

FCC Measurement/Technical Report on

Automotive Radio Head Unit

UConnect 5"

FCC ID: LTQ139250

IC: -

Test Report Reference: MDE_APTIV_1903_FCC_01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0

F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka

Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652

Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	9
4	Test object Data	10
4.1	General EUT Description	10
4.2	EUT Main components	10
4.3	Ancillary Equipment	11
4.4	Auxiliary Equipment	11
4.5	EUT Setups	11
4.6	Operating Modes / Test Channels	11
4.7	Product labelling	12
5	Test Results	13
5.1	Occupied Bandwidth (20 dB)	13
5.2	Peak Power Output	17
5.3	Transmitter Spurious Radiated Emissions	20
5.4	Spurious RF Conducted Emissions	28
5.5	Band Edge Compliance Conducted	30
5.6 5.7	Band Edge Compliance Radiated Channel Separation	36 40
5.8	Dwell Time	42
5.9	Number of Hopping Frequencies	45
6	Test Equipment	48
7	Antenna Factors, Cable Loss and Sample Calculations	53
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	53
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	54
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	55
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	56
7.5	Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)	57
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	58
8	Measurement Uncertainties	59
9	Photo Report	60

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 2: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a	i) (1)		
Occupied Bandwidth (20 dB)				
The measurement was performed accor	ding to ANSI C63	.10	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
Bluetooth BDR, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, mid	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, mid	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, mid	S01_AU01	2020-11-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b) (1) (2)		
Peak Power Output				_
The measurement was performed accor	ding to ANSI C63	3.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
Bluetooth BDR, high, conducted	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, low, conducted	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, mid, conducted	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, high, conducted	 S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, low, conducted	 S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, mid, conducted	_ S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, high, conducted	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, low, conducted	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, mid, conducted	S01_AU01	2020-11-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15	§ 15.247 (d	1)		
Subpart C §15.247				
Francmittor Courious Dadiated Emissies		3.10	Final Re	esult
	ding to ANSI C63			
The measurement was performed accor OP-Mode Radio Technology, Operating Frequency,	ding to ANSI C63 Setup	Date	FCC	IC
Transmitter Spurious Radiated Emission The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, high, 1 GHz - 26 GHz				IC Passed

S01_AM01

S01_AM01

S01_AM01

S01_AM01

2020-10-27

2020-11-02

2020-10-27

2020-11-02

Passed

Passed

Passed

Passed

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Bluetooth BDR, high, 30 MHz - 1 GHz

Bluetooth BDR, low, 1 GHz - 26 GHz

Bluetooth BDR, low, 30 MHz - 1 GHz

Bluetooth BDR, mid, 1 GHz - 26 GHz

Passed

Passed

Passed

Passed

Final Result

47 CFR CHAPTER I FCC PART 15	§ 15.247 (d)
Subpart C §15.247	

3ubpart C 313.247				
Transmitter Spurious Radiated Emissions		_	E: 15	
The measurement was performed accord	ling to ANSI C63.10)	Final Re	esuit
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement range				
Bluetooth BDR, mid, 30 MHz - 1 GHz	S01_AM01	2020-10-27	Passed	Passed
Bluetooth BDR, mid, 9 kHz - 30 MHz	S01_AM01	2020-11-02	Passed	Passed
Bluetooth EDR 2, high, 1 GHz - 26 GHz Remark: 1 - 8 GHz	S01_AM01	2020-11-07	Passed	Passed
Bluetooth EDR 2, low, 1 GHz - 26 GHz Remark: 1 - 8 GHz	S01_AM01	2020-11-07	Passed	Passed
Bluetooth EDR 2, mid, 1 GHz - 26 GHz Remark: 1 - 8 GHz	S01_AM01	2020-11-07	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			

Band Edge Compliance Conducted

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth BDR, high, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, hopping, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, hopping, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth BDR, low, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, high, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 2, low, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, high, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, hopping, high	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, hopping, low	S01_AU01	2020-11-10	Passed	Passed
Bluetooth EDR 3, low, low	S01_AU01	2020-11-10	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

The measurement was performed according to ANSI C63.10

Subpart C 313.247					
Band Edge Compliance Radiated The measurement was performed a	Final Re	esult			
OP-Mode Radio Technology, Operating Frequence Band Edge	Setup y,	Date	FCC	IC	
Bluetooth BDR, high, high	S01_AM01	2020-11-02	Passed	Passed	
Bluetooth EDR 2, high, high	S01_AM01	2020-11-07	Passed	Passed	
Bluetooth EDR 3, high, high	S01_AM01	2020-11-07	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) Subpart C §15.247

Channel Separation

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup Date FCC IC

Radio Technology

Bluetooth BDR S01_AU01 2020-11-10 Passed Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) (i) (ii) (iii)

Subpart C §15.247

Dwell Time
The measurement was performed according to ANSI C63.10
Final Result

OP-Mode Setup Date FCC IC

Radio Technology

Bluetooth BDR S01_AU01 2020-11-10 Passed Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) (i) (ii) (iii) Subpart C §15.247

Number of Hopping Frequencies

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup Date FCC IC Radio Technology

Bluetooth BDR S01_AU01 2020-11-10 Passed Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2021-03-12		valid	
		25		

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
M.Sc Joel Asongwe

Flayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2021-01-13

3.2 PROJECT DATA

Responsible for testing and report: M.Sc Joel Asongwe

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2021-03-12

Testing Period: 2020-10-27 to 2020-11-10

3.3 APPLICANT DATA

Company Name: Aptiv Services Deutschland GmbH

Address: Am Technologiepark 1

42119 Wuppertal

Germany

Contact Person: Seweryn Balus

3.4 MANUFACTURER DATA

Company Name: please see Applicant Data

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 9 of 60

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Automotive Radio Head Unit with integrated bluetooth radio and AM/FM/DAB broadcast receiver.	
Product name	Automotive Radio Head Unit	
Туре	UConnect 5"	
Declared EUT data by	the supplier	
Voltage Type	Car battery	
Voltage Level	13.5 V DC	
Antenna / Gain -3.5 dBi		
Tested Modulation Type	BT:	
	GFSK Modulation, 1-DHx packets	
	п/4 DQPSK Modulation, 2-DHx packets	
	8-DPSK Modulation, 3-DHx packets	
EUT ports (connected	Cable Harness including DC	
cables during testing):	USB	
	Antenna	
Tested datarates	1 Mbps, 2 Mbps, 3 Mbps	
Special software used for testing	-	

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1352013au01	Conducted Sample
Sample Parameter		Value
Serial No.	01012	
HW Version	H01/28715250	
SW Version	21.05.13	
Comment Sample with temporary Antenna connector		tenna connector

Sample Name	Sample Code	Description
EUT B	DE1352013am01 Radiated Sample	
Sample Parameter		Value
Serial No.	01089	
HW Version H01/28715250		
SW Version	Version 21.05.13	
Comment	ment Sample with internal Antenna	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 10 of 60

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 1	ASK, 0052115392, -, -, -	AM/FM/DAB Antenna

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale	
S01_AU01	EUT A	Conducted Setup	
S01_AM01	EUT B, AUX 1,	Radiated setup	

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

BT Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz				
low mid high				
0	39	78		
2402	2441	2480		

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (20 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

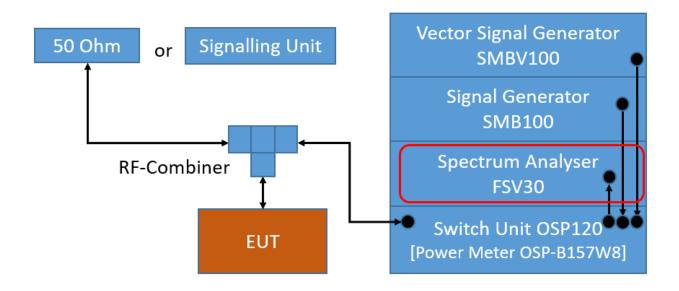
Resolution Bandwidth (RBW): 1% to 5 % of the OBW

• Video Bandwidth (VBW): ≥ 3 x RBW

• Span: 2 to 5 times the OBW

Trace: Maxhold

• Sweeps: Till stable (min. 1000, max. 30000)


Sweeptime: AutoDetector: Peak

The technology depending measurement parameters can be found in the measurement plot.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 13 of 60

Page 14 of 60

TS8997; Channel Bandwidth

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz.

5.1.3 TEST PROTOCOL

Ambient 25 °C

temperature:

Air Pressure: 1010 hPa Humidity: 35 %

BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.875	1.515	0.640
	39	2441	0.875	1.515	0.640
	78	2480	0.875	1.515	0.640

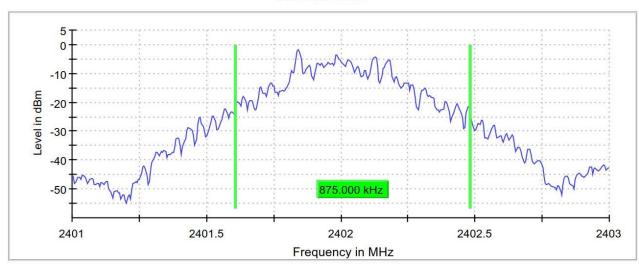
BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.245	1.515	0.270
	39	2441	1.245	1.515	0.270
	78	2480	1.245	1.515	0.270

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.215	1.515	0.300
	39	2441	1.210	1.515	0.305
	78	2480	1.210	1.515	0.305

Remark: Please see next sub-clause for the measurement plot.


TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 15 of 60

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low (S01_AU01)

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

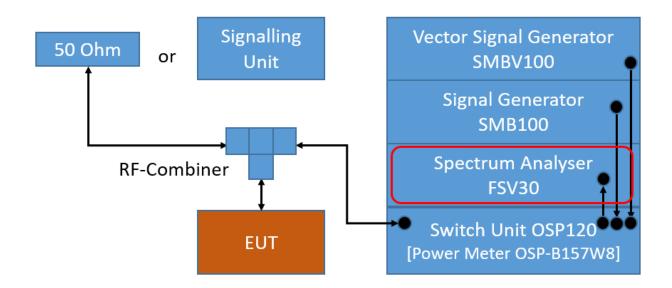
ANSI C63.10

5.2.1 TEST DESCRIPTION

FHSS EQUIPMENT:

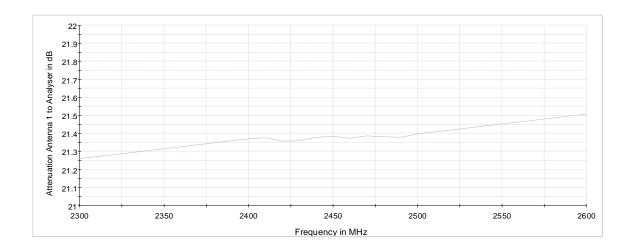
The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

Resolution Bandwidth (RBW): ≥ 20 dB BW
 Video Bandwidth (VBW): ≥ 3 times RBW

• Trace: Maxhold


• Sweeps: Till stable (min. 300, max. 15000)

Sweeptime: AutoDetector: Peak

TS8997; Output Power

Attenuation Output power

5.2.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.2.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 35 \ \mbox{\%} \end{array}$

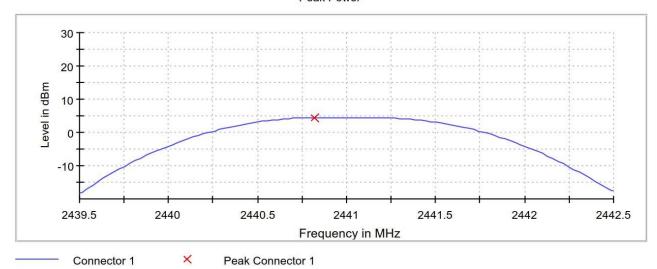
BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	3.3	21.0	17.7	-0.2
	39	2441	4.4	21.0	16.6	0.9
	78	2480	4.4	21.0	16.6	0.9

BT π/4 DOPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	1.8	21.0	19.2	-1.7
	39	2441	3.6	21.0	17.4	0.1
	78	2480	4.0	21.0	17.0	0.5

BT 8-DPSK (3-DH1)


Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	1.9	21.0	19.1	-1.6
	39	2441	4.0	21.0	17.0	0.5
	78	2480	4.0	21.0	17.0	0.5

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement method = conducted (S01 AU01)

Peak Power

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

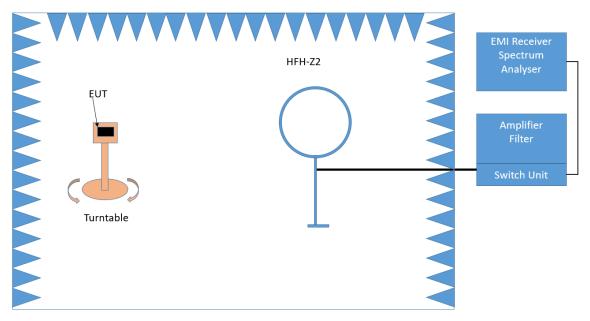
ANSI C63.10

5.3.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Step 1: pre measurement

Anechoic chamber

• Antenna distance: 3 m

Antenna height: 1 m

• Detector: Peak-Maxhold

• Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

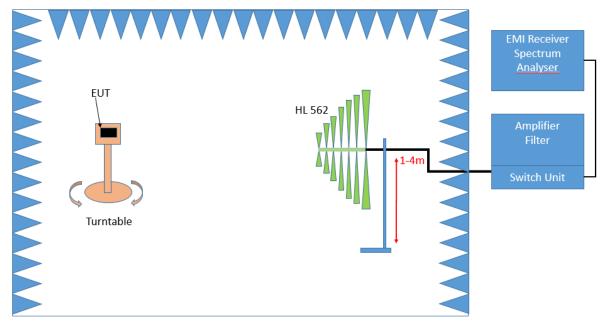
Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
 Measuring time: 100 ms
 Turntable angle range: 360 °
 Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

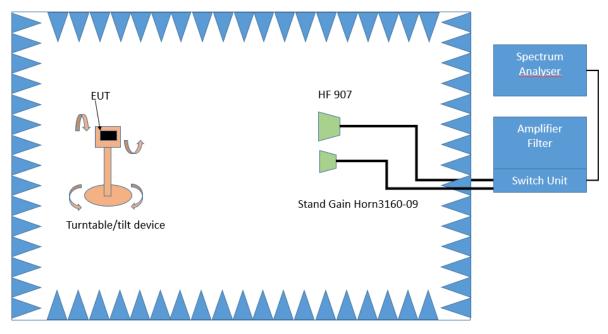
EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

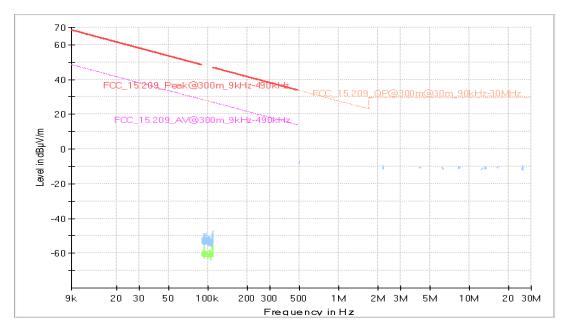
Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.3.3 TEST PROTOCOL

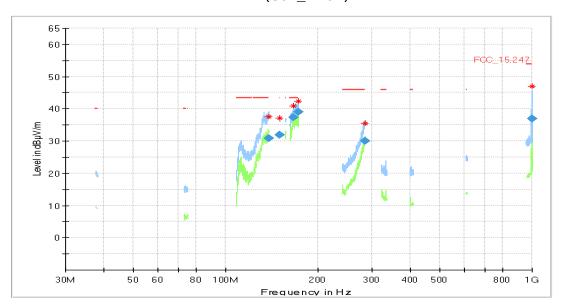
Ambient temperature: 23 °C
Air Pressure: 1001 hPa
Humidity: 36 %

BT GFSK (1-DH1)

Applied duty cycle correction (AV): 3.37 dB

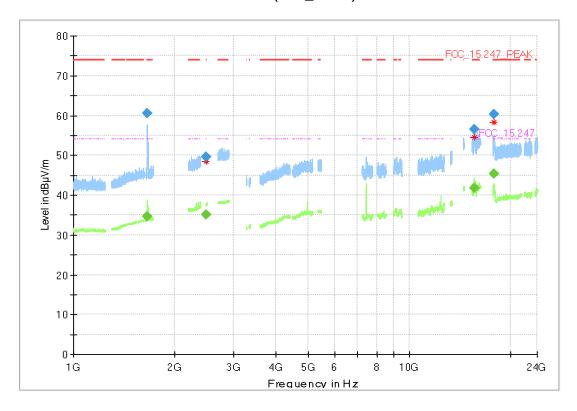

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	133.4	33.8	QP	120	43.5	9.7	RB
0	2402	172.5	38.4	QP	120	43.5	5.1	RB
0	2402	997.5	35.7	QP	120	54.0	18.3	RB
0	2402	1661.9	59.4	PEAK	1000	74.0	14.6	RB
0	2402	1662.3	38.0	AV	1000	54.0	16.0	RB
0	2402	15599.8	56.3	PEAK	1000	74.0	17.7	RB
0	2402	15604	45.2	AV	1000	54.0	8.8	RB
0	2402	17810.3	59.6	PEAK	1000	74.0	14.4	RB
0	2402	17822.1	48.6	AV	1000	54.0	5.4	RB
78	2480	138.0	30.9	QP	120	43.5	12.6	RB
78	2480	150.0	31.9	QP	120	43.5	11.6	RB
78	2480	166.2	37.3	QP	120	43.5	6.2	RB
78	2480	172.3	39.1	QP	120	43.5	4.4	RB
78	2480	284.6	30.0	QP	120	46.0	16.0	RB
78	2480	997.5	36.9	QP	120	54.0	17.1	RB
78	2480	1662.3	60.7	PEAK	1000	74.0	13.3	RB
78	2480	1662.3	38.1	AV	1000	54.0	15.9	RB
78	2480	15591	56.6	PEAK	1000	74.0	17.4	RB
78	2480	15596.5	45.1	AV	1000	54.0	8.9	RB
78	2480	17825	48.7	AV	1000	54.0	5.3	RB
78	2480	17829.6	60.4	PEAK	1000	74.0	13.6	RB
39	2441	133.6	33.0	QP	120	43.5	10.6	RB
39	2441	150.1	29.6	QP	120	43.5	13.9	RB
39	2441	156.5	30.3	QP	120	43.5	13.2	RB
39	2441	156.8	30.5	QP	120	43.5	13.0	RB
39	2441	167.1	35.2	QP	120	43.5	8.3	RB
39	2441	172.9	36.3	QP	120	43.5	7.2	RB
39	2441	997.5	38.3	QP	120	54.0	15.7	RB
39	2441	1662.3	61.6	PEAK	1000	74.0	12.4	RB
39	2441	1662.6	38.7	AV	1000	54.0	15.3	RB
39	2441	15603.9	45.3	AV	1000	54.0	8.7	RB
39	2441	15621.2	56.4	PEAK	1000	74.0	17.6	RB

Remark: Please see next sub-clause for the measurement plot.



5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AM01)



Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AM01)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AM01)

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions

5.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 32001Sweep Time: 32.1 msDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

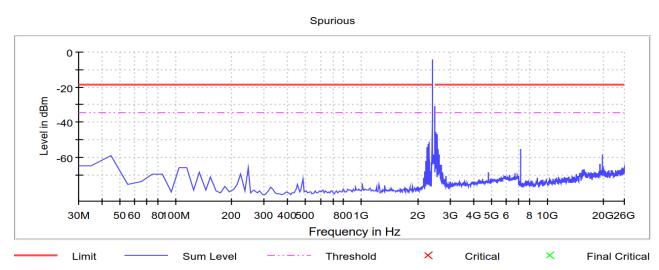
TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

5.4.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 35 \ \% \\ \mbox{BT GFSK (1-DH1)} \end{array}$

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-43.6	PEAK	100	3.2	-16.8	26.8
39	2441	2548.0	-45.1	PEAK	100	4.4	-15.6	29.5
78	2480	2588.4	-46.4	PEAK	100	4.4	-15.6	30.8

BT π/4 DQPSK (2-DH1)


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-38.8	PEAK	100	1.2	-18.8	20.0
39	2441	2548.5	-47.0	PEAK	100	3.2	-16.8	30.2
78	2480	2588.4	-46.3	PEAK	100	3.5	-16.5	29.8

BT 8-DPSK (3-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-41.5	PEAK	100	1.3	-18.7	22.8
39	2441	2568.5	-50.7	PEAK	100	3.3	-16.7	34.0
78	2480	2588.4	-49.7	PEAK	100	3.4	-16.6	33.1

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 2, Operating Frequency = low

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

5.5 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.5.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

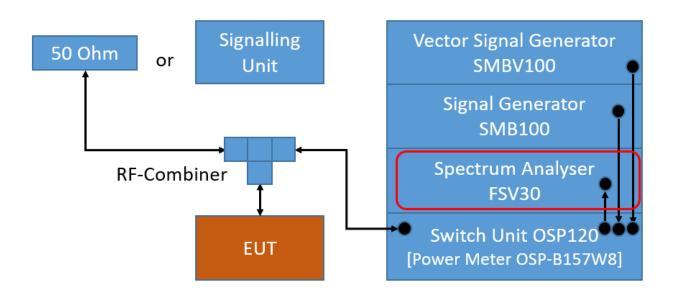
Analyser settings:

Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz

Upper Band Edge

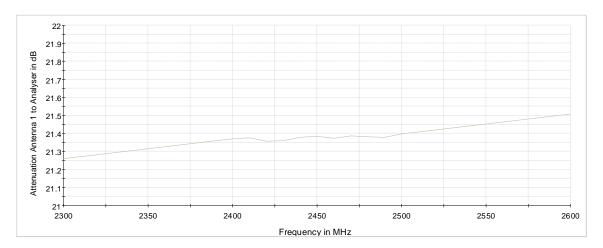
Measured range: 2400.0 MHz to 2500 MHz


Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

• Sweeptime: Auto

• Sweeps: Till stable (min. 300, max. 15000)


· Trace: Maxhold

TS8997; Band Edge Conducted

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Attenuation of the measurement path

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.5.3 TEST PROTOCOL

Ambient 25 °C

temperature:

Air Pressure: 1010 hPa Humidity: BT GFSK (1-35 %

DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-38.1	PEAK	100	3.2	-16.8	21.3
78	2480	2483.5	-53.4	PEAK	100	4.4	-15.6	37.8
hopping	hopping	2400.0	-44.8	PEAK	100	4.3	-15.7	29.1
hopping	hopping	2483.5	-50.9	PEAK	100	4.6	-15.4	35.5

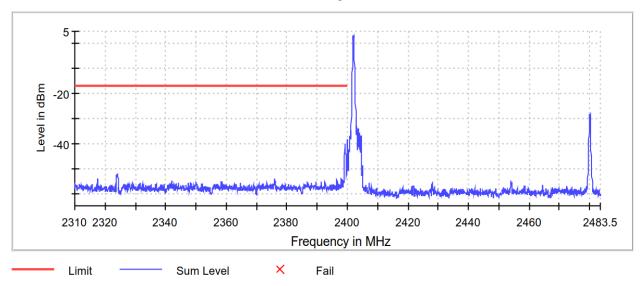
BT π/4 DQPSK

(2-DH1)

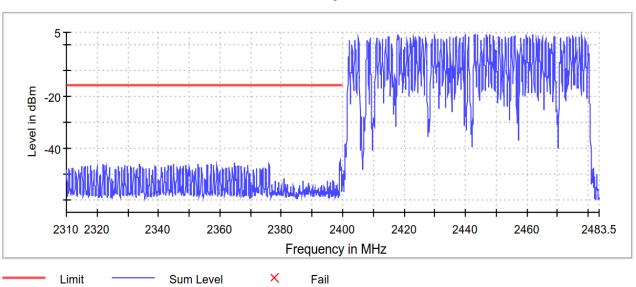
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-39.8	PEAK	100	1.2	-18.8	21.0
78	2480	2483.5	-54.8	PEAK	100	3.2	-16.8	38.0
hopping	hopping	2400.0	-47.3	PEAK	100	3.5	-16.5	30.8
hopping	hopping	2483.5	-52.2	PEAK	100	3.5	-16.5	35.7

BT 8-DPSK (3-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-39.8	PEAK	100	1.3	-18.7	21.1
78	2480	2483.5	-54.1	PEAK	100	3.3	-16.7	37.4
hopping	hopping	2400.0	-47.7	PEAK	100	3.4	-16.6	31.1
hopping	hopping	2483.5	-51.1	PEAK	100	3.4	-16.6	34.5

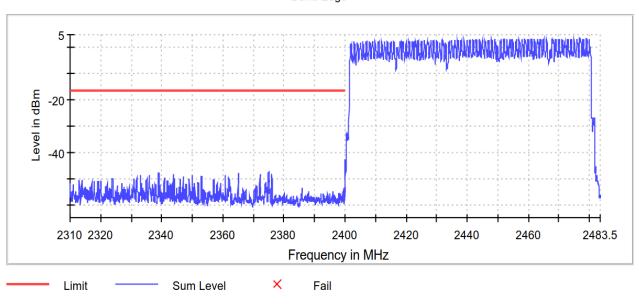

Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Bluetooth BDR, Operating Frequency = low, Band Edge = low $(S01_AU01)$

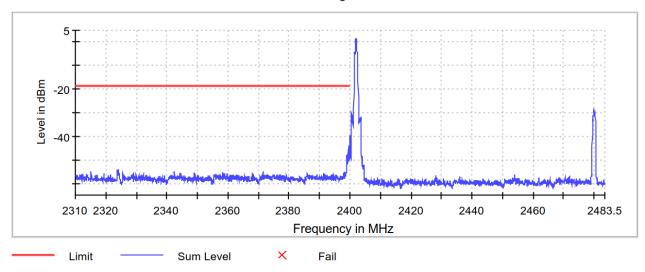
Radio Technology = Bluetooth BDR, Operating Frequency = hopping, Band Edge = low (S01_AU01)

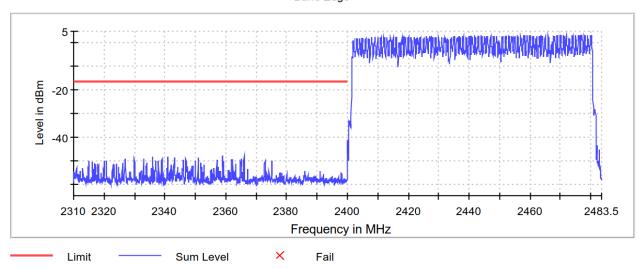

Band Edge


Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Band Edge = low (S01_AU01)

Band Edge

Radio Technology = Bluetooth EDR 2, Operating Frequency = hopping, Band Edge = low (S01_AU01)


Band Edge


Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Band Edge = low (S01_AU01)

Band Edge

Radio Technology = Bluetooth EDR 3, Operating Frequency = hopping, Band Edge = low (S01_AU01)

Band Edge

5.5.5 TEST EQUIPMENT USED

- R&S TS8997

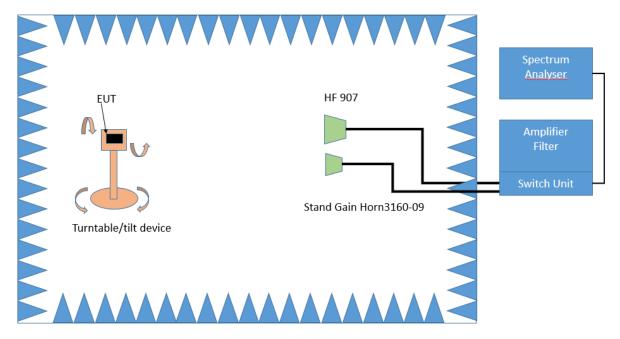
5.6 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.6.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average

- RBW = 1 MHz

- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz

- Measuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 37 of 60

5.6.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 999 hPa
Humidity: 41 %

BT GFSK (1-DH1)

Applied duty cycle correction (AV): 3.37393277260916 dB

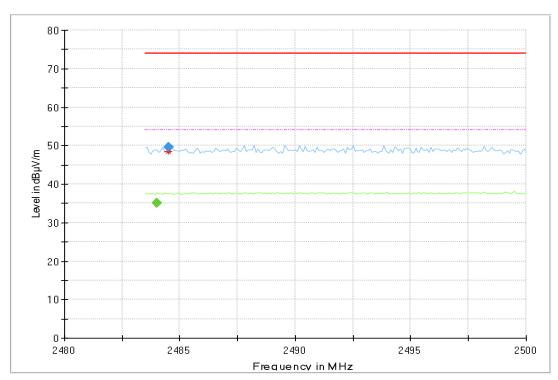
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
78	2480	2483.5	49.6	PEAK	1000	74.0	24.4
78	2480	2483.5	38.6	AV	1000	54.0	15.4

BT π/4 DQPSK (2-DH1)

Applied duty cycle correction (AV): 3.5519474025066 dB

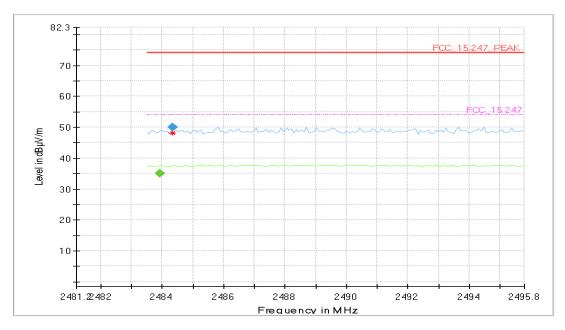
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
78	2480	2483.5	50.1	PEAK	1000	74.0	23.9
78	2480	2483.5	38.7	AV	1000	54.0	15.3

BT 8-DPSK (3-DH1)

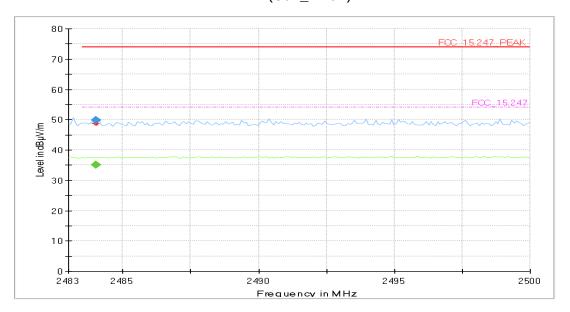

Applied duty cycle correction (AV): 3.5519474025066 dB

	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
ĺ	78	2480	2483.5	49.9	PEAK	1000	74.0	24.1
	78	2480	2483.5	38.7	AV	1000	54.0	15.3

Remark: Please see next sub-clause for the measurement plot.


5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AM01)



Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AM01)

Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AM01)

5.6.5 TEST EQUIPMENT USED

- Radiated Emissions

5.7 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.7.1 TEST DESCRIPTION

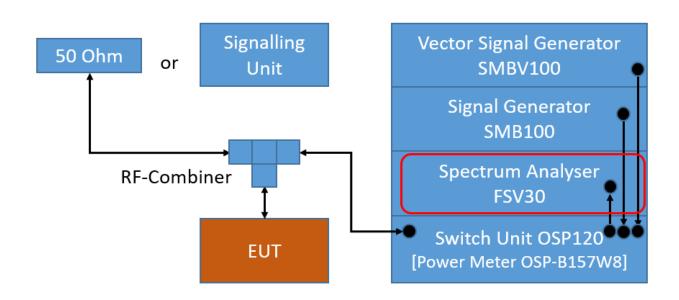
The Equipment Under Test (EUT) was set up to perform the channel separation measurement. The channel separation is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Detector: PeakTrace: MaxholdSpan: appr. 3 x OBW

• Centre Frequency: approximate mid of two channels


• Resolution Bandwidth (RBW): appr. 30 % of channel spacing

• Video Bandwidth (VBW): ≥ RBW

Sweep Time: Auto

Sweeps: Till stable (min. 2000, max. 30000)

The technology depending measurement parameters can be found in the measurement plot.

TS8997; Channel Separation

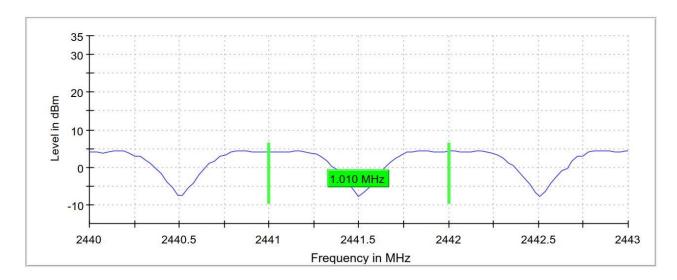
TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.7.3 TEST PROTOCOL


Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 35 %

Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
BT GFSK (1-DH1)	1.010	0.970	0.040

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR (S01 AU01)

5.7.5 TEST EQUIPMENT USED

- R&S TS8997

5.8 DWELL TIME

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurement. The dwell time is independent of the modulation pattern.

The EUT is set to its maximum dwell time.

The dwell time is measured by spectrum analyser and power meter in parallel. The spectrum analyser video output is connected to the power meter allowing the power meter to measure transmission time only when the EUT is actively transmitting on the measured channel. The power meter is using a time resolution of 1 μ s resulting in a more accurate measurement then possible using the spectrum analyser. In addition, measurement of burst length on more than one transmission is performed this way.

In addition to the calculated dwell time from single burst length, measured dwell time summing up all measured bursts lengths as measured by the power meter is given in the result table.

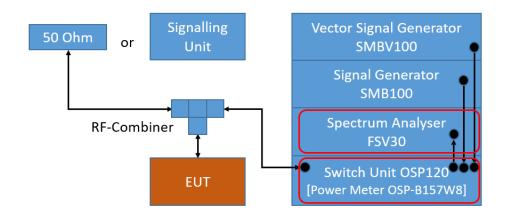
Calculation for Bluetooth Classic:

Maximum Duty Cycle is given for DH5 packets, resulting in 5 time slots transmission, 1 time slots reception. Each time slot lasts $625~\mu s$.

Dwell time is calculated as: measured length of a single 5 time slot transmission multiplied by the number of bursts measured by the power meter.

Analyser Settings single 5 slot burst:

- Centre Frequency: mid channel frequency
- Span: Zero spanDetector: Peak
- Resolution Bandwidth (RBW): ≤ Channel separation
- Trigger: VideoSweep Time: 3 msSweep Points: 30001
- Single Sweep


Analyser setting full sweep:

- Centre Frequency: mid channel frequency
- Span: Zero spanDetector: Peak
- Resolution Bandwidth (RBW): ≤ Channel separation
- Trigger: ExternalSweep Time: 31.6 sSweep Points: 30001
- Single Sweep

Time resolution of power meter: 1 µs

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01 Page 42 of 60

TS8997; Dwell Time

5.8.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 – 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

For the frequency band 2400 - 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

. . .

5.8.3 TEST PROTOCOL

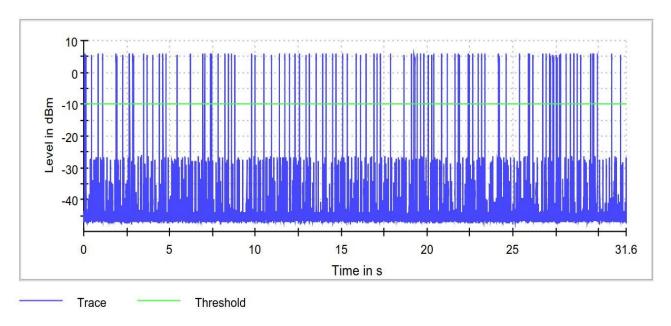
Ambient

25 °C

temperature:

1010 hPa

Air Pressure: Humidity:


35 %

Radio Technology	Measured Slot Length [ms]	Measured Number of Slots	Calculated Dwell Time [ms]	Limit [ms]	Margin to Limit [ms]
BT GFSK (1-DH5)	2.900	99.000	287.100	400.0	112.900

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR (S01_AU01)

5.8.5 TEST EQUIPMENT USED

- R&S TS8997

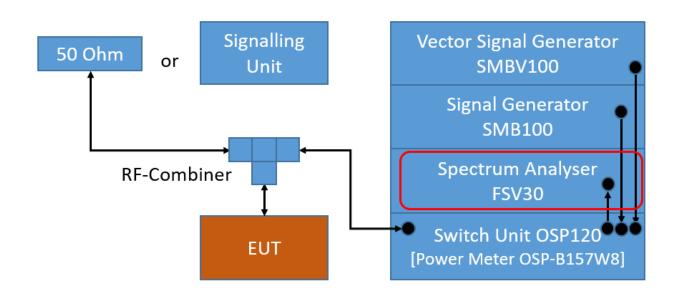
5.9 NUMBER OF HOPPING FREQUENCIES

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.9.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Detector: PeakTrace: Maxhold
- Frequency span: Frequency band of operation
- Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)
- Video Bandwidth (VBW): 3 x RBW
- Sweep Time: Auto
- Sweeps: Till stable (min. 300, max. 15000)

The technology depending measurement parameters can be found in the measurement plot.

TS8997; Number of Hopping Frequencies

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

5.9.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 - 2483.5 MHz

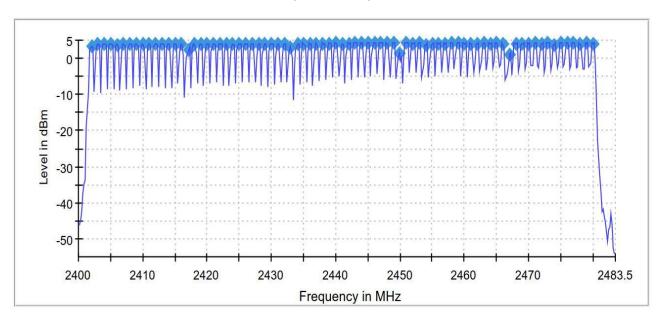
FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.9.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 34 %

Radio TechnologyNumber of Hopping FrequenciesLimitMargin to LimitBT GFSK (1-DH1)791564


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR (S01_AU01)

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	EX520	Digital Multimeter 12	Extech Instruments Corp	05157876	2020-04	2022-04
1.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
1.3	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13985	2019-06	2021-06
1.4	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
1.5	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
1.6	SMB100A		Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
1.8	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2019-06	2021-06
1.9	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
2.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
2.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	ESW44		Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
2.5		SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2018-06	2021-06
2.6	FS-Z60		Rohde & Schwarz Messgerätebau GmbH	100178	2020-03	2023-03
2.7	FS-Z220		Rohde & Schwarz Messgerätebau GmbH	101005	2020-03	2023-03

TEST REPORT REFERENCE: MDE_APTIV_1903_FCC_01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.8	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
2.9	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
2.10	5HC2700/12750 -1.5-KK		Trilithic	9942012		
2.11		Antenna Mast	Maturo GmbH	-		
2.12	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB		
2.13	Fluke 177		Fluke Europe B.V.	86670383	2020-04	2022-04
2.14	WRD1920/1980- 5/22-5EESD	Tunable Band Reject Filter	Wainwright Instruments GmbH	11		
2.15	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
2.16	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
2.17	foRS232 Unit 2	Fibre optic link RS232		4031516037		
2.18	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.19	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2020-08	2021-08
2.20	OLS-1 R	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
2.21	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.22	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.23	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
2.24	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
2.25	3160-09		EMCO Elektronic GmbH	00083069		
2.26	foRS232 Unit 1	Fibre optic link RS232	PONTIS Messtechnik GmbH	4021516036		
2.27	FSP3	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	836722/011		
2.28	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.29	DS 420S		HD GmbH	420/573/99	Cambiation	Due
2.30	4HC1600/12750	m diameter High Pass Filter	Trilithic	9942011		
2.31	-1.5-KK foUSB-M Converter 2	Fibre optic link USB 2.0	PONTIS Messtechnik GmbH	4471520061		
	WRCD1879.8- 0.2/40-10EE	Notch Filter	Wainwright Instruments GmbH	16		
	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
	FSIQ26		Rohde & Schwarz GmbH & Co. KG	840061/005	2019-06	2021-06
	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.36	TT 1.5 WI		Maturo GmbH	-		
	HL 562 ULTRALOG		Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
2.38	HF 906		Rohde & Schwarz	357357/001	2018-03	2021-03
2.39	foCAN (v 4.0)	Fibre optic link CAN	Audivo GmbH (PONTIS EMC)	492 1607 014		
	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2020-03	2023-03
2.41	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.42	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.44	СВТ	Bluetooth Tester "CBT- 02" incl. BLE- Option	Rohde & Schwarz	100302	2018-03	2021-03
2.45	CMW500	Callbox OIL- RE, SUA	Rohde & Schwarz GmbH & Co. KG	163529-bw	2020-07	2023-07
2.46	CMW500	Callbox OIL- RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
	A8455-4	4 Way Power Divider (SMA)		-		
	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)	RPG-Radiometer Physics GmbH	326		
	VLFX-650+	Low Pass Filter DC650 MHz		15542		
	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.51	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.52	FS-Z140	Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2020-03	2023-03
2.53	OLS-1 M	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
2.54	HFH2-Z2	•	Rohde & Schwarz GmbH & Co. KG	829324/006	2018-01	2021-01
2.55	Voltcraft M- 3860M		Conrad	13096055		
2.56	FSU3		Rohde & Schwarz GmbH & Co. KG	200046		
2.57	ESR 7		Rohde & Schwarz	101424	2019-01	2021-01
2.58	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
2.59	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
2.60	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.61	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
2.62	FSU26		Rohde & Schwarz GmbH & Co. KG	100136		
2.63	6005D (30 V / 5 A)		PeakTech	81062045		
2.64	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.65	FS-Z90		Rohde & Schwarz Messgerätebau GmbH	101686	2020-03	2023-03
2.66	Innco Systems CO3000		innco systems GmbH	CO3000/967/393 71016/L		
2.67	NRV-Z1	Sensor Head B	Rohde & Schwarz GmbH & Co. KG	827753/006	2020-08	2021-08
2.68	HF 907-2		Rohde & Schwarz	102817	2019-04	2022-04
2.69	PAS 2.5 - 10 kg		Maturo GmbH	-		
2.70	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324		
2.71		Tunable Notch	Wainwright Instruments GmbH	20		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.72	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
2.73	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07
2.74		Analyser (9	Agilent Technologies Deutschland GmbH	MY45103714		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	 11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

	(5 1								
cable	cable	cable	cable	distance	d_{Limit}	d_{used}			
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.			
(inside	(outside	(switch	(to	(-40 dB/	distance	distance			
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)			
dB	dB	dB	dB	dB	m	m			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.3	0.1	-40	30	3			
0.4	0.1	0.3	0.1	-40	30	3			

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$d_{Limit} = 3 m)$					
Frequency	AF R&S HL562	Corr.			
MHz	dB (1/m)	dB			
30	18.6	0.6			
50	6.0	0.9			
100	9.7	1.2			
150	7.9	1.6			
200	7.6	1.9			
250	9.5	2.1			
300	11.0	2.3			
350	12.4	2.6			
400	13.6	2.9			
450	14.7	3.1			
500	15.6	3.2			
550	16.3	3.5			
600	17.2	3.5			
650	18.1	3.6			
700	18.5	3.6			
750	19.1	4.1			
800	19.6	4.1			
850	20.1	4.4			
900	20.8	4.7			
950	21.1	4.8			
1000	21.6	4.9			

_			T	•		
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

. - 10 --- \

$(d_{Limit} = 10 \text{ m})$	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

F========	AF R&S	Com
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	/			
cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Francis	AF EMCO	Com
Frequency MHz	3160-09	Corr. dB
	dB (1/m)	
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36
,		•		

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

	AF EMCO	
Frequency	3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

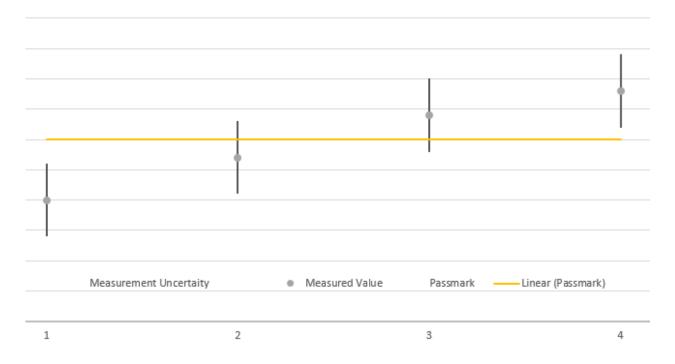
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.