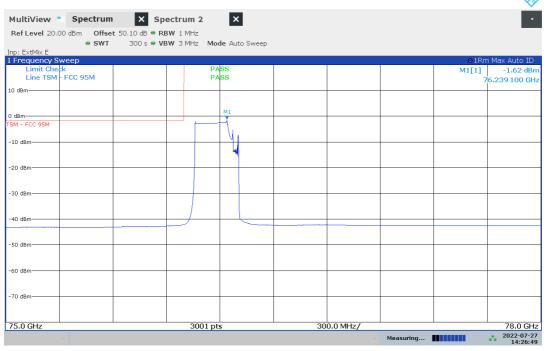
IBL-Lab GmbH 41 / 71



Plot no. 39: radiated emissions 40 GHz - 60 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal

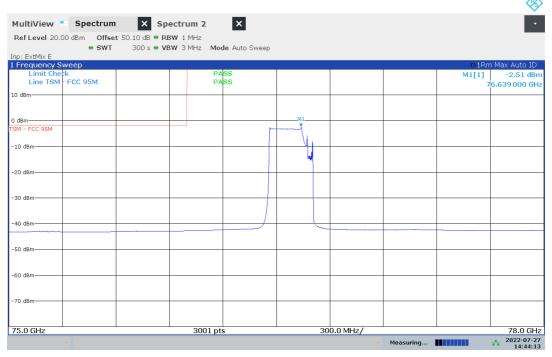
11:59:32 07/27/2022

Plot no. 40: radiated emissions 60 GHz - 75 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal



01:42:47 07/27/2022

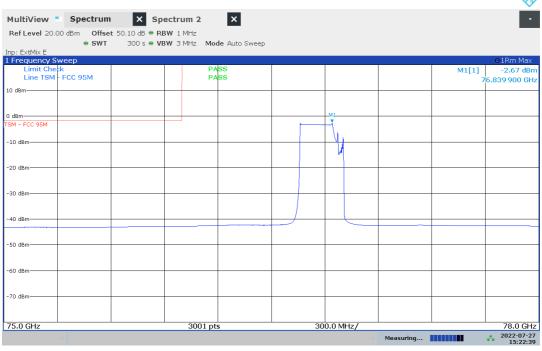
IBL-Lab GmbH 42 / 71



Plot no. 41: radiated emissions 75 GHz – 78 GHz, BEC, flow, Mode 1, polarization aligned with radar sensor

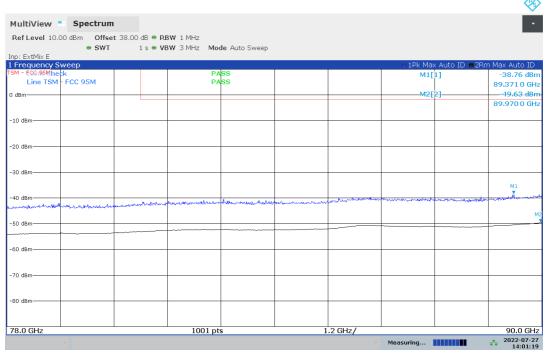
02:26:50 07/27/2022

Plot no. 42: radiated emissions 75 GHz - 78 GHz, BEC, f_{mid} , Mode 1, polarization aligned with radar sensor



02:44:13 07/27/2022

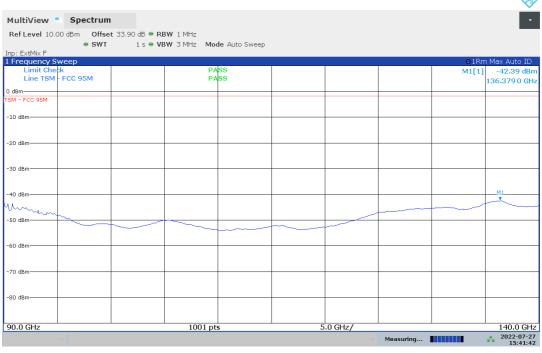
IBL-Lab GmbH 43 / 71



Plot no. 43: radiated emissions 75 GHz - 78 GHz, BEC, fhigh, Mode 1, polarization aligned with radar sensor

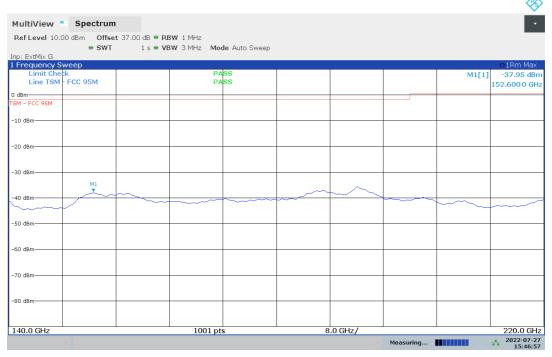
03:22:40 07/27/2022

Plot no. 44: radiated emissions 78 GHz - 90 GHz, $f_{low}/f_{mid}/f_{high}$, Mode 1, polarization vertical / horizontal



02:01:20 07/27/2022

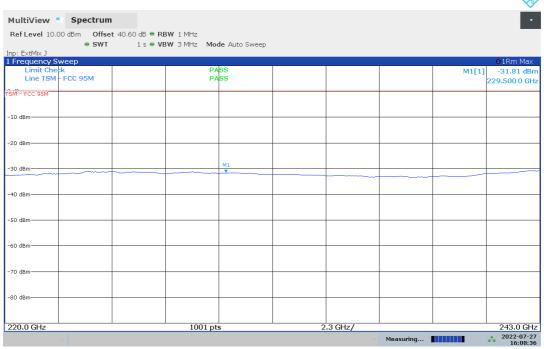
IBL-Lab GmbH 44 / 71



Plot no. 45: radiated emissions 90 GHz - 140 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal

03:41:43 07/27/2022

Plot no. 46: radiated emissions 140 GHz – 220 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal



03:46:58 07/27/2022

IBL-Lab GmbH 45 / 71

Plot no. 47: radiated emissions 220 GHz – 243 GHz, flow/fmid/fhigh, Mode 1, polarization vertical / horizontal

04:08:37 07/27/2022

IBL-Lab GmbH 46 / 71

7.5 Frequency stability (§2.1055 & §95.3379(b))

Description

§2.1055 Measurements required: Frequency stability.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From -30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

Limits

§95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

(b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range −20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Test procedure

ANSI C63.26, 5.4.4

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

Note: Step a) through step c) may require iteration to adjust within the specified tolerances.

- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s)

IBL-Lab GmbH 47 / 71

KDB 653005 D01 76-81 GHz Radars v01r02, 4. d)

The occupied bandwidth of the radar device shall be measured, reported, and shown to be fully contained within the designated 76-81 GHz frequency band under normal operating conditions as well as under those extreme ambient temperature and input voltage conditions as described in Section 2.1057.

The OBW measurement of an FMCW radar shall be performed with the transmitter operating in normal mode (i.e., with frequency sweep or step active).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.26, chapter D2: general considerations).

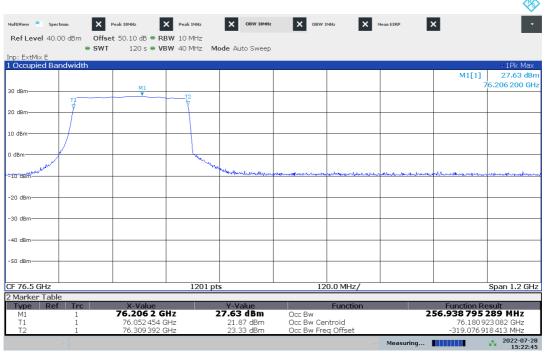
Test setup: 8.3, 8.4

Test	resu	lts
------	------	-----

EUT mode	Test conditions	f∟ [GHz]	f _H [GHz]	99% OBW [MHz]
1, f _{low}	85 °C	76.052	76.309	256.939
3, f _{high}	85 °C	76.377	76.970	593.288
1, f _{low}	50 °C	76.052	76.310	257.839
3, f _{high}	50 °C	76.377	76.970	592.679
1, f _{low}	40 °C	76.053	76.310	256.910
3, f _{high}	40 °C	76.378	76.971	593.282
1, f _{low}	30 °C	76.053	76.310	257.118
3, f _{high}	30 °C	76.378	76.970	591.846
1, f _{low}	20 °C / V _{min} /V _{max}	76.053	76.310	256.989
3, f _{high}	20 °C / V _{min} /V _{max}	76.379	76.972	593.055
1, f _{low}	10 °C	76.054	76.312	258.308
3, f _{high}	10 °C	76.380	76.971	591.929
1, f _{low}	0 °C	76.055	76.312	257.288
3, f _{high}	0 °C	76.380	76.973	593.520
1, f _{low}	-10 °C	76.055	76.313	258.591
3, f _{high}	-10 °C	76.380	76.970	590.287
1, f _{low}	-20 °C	76.056	76.313	257.507
3, f _{high}	-20 °C	76.380	76.975	594.874
1, f _{low}	-30 °C	76.056	76.314	257.803
3, f _{high}	-30 °C	76.381	76.974	593.160
1, f _{low}	-40 °C	76.055	76.313	257.714
3, f _{high}	-40 °C	76.381	76.975	594.839

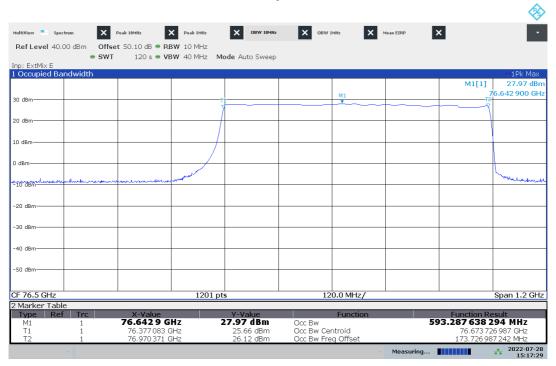
With voltage variation

Input voltage variation does not affect the transmitted signal (see plots for ambient/normal temperature).


Note:

Mode 1, f_{low} and Mode 3, f_{high} are chosen to perform the frequency stability test as these both combinations show lowest and highest frequency.

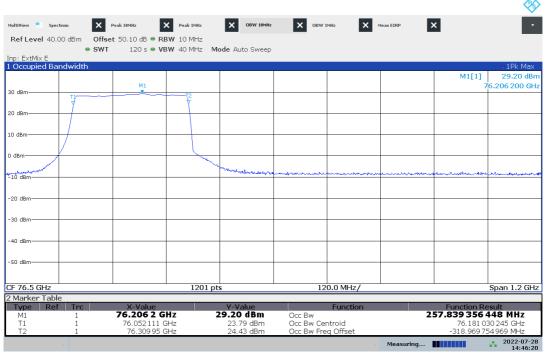
IBL-Lab GmbH 48 / 71



Plot no. 48: 99% OBW, Peak detector, 85 °C, Mode 1, flow

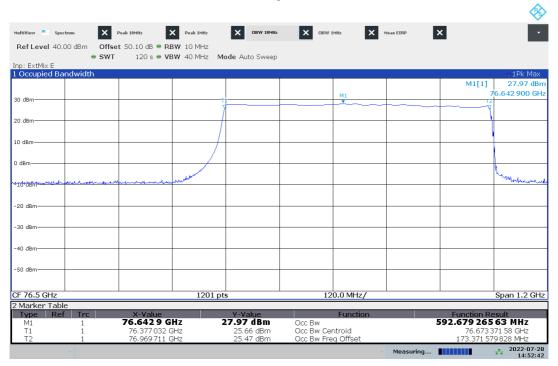
03:22:45 07/28/2022

Plot no. 49: 99% OBW, Peak detector, 85 °C, Mode 3, fhigh



03:17:29 07/28/2022

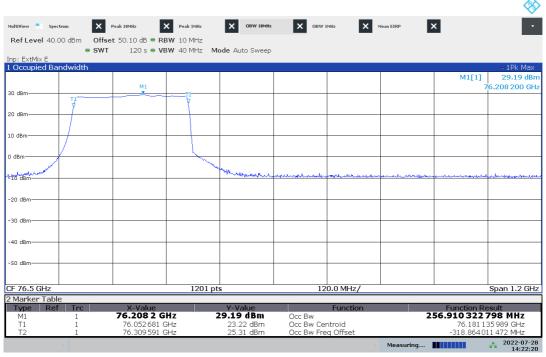
IBL-Lab GmbH 49 / 71



Plot no. 50: 99% OBW, Peak detector, 50 °C, Mode 1, flow

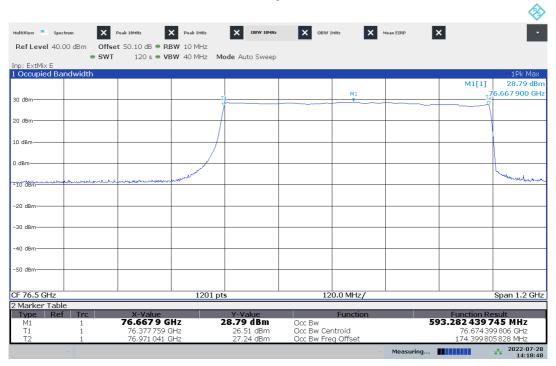
02:46:21 07/28/2022

Plot no. 51: 99% OBW, Peak detector, 50 °C, Mode 3, fhigh



02:52:43 07/28/2022

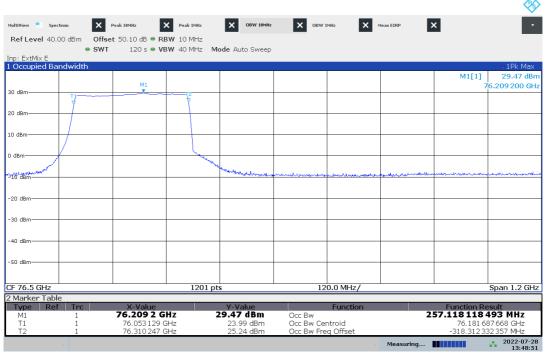
IBL-Lab GmbH 50 / 71



Plot no. 52: 99% OBW, Peak detector, 40 °C, Mode 1, flow

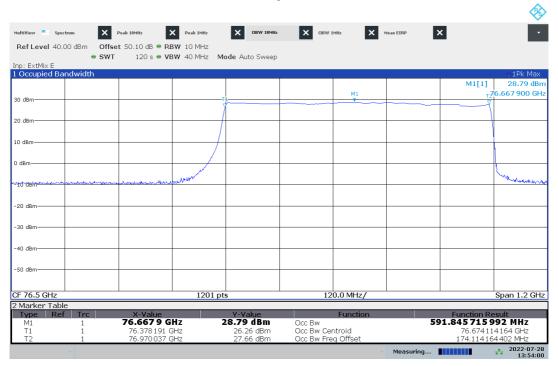
02:22:20 07/28/2022

Plot no. 53: 99% OBW, Peak detector, 40 °C, Mode 3, fhigh



02:18:48 07/28/2022

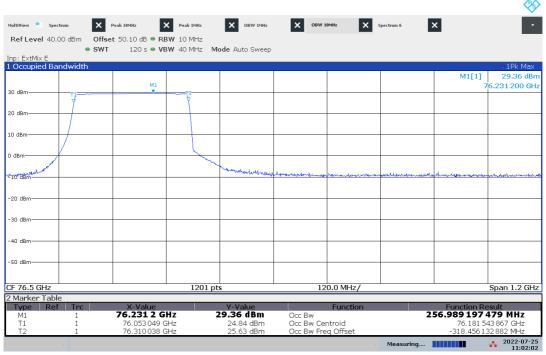
IBL-Lab GmbH 51 / 71



Plot no. 54: 99% OBW, Peak detector, 30 °C, Mode 1, flow

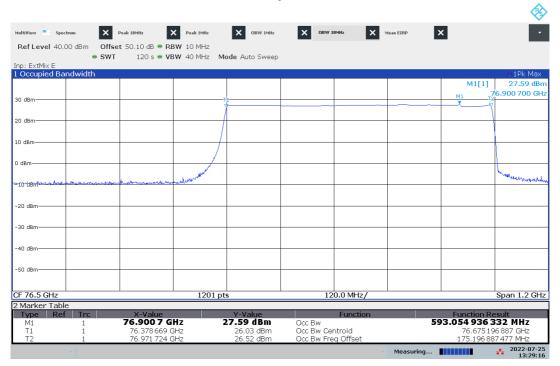
01:48:51 07/28/2022

Plot no. 55: 99% OBW, Peak detector, 30 °C, Mode 3, fhigh



01:54:01 07/28/2022

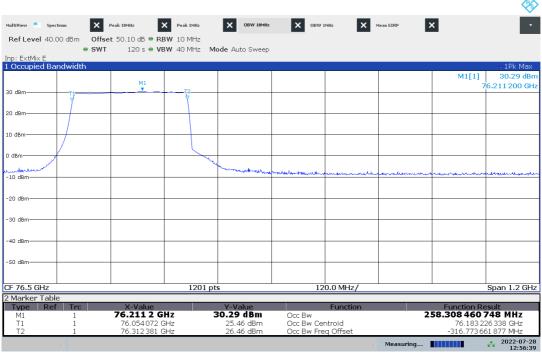
IBL-Lab GmbH 52 / 71



Plot no. 56: 99% OBW, Peak detector, 20 °C, Mode 1, flow

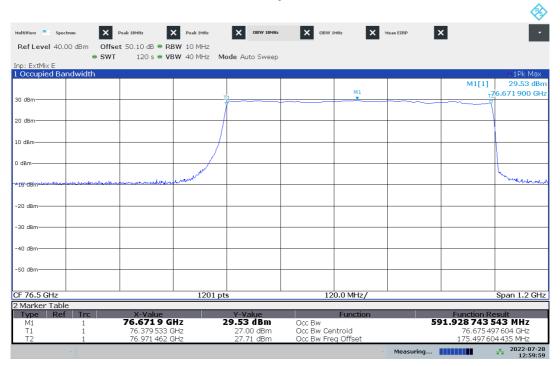
11:02:02 07/25/2022

Plot no. 57: 99% OBW, Peak detector, 20 °C, Mode 3, fhigh



01:29:16 07/25/2022

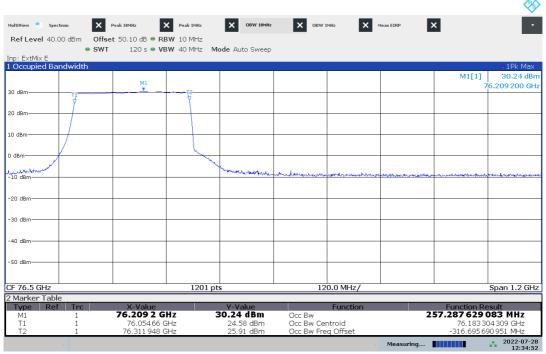
IBL-Lab GmbH 53 / 71



Plot no. 58: 99% OBW, Peak detector, 10 °C, Mode 1, flow

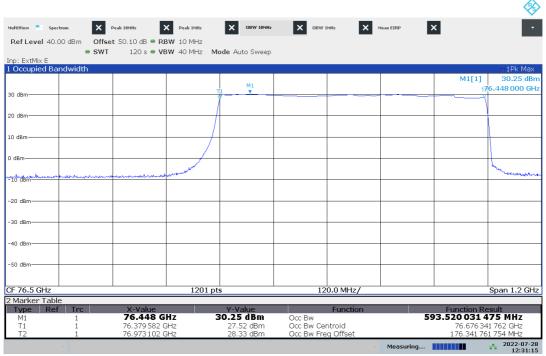
12:56:39 07/28/2022

Plot no. 59: 99% OBW, Peak detector, 10 °C, Mode 3, fhigh



12:59:59 07/28/2022

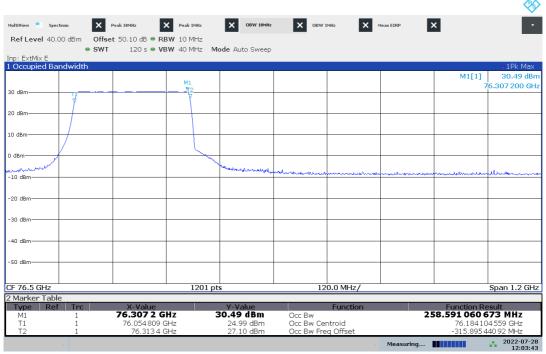
IBL-Lab GmbH 54 / 71



Plot no. 60: 99% OBW, Peak detector, 0 °C, Mode 1, flow

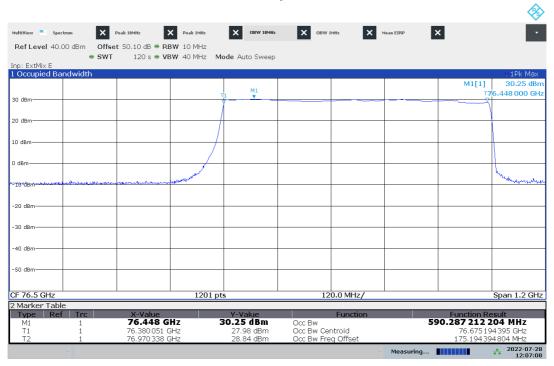
12:34:52 07/28/2022

Plot no. 61: 99% OBW, Peak detector, 0 °C, Mode 3, fhigh



12:31:15 07/28/2022

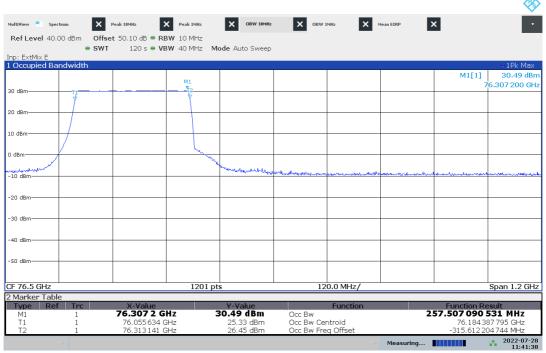
IBL-Lab GmbH 55 / 71



Plot no. 62: 99% OBW, Peak detector, -10 °C, Mode 1, flow

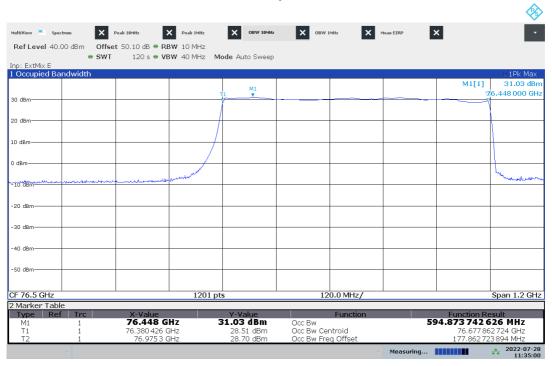
12:03:43 07/28/2022

Plot no. 63: 99% OBW, Peak detector, -10 °C, Mode 3, fhigh



12:07:08 07/28/2022

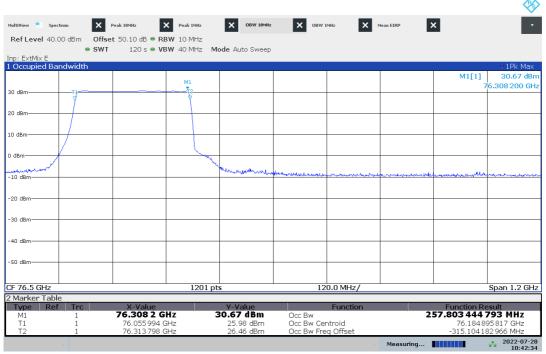
IBL-Lab GmbH 56 / 71



Plot no. 64: 99% OBW, Peak detector, -20 °C, Mode 1, flow

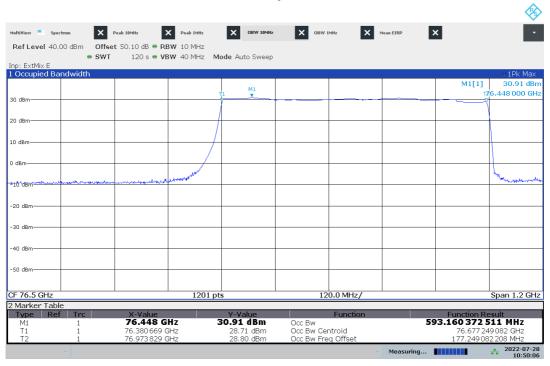
11:41:39 07/28/2022

Plot no. 65: 99% OBW, Peak detector, -20 °C, Mode 3, fhigh



11:35:00 07/28/2022

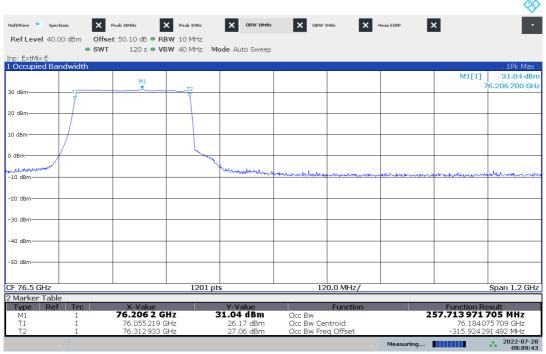
IBL-Lab GmbH 57 / 71



Plot no. 66: 99% OBW, Peak detector, -30 °C, Mode 1, flow

10:42:35 07/28/2022

Plot no. 67: 99% OBW, Peak detector, -30 °C, Mode 3, fhigh



10:50:06 07/28/2022

IBL-Lab GmbH 58 / 71



Plot no. 68: 99% OBW, Peak detector, -40 °C, Mode 1, flow

08:09:43 07/28/2022

Plot no. 69: 99% OBW, Peak detector, -40 °C, Mode 3, fhigh

11:12:55 07/28/2022

IBL-Lab GmbH 59 / 71

8 Test Setup Description

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclic chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

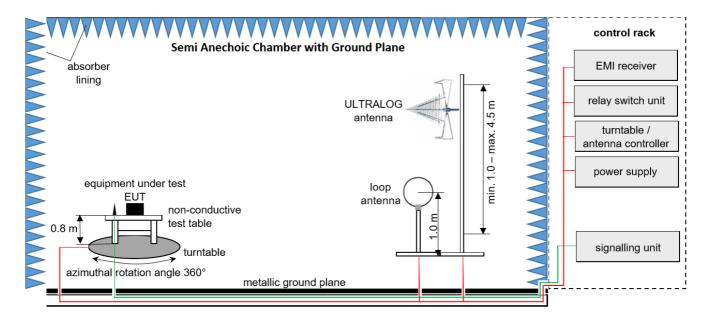
In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Kind of calibration (abbreviations):

C = calibrated

CM = cyclic maintenance

NR = not required


L = locked

IBL-Lab GmbH 60 / 71

8.1 Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.26-2015, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: ULTRALOG antenna at 3 m; loop antenna at 3 m

EMC32 software version: 11.20.00

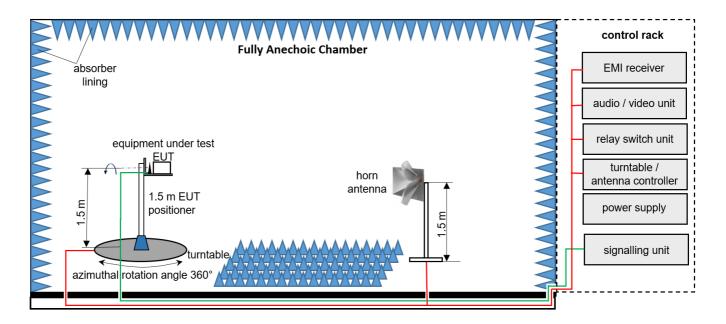
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

IBL-Lab GmbH 61 / 71


List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	_
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	_
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	_
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	_
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	_
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	2022-07-07 → 12M → 2023-07-07
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	_
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	_
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	_
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	_
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	_
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	_
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	_
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	-
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	2020-04-23 → 36M → 2023-04-23
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	2020-07-05 → 36M → 2023-07-05
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	_
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	2020-04-23 → 36M → 2023-04-23
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	2020-07-05 → 36M → 2023-07-05
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	2020-03-25 → 36M → 2023-03-25

IBL-Lab GmbH 62 / 71

8.2 Fully Anechoic Chamber

Measurement distance: horn antenna at 3 m

EMC32 software version: 11.20.00

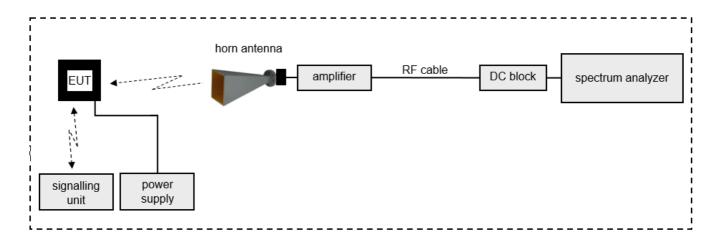
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

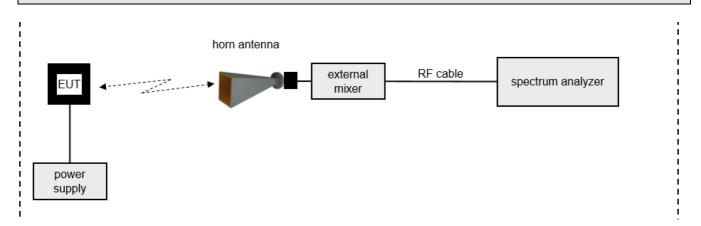
Example calculation:

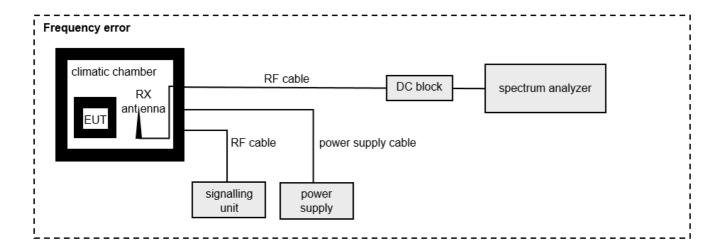
 $FS \left[dB\mu V/m \right] = 40.0 \left[dB\mu V/m \right] + (-35.8) \left[dB \right] + 32.9 \left[dB/m \right] = 37.1 \left[dB\mu V/m \right] (71.61 \ \mu V/m)$

IBL-Lab GmbH 63 / 71


List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	_
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	-
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	_
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	_
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	_
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	2022-07-07 → 12M → 2023-07-07
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	-
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	-
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	_
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	_
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	_
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	_
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	_
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	_
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	2020-04-23 → 36M → 2023-04-23
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	2020-07-05 → 36M → 2023-07-05
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	_
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	2020-04-23 → 36M → 2023-04-23
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	2020-07-05 → 36M → 2023-07-05
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	2020-03-25 → 36M → 2023-03-25


IBL-Lab GmbH 64 / 71


8.3 Radiated measurements > 18 GHz

8.4 Radiated measurements > 50 GHz

8.5 Radiated measurements under extreme conditions

IBL-Lab GmbH 65 / 71

ROP = AV + D - G

(ROP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

ROP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μ W)

Note: conversion loss of mixer is already included in analyzer value.

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Antenna	Flann Microwave Ltd	24240-20	275176	LAB000376	CM	$2021-09-01 \rightarrow 36M \rightarrow 2022-09-01$
2	Harmonic Mixer	Rohde & Schwarz	FS-Z060	101350	LAB000375	С	$2022-03-18 \rightarrow 12M \rightarrow 2023-03-18$
3	Absorber	Telemeter Electronic	EPP 12	-	LAB000327	NR	-
4	Test table	innco systems GmbH	PT0707-RH light	-	LAB000303	NR	-
5	Spectrum Analyser	Rohde & Schwarz	FSW43	101391	LAB000289	С	2022-06-10 → 12M → 2023-06-10
6	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350255	LAB000189	NR	-
7	WG-Coax-Adapter	Flann Microwave Ltd	22093-TF30 UG599/U	273263	LAB000183	СМ	2021-09-01 → 36M → 2022-09-01
8	WG-Coax-Adapter	Flann Microwave Ltd	20093-TF30 UBR220	273374	LAB000181	СМ	2021-09-01 → 36M → 2022-09-01
9	Antenna	Flann Microwave Ltd	30240-20	273390	LAB000178	CM	2021-09-01 → 36M → 2022-09-01
10	Antenna	Flann Microwave Ltd	28240-20	273371	LAB000176	CM	2021-09-01 → 36M → 2022-09-01
11	Coaxial Cable	Huber & Suhner	SF101/1.0m	503989/1	LAB000163	CM	$2022-05-31 \rightarrow 12M \rightarrow 2023-05-31$
12	Coaxial Cable	Rosenberger	LU7-022-1000	34	LAB000154	CM	$2022-05-31 \rightarrow 12M \rightarrow 2023-05-31$
13	Coaxial Cable	Rosenberger	LU7-022-1000	33	LAB000153	CM	$2022-05-31 \rightarrow 12M \rightarrow 2023-05-31$
14	Antenna	Flann Microwave Ltd	32240-20	273469	LAB000152	CM	$2021-09-01 \rightarrow 36M \rightarrow 2022-09-01$
15	Antenna	Flann Microwave Ltd	26240-20	273417	LAB000135	CM	$2021-09-01 \rightarrow 36M \rightarrow 2022-09-01$
16	Antenna	Flann Microwave Ltd	22240-20	270448	LAB000130	С	$2020-06-29 \rightarrow 36M \rightarrow 2023-06-29$
17	Antenna	Flann Microwave Ltd	20240-20	266403	LAB000128	С	$2020-06-29 \rightarrow 36M \rightarrow 2023-06-29$
18	Harmonic Mixer	Rohde & Schwarz	FS-Z325	101015	LAB000117	С	2022-04-12 → 12M → 2023-04-12
19	Harmonic Mixer	Rohde & Schwarz	FS-Z220	101039	LAB000116	С	2022-03-28 → 12M → 2023-03-28
20	Harmonic Mixer	Rohde & Schwarz	FS-Z140	101144	LAB000115	С	2022-03-28 → 12M → 2023-03-28
21	Harmonic Mixer	Rohde & Schwarz	FS-Z090	102020	LAB000113	С	2022-04-05 → 12M → 2023-04-05
22	Climatic Chamber	CTS GmbH	T-65/50	204002	LAB000110	CM	2022-05-11 → 12M → 2023-05-11
23	Antenna Mast	Schwarzbeck Mess- Elektronik OHG	AM 9104	99	LAB000109	NR	_
24	Multimeter	Keysight	U1242B	MY59110034	LAB000009	С	$2022-06-20 \rightarrow 24M \rightarrow 2023-06-20$

IBL-Lab GmbH 66 / 71

9 Measurement procedures

TR no.: 22037042-26423-1

9.1 Radiated spurious emissions from 9 kHz to 30 MHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- For each turntable step the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated with special 3D adapter set to find maximum level of emissions.
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade of distance in the region closer than λ in m divided by 2π (i.e., $\lambda/2\pi$), and at 20 dB/decade of distance beyond that, using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the limit line of corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.26

IBL-Lab GmbH 67 / 71

9.2 Radiated spurious emissions from 30 MHz to 1 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.

 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the prescan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., $\lambda/2\pi$), using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.26

IBL-Lab GmbH 68 / 71

9.3 Radiated spurious emissions from 1 GHz to 18 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the prescan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., $\lambda/2\pi$), using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.26

IBL-Lab GmbH 69 / 71

9.4 Radiated spurious emissions above 18 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- EUT is powered on and set into operation.
- Test distance depends on EUT size and test antenna size (farfield conditions shall be met).

Pre-scan

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and for different polarizations of the antenna.

Final measurement

- Significant emissions found during the pre-scan will be maximized, i.e. position and antenna orientation causing the highest emissions with Peak and RMS detector
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C63.4 / C63.26).
- Final plot showing measurement data, levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit is recorded.

Note

- In case of measurements with external harmonic mixers (e.g. above 50 GHz) special care is taken to avoid possible overloading of the external mixer's input.
- As external harmonic mixers may generate false images, care is taken to ensure that any emission measured by the spectrum analyzer is indeed radiated from the EUT and not internally generated by the external harmonic mixer. Signal identification feature of spectrum analyzer is used to eliminate/reduce images of the external harmonic mixer.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., $\lambda/2\pi$), using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.26

IBL-Lab GmbH 70 / 71

10 MEASUREMENT UNCERTAINTIES

Radio frequency	≤ ± 10 ppm		
Radiated emission	≤ ± 6 dB		
Temperature	≤±1°C		
Humidity	≤ ± 5 %		
DC and low frequency voltages	≤ ± 3 %		

The indicated expanded measurement uncertainty corresponds to the standard measurement uncertainty for the measurement results multiplied by the coverage factor k = 2. It was determined in accordance with EA-4/01 m:2013. The true value is located in the corresponding interval with a probability of 95 %.

End of Test Report

IBL-Lab GmbH 71 / 71