

SAR Evaluation Report						
	EUT Information					
Manufacturer	Manufacturer X-Rite Switzerland GmbH					
Model Name	Topaz					
Contains FCC ID	LSV-TOPAZ					
Contains IC Number	20894-TOPAZ					
EUT Type	UT Type TOP-Spectrophotometer / hand-held device					
	Prepared by					
	IMST GmbH, Test Center					
Testing Laboratory	Carl-Friedrich-Gauß-Str. 2 – 4					
resting Laboratory	47475 Kamp-Lintfort					
	Germany					
	The Test Center facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-00.					
Laboratory Accreditation	The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAB-EMC on the basis of the Council Decision of 22. June 1998 concerning the conclusion of the MRA between the European Community and the United States of America (1999/178/EC) in accordance with § 4 of the Recognition Ordinance of 11. January 2016. The recognition is valid until 20. July 2021 under the registration number: BNetzA-CAB-16/21-14.					
Prepared for						
	X-Rite Switzerland GmbH					
Annlinant	Althardstrasse 70					
Applicant	8105 Regensdorf					
	Switzerland					
	Test Specification					
	IEEE 1528-2013; RSS-102 Issue 5; FCC CFR 47 § 2.1093					
Applied Rules/Standards	☐ general public / uncontrolled exposure ☐ occupational / controlled exposure					
	Report Information					
Data Stored	60320_6171741_Xrite					
Issue Date	November 28, 2017					
Revision Date	March 29, 2018					
Revision Number	-1-					
Remarks	This report relates only to the item(s) evaluated. This report shall not be reproduced, except in entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain modescribed above. The manufacturer is responsible for ensuring that all production devices meet to intent of the requirements described in this report.					

Table of Contents

1	Su	ubject of Investigation and Test Results	3	
	1.1	Technical Data of EUT	3	
	1.2	Antenna Configuration	3	
	1.3	Test Specification / Normative References	4	
	1.4	Attestation of Test Results	4	
2	Ex	xposure Criteria and Limits	5	
	2.1	SAR Limits	5	
	2.2	Exposure Categories	5	
	2.3	Distinction between Maximum Permissible Exposure and SAR Limits	5	
3	Me	easurement Procedure	6	
	3.1	General Requirement	6	
	3.2	Information for IEEE 802.11 (Wi-Fi) Transmitters	6	
	3.3	Measurement Variability	7	
4	Th	ne Measurement System	8	
	4.1	Phantoms	9	
	4.2	E-Field-Probes	10	
	4.3	Measurement Procedure	11	
5	Sy	ystem Verification and Test Conditions	12	
	5.1	Date of Testing	12	
	5.2	Environment Conditions	12	
	5.3	Tissue Simulating Liquid Recipes	12	
	5.4	Tissue Simulating Liquid Parameters	13	
	5.5	Simplified Performance Checking	13	
6	SA	AR Measurement Conditions and Results	14	
	6.1	Test Conditions	14	
	6.2	Tune-Up Information	14	
	6.3	Measured Output Power	15	
	6.4	Standalone SAR Test Exclusion	16	
	6.5	SAR Results	17	
7	Ac	dministrative Measurement Data	18	
	7.1	Calibration of Test Equipment	18	
	7.2	Uncertainty Assessment	19	
8	Re	eport History	21	
	Appe	ndix A - Pictures	23	
	Appe	ndix B - SAR Distribution Plots	27	
	Appe	ndix C - System Verification Plots	28	
	Appe	ndix D – Certificates of Conformity	29	
	Appe	ndix E – Calibration Certificates for DAEs	32	
	Appendix F – Calibration Certificates for E-Field Probes			
	Appei	ndix G – Calibration Certificates for Dipoles	48	

1 Subject of Investigation and Test Results

1.1 Technical Data of EUT

Product Specifications				
Model Name Topaz				
IMEI / SN radiated sample: DE1266000aa01; conducted sample: DE1266000ab01				
Operation Mode IEEE 802.11 bgn (2.4 GHz)				
Usage Configuration extremity exposure configuration				
Antenna Type	integrated			
Max. Output Power	refer chapter 6.3			
Power Supply internal battery				
Used Accessory	-			
Notes:				

1.2 Antenna Configuration

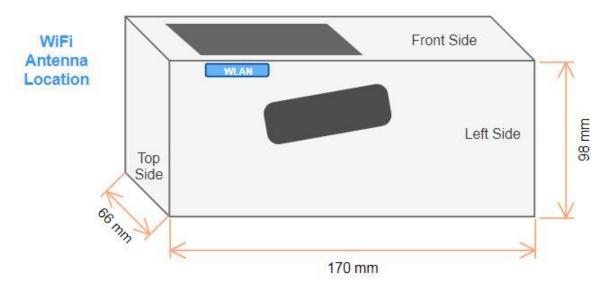


Fig. 1: Antenna location of the EUT.

1.3 Test Specification / Normative References

The tests documented in this report were performed according to the standards and rules described below.

	Test Specifications						
	Test Standard / Rule	Issue Date					
	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	June 14, 2013				
	FCC CFR 47 § 2.1091	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Mobile Devices.	October 01, 2010				
\boxtimes	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010				
\boxtimes	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015				
		Measurement Methodology KDB					
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015				
	Product KDB						
\boxtimes	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015				
		Technology KDB					
	KDB 248227 D01 v02r02	802.11 Wi-Fi SAR	October 23, 2015				

1.4 Attestation of Test Results

	Highest Reported SAR _{10g} [W/kg]								
Band	Frequency [MHz]	СН	Exposure C	onfiguration	Gap [mm]	Pic. No.	Highest Reported SAR10g [W/kg]		g Limit /kg]
IEEE 802.11	2462	11	Extremity	Front Side	0	5	0.205	4.0	PASS

Notes: To establish a connection at a specific channel and with maximum output power, engineering test software has been used.

All measured SAR results and configurations are shown in chapter 6.5 on page 17.

Prepared by:

Reviewed by:

Dessislava Patrishkova

Test Engineer

Alexander Rahn

Quality Assurance

2 Exposure Criteria and Limits

2.1 SAR Limits

Human Exposure Limits						
Condition		Uncontrolled Environment (General Population)		Controlled Environment (Occupational)		
Condition	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.		
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body		
Peak spatially-averaged SAR for the head, neck & trunk	1.6	1g of tissue*	8.0	1g of tissue*		
Peak spatially-averaged SAR in the limbs	4.0	10g of tissue*	20.0	10g of tissue*		
Note: *Defined as a tissue volume in the shape of a cube				•		

Table 1: SAR limits.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

2.2 Exposure Categories

General Public / Uncontrolled Exposure

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

Occupational / Controlled Exposure

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 2: RF exposure categories.

2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$

The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

3 Measurement Procedure

3.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

3.1.1 Phantom Requirements

The phantom is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues. For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

3.1.2 Extremity exposure conditions

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e. hands, wrist, feet and ankles, may require extremity SAR evaluation according 4.2.3 of KDB 447498 D01.

The device shall be placed directly against the flat phantom for those sides of the device that are in contact with the hand during intended use.

3.2 Information for IEEE 802.11 (Wi-Fi) Transmitters

For both DSSS and OFDM wireless modes an initial test position must be established for each applicable exposure configuration using either:

- Design implementation defined by the manufacturer, or
- Investigative results by the test lab based on:
 - Exclusions based on the distance from the antenna to the surface, or
 - Highest measured SAR from the area-scan-only measurements on all applicable test positions at the Initial Test Configuration, if found to require SAR tests.

Then, the initial test position procedure defines the required complete SAR scan measurements on each exposure configuration as following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurements is not required for the remaining test positions in that configuration as well as 802.11 transmission mode combinations within the frequency or aggregated band.
- When the reported SAR of the initial test position is > 0.4 W/kg, further SAR measurements is required in the initial test position or next closest/smallest test separation distance based on manufacturer justification, on the following highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
- When the reported SAR for all initial and subsequent test positions is > 0.8 W/kg, further SAR measurements is required on these positions on the subsequent next highest measured output power channels, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.

For OFDM transmission configurations in 2.4 GHz and 5 GHz bands, it is important to determine SAR Initial Test Configuration for each stand alone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. The procedure is as following:

- Highest output power channel is chosen; if there are channels with same maximum output power
 then the closest to the mid-band frequency is preferred. If there are more than one channel with
 same maximum output power and same distance to the mid-band frequency, then the channel with
 the higher frequency is preferred.
- When SAR measurement is required for a subsequent test configuration and the channel bandwidth
 is smaller than that in the initial test configuration, all channels in the subsequent test configuration
 that overlap with the larger bandwidth channel tested in the initial test configuration should be used
 to determine the highest maximum output power channel in the subsequent test configuration.

Along with the initial test position reduction guidelines, the following procedures are also applied to SAR measurement requirements when multiple OFDM configurations are supported:

- When the reported SAR of the initial test configuration with the highest output power channel is > 0.8
 W/kg, further SAR measurements is required for next highest output power channel in the initial test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.
- When the reported SAR of the subsequent test configuration with the highest output power channel is > 1.2 W/kg, further SAR measurements is required for next highest output power channel in this test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.
- When the reported SAR of the subsequent test configuration is > 1.2 W/kg, further SAR measurements for the following subsequent test configurations are required.

3.3 Measurement Variability

According KDB 865664 repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4 The Measurement System

DASY is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- · Fully compliant with all current measurement standards as stated in Fig. 4
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

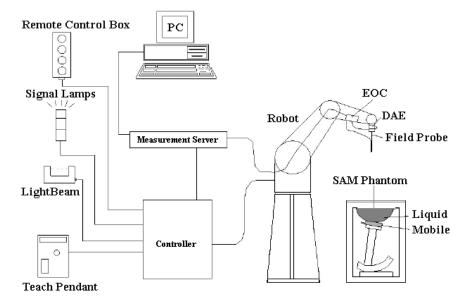


Fig. 2: The DASY4 measurement system.

Fig. 3: The measurement set-up with two SAM phantoms containing tissue simulating liquid.

The EUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

4.1 Phantoms

TWIN SAM PHANTOM V4.0				
Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 ar Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left ar phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 5.				
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet			
Filling Volume	approx. 25 liters			

ELI4 PHANTOM				
	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. The details and the Certificate of conformity can be found in Fig.6.			
Shell Thickness	2.0 ± 0.2 mm (bottom plate)			
Dimensions	Major axis: 600 mm Minor axis: 400 mm			
Filling Volume	approx. 30 liters			

4.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

	ET3DV6R				
Construction Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm				
Frequency 10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)					
Directivity Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis)					
Dynamic Range 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB					
Calibration Range	450 MHz / 750 MHz / 900 MHz / 1750 MHz / 1900 MHz / 1950 MHz for head and body simulating liquid				

EX3DV4				
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)			
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm			
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)			
Directivity	Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)			
Dynamic Range	10 μW/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μW/g)			
Calibration Range	1950 MHz / 2450 MHz / 2600 MHz / 3500 MHz / 5200 MHz / 5300 MHz / 5600 MHz / 5800 MHz for head and body simulating liquid			

4.3 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 3.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

			≤ 3 GHz	≥ 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe at the measurement		probe axis to phantom surface normal	30° ± 1° 20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 - 4 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom s	can spatial	resolution: ΔX_{Zoom} , ΔY_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial	Uniform grid: ΔZ _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
resolution, normal to phantom surface	graded clo	ΔZ _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm
Caridoo	grid $\Delta Z_{Zoom}(n>1)$: between subsequent points		≤ 1.5· ΔZ _{Zoom} (n-1)	
Minimum zoom scan volume			≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE P1528-2011 for details.

Table 3: Parameters for SAR scan procedures.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz

5 System Verification and Test Conditions

5.1 Date of Testing

Date of Testing						
Band Frequency [MHz] Date of System Check Date of SAR Measurement						
IEEE 802.11 / WLAN 2.4 GHz	2450	Nov. 15, 2017	Nov. 16, 2017			

Table 4: Date of testing.

5.2 Environment Conditions

	Environment Conditions	
Ambient Temperature[°C]	Liquid Temperature [°C]	Humidity [%]
22.0 ± 2	22.0 ± 2	40.0 ± 10
Notes: To comply with the required noise	level (less than 12 mW/kg) periodically measure	ments without a DLIT were conducted

Table 5: Environment Conditions.

5.3 Tissue Simulating Liquid Recipes

				Tis	sue Sim	nulating Lic	quid			
	Frequency Range	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Triton X/100	TWEEN 80	GERMABEN
	[MHz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
					Hea	d Tissue				
	300	37.1	56.1	0.9	5.8	0.2	1	ı	-	-
	450	38.9	56.9	0.3	3.8	0.1	-	-	-	-
	835	40.3	57.9	0.2	1.4	0.2	-	-	-	-
	900	40.3	57.9	0.2	1.4	0.2	-	-	-	-
	1800	55.2	-	-	0.3	-	44.5	-	-	-
	1900	55.4	-	-	0.1	-	44.5	-	-	-
	2450	55.0	-	i	ı	-	45.0	ı	-	-
	2600	54.8	-	i	0.1	-	45.1	ı	-	-
	5000 - 6000	65.5	-	=	-	=	17.2	17.25	-	-
					Bod	ly Tissue				
	450	46.2	51.2	0.2	2.3	0.1	-	-	-	-
	835	52.4	45.0	1.0	1.5	0.1	1	ı	-	-
	900	50.8	48.2	i	0.9	0.1	1	ı	-	-
	1800	70.2	-	-	0.4	-	29.4	-	-	-
	1900	69.8	=	i	0.2	=	30.0	=	=	=
\boxtimes	2450	68.6	=	=	=	-	31.4	=	-	-
	2600	68.1	=	=	0.1	=	31.8	=	=	-
	5000 - 6000	79.7	-	-	-	-	-	-	20.0	0.3

Table 6: Recipes of the tissue simulating liquid.

5.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

			Tissue	Simulatin	g Liquids						
Ambient Temperature(C): 22.0 ± 2 Liquid Temperature(C): 22.0 ± 2 Humidity(%): 40.0 ± 10 Permittivity Conductivity Measured Target Delta [MHz] Measured Target Delta ϵ' ϵ' +/- 5 [%] σ [S/m] σ [S/m] +/- 5 [%]											
		Fraguenay		Permittivity					Conductivity		
Band	Date	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta		
		[MHz]		٤'	ε'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]		
		2450.0	System Check	50.5	52.7	-4.2	2.02	1.95	3.8		
WLAN	Nov. 15,	2412.0	1	50.6	52.8	-4.1	1.98	1.91	3.6		
2.4 GHz	2017	2437.0	6	50.5	52.7	-4.2	2.01	1.94	3.7		
		2462.0	11	50.4	52.7	-4.3	2.04	1.96	3.6		
Notes: Liquid	d depth is at le	ast 15 cm for	all frequency rang	ged measuren	nents.	•					

Table 7: Parameters of the body tissue simulating liquid.

5.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the table 8 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

	System Check Results											
					SAR Val	ues with Bo	dy TSL [\	N/kg]				
Frequency	Frequency Dipole #SN	Measured				Target		Delta				
[MHz]		with 2	50 mW	scaled	to 1 W	normalize	d to 1 W	+/-	10 [%]	Date		
		1g	10g	1g	10g	1g	10g	1g	10g			
2450	D2450V2 #709	12.80										

Table 8: Dipole target and measured results.

6 SAR Measurement Conditions and Results

6.1 Test Conditions

		Test Condition	าร		
Band	TX Range [MHz]	RX Range [MHz]	Used Channels	Crest Factor	Phantom
WLAN 2.4 GHz	2412.0 – 2462.0	2412.0 – 2462.0	1, 6, 11	1*	SAM Twin Phantom V4.0
Notes: * WiFi testing has	s been performed with co	onfiguration of 100% cont	inues wave with engin	eerina test m	ode.

Table 9: Used channels and crest factors during the test.

6.2 Tune-Up Information

		Tune-Up Informa	ation
Band	CH / Mode	Frequency [MHz]	Max. Tune-Up Tolerance Limit [dBm]
	b-mode		18.0
WLAN 2.4 GHz	g-mode	2412 – 2462	16.0
	n-mode HT20		14.0

Table 10: Maximum transmitting output power values declared by the manufacturer for WLAN.

6.3 Measured Output Power

6.3.1 WLAN 2.4 GHz Output Power

Measurements for IEEE 802.11 b/g/n has been performed with test software settings with power level supported by the device and provided by the manufacturer.

	Max	c. Ave	eraged C	Output P	ower (R	MS) [dB	m]			
						PW	L 17			
Mode	Frequency [MHz]	СН			Data Rate [Mbit/s]					
			·	1	2		5.5		1	1
2.4 GHz Range)									
	2412	1					17	7.3	17	' .0
b	2437	6			16	8.8	17	' .0	16	6.8
	2462	11	16	6.7	16	6.9	17	7.0	16	5.8
			PWL 16							
Mode	Frequency [MHz]	СН	CH Data Rate [Mbit/s]							
			6.0	9	12	18	24	36	48	54
	2412	1	15.2	15.1	15.1	14.9	14.9	14.7	14.5	14.4
g	2437	6	15.0	14.9	14.9	14.7	14.7	14.5	14.3	14.2
	2462	11	15.1	15.0	15.0	14.8	14.7	14.5	14.3	14.3
						PW	L 15			
Mode	Frequency [MHz]	СН				MCS In	dex No.			
			MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	2412	1	13.9	13.9	13.6	13.5	13.4	13.2	13.2	13.1
n HT20	2437	6	13.8	13.6	13.5	13.2	13.1	13.0	12.9	12.8
N. d. OAD	2462	11	13.8	13.7	13.6	13.5	13.3	13.2	13.1	13.0

Notes: SAR measurements have been performed on channel 1, 6 and 11 representing the worst case scenarios with the highest output power being.

Table 11: Conducted output power values for IEEE 802.11 b/g/n.

6.4 Standalone SAR Test Exclusion

SAR test exclusion is determined for the EUT according to KDB 447498 D01v05 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances ≤ 50 mm determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [$\sqrt{f(GHz)}$] ≤ 3.0 for 1g SAR and ≤ 7.5 for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

			St	andalone	SAR Test E	xclusion		
Mode	Frequency [MHz]	Distance [mm]	Pavg [dBm]	Pavg [mW]	Calculated Values	Exclusion Threshold SAR 1g	Testing Exclusion	Testing Required
WLAN	2450	5	18.0	63.10	19.8	≤ 7.5	NO	YES

Table 12: Standalone SAR test exclusion for the applicable transmitter.

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

 (max. power of channel. including tune-up tolerance. mW)/(min. test separation distance. mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

• 0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm

6.5 SAR Results

The tables below contain the measured SAR values averaged over a mass of 1g. SAR assessment was conducted in the worst case configuration with output power values according to the table for output power values in Chapter 6.3. According KDB 447498 D01 V05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- Scaling Factor = tune-up limit power (mW) / RF power (mW)
- Reported SAR = measured SAR * scaling factor

Furthermore, testing of other required channels within the operating mode of frequency band is not required when the reported SAR for the mid-band or highest output power channel is \leq 0.4 W/kg for transmission band \geq 200 MHz.

				Meası	ıred a	nd Reporte	d SAR	[W/kg]				
Band / Mode	Data Rate [Mbps]	Freq. [MHz]	СН	Test Position of EUT	Pic. No.	Measured SAR10g	Power Drift [dB]	Output Po [dBm Measured]	Scaling Factor	Reported SAR10g	Plot No.
		2437.0	6	Front	5	0.141	0.021	17.0	18.0	1.259	0.178	-
		2437.0	6	Right	6	0.028	-0.085	17.0	18.0	1.259	0.035	-
IEEE 802.11 b	5.5	2437.0	6	Left	7	0.026	0.084	17.0	18.0	1.259	0.033	-
		2412.0	1	Front	5	0.117	-0.001	17.3	18.0	1.175	0.137	-
		2462.0	11	FIOIIL	5	0.163	0.098	17.0	18.0	1.259	0.205	-

Notes: SAR measurement have been performed on channel 1, 6 and 11 representing the worst case scenarios with the highest output power (refer to Section 6.3.1).

Since there is no possibility to use the engineering test mode and transmit the test signal continuously without a programming cable, SAR measurements have been performed with attached cable as shown on the pictures.

Table 13: SAR results for IEEE 802.11 band in extremity exposure configuration.

To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 Administrative Measurement Data

7.1 Calibration of Test Equipment

		Test Equipm	ent overview		Loot	Nové
	Test Equipment	Manufacturer	Model	Serial Number	Last Calibration	Next Calibration
DAS	SY System Components	<u>.</u>				•
\boxtimes	Software Versions DASY4	SPEAG	V4.7	N/A	N/A	N/A
\boxtimes	Software Versions SEMCAD	SPEAG	V1.8	N/A	N/A	N/A
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1579	02/2016	02/2018
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1669	02/2017	02/2019
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3536	09/2016	09/2018
\boxtimes	Dosimetric E-Field Probe	SPEAG	EX3DV4	3860	09/2017	09/2019
\boxtimes	Data Acquisition Electronics	SPEAG	DAE 3	335	02/2017	02/2019
	Data Acquisition Electronics	SPEAG	DAE 4	631	09/2016	09/2018
	Phantom	SPEAG	SAM	1059	N/A	N/A
\boxtimes	Phantom	SPEAG	SAM	1176	N/A	N/A
	Phantom	SPEAG	SAM	1340	N/A	N/A
7	Phantom	SPEAG	SAM	1341	N/A	N/A
7	Phantom	SPEAG	ELI4	1004	N/A	N/A
Dip	oles					l .
7	System Validation Dipole	SPEAG	D450V2	1014	03/2015	03/2018
ī	System Validation Dipole	SPEAG	D835V2	470	03/2015	03/2018
7	System Validation Dipole	SPEAG	D900V2	006	11/2015	11/2018
7	System Validation Dipole	SPEAG	D1640V2	311	09/2015	09/2018
7	System Validation Dipole	SPEAG	D1750V2	1005	03/2015	03/2018
<u> </u>	System Validation Dipole	SPEAG	D1900V2	535	03/2015	03/2018
\square	System Validation Dipole	SPEAG	D2450V2	709	11/2015	11/2018
<u> </u>	System Validation Dipole	SPEAG	D2600V2	1019	11/2015	11/2018
7	System Validation Dipole	SPEAG	D5GHzV2	1028	05/2017	05/2020
Vlat	erial Measurement	3, 2, 3			30,2011	1 00,-1
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	08/2017	08/2019
$\overline{\mathbb{X}}$	Dielectric Probe Kit	SPEAG	DAK-3.5	1234	01/2016	01/2018
<u>-</u>	Thermometer	LKMelectronic	DTM3000	3511	01/2016	01/2018
	ver Meters and Sensors					<u> </u>
\boxtimes	Power Meter	Anritsu	ML2488A	6K00002319	06/2016	06/2018
	Power Sensor	Anritsu	MA2490A	6K00002078	06/2016	06/2018
	Power Meter	Anritsu	ML2472A	002122	06/2016	06/2018
\boxtimes	Power Sensor	Anritsu	MA2472A	990365	06/2016	06/2018
	Sources	7111100	1717 12 17 27 (000000	00/2010	00/2010
71	Network Analyzer	Agilent	E5071C	MY46103220	08/2017	08/2019
<u> </u>	RF Generator	Rohde & Schwarz	SM300	100142	N/A	N/A
	plifiers	Tronde & Conwarz	Civicoo	100142	14/71	14/71
		Mini Circuite	7HL-42 42\M	D080504 1	N/A	N/A
<u>×</u>	Amplifier 10 MHz – 4200 MHz Amplifier 2 GHz – 6 GHz	Mini Circuits Ciao Wireless	ZHL-42-42W CA26-451	D080504-1 37452	N/A N/A	N/A N/A
Rad	lio Tester	Ciao Wileless	UA20-401	37402	IN/A] 11//4
		A muita	MT994ED	6200F76F2C	04/2046	04/2040
1 1	Radio Communication Tester	Anritsu	MT8815B	6200576536	04/2016	04/2018

Table 14: Calibration of test equipment.

7.2 Uncertainty Assessment

Uncertainty Bud		surements aco MHz - 6 GHz)	cording to	o IEEE	1528-	2013		
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Unce	ndard rtainty %]	vi² or veff
Measurement System				1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	∞
Axial isotropy	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	× ×
Hemispherical isotropy	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	× ×
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	∞
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	× ×
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	× ×
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	∞
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	× ×
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	~
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	× ×
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	× ×
Test Sample Related				•	•		•	
Test sample positioning	2.9	Normal	1	1	1	2.9	2.9	14
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	∞
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Phantom and Set-up					•		•	
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	× ×
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	∞
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	∞
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	∞
Combined Standard Uncertainty	<u>.</u>		•			11.1	11.0	
Coverage Factor for 95%						kp)=2	
Expanded Standard Uncertainty						22.2	21.9	
Notes: Worst case probe calibration unc	ertainty has been anni	lied for all available	nrohes and	d freque	ncies			

Table 15: Uncertainty budget for SAR measurements.

Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Stan Uncer [±	tainty	vi² or veff
Measurement System			•	1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	∞
Axial isotropy	0.3	Rectangular	√3	1	1	0.1	0.1	×
Hemispherical isotropy	1.3	Rectangular	√3	0	0	0.0	0.0	×
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	×
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	×
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Modulation response	0.0	Rectangular	√3	0	0	0.0	0.0	∞
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.0	Rectangular	√3	0	0	0.0	0.0	∞
Integration time	0.0	Rectangular	√3	0	0	0.0	0.0	∞
RF ambient conditions - noise	1.0	Rectangular	√3	1	1	0.6	0.6	∞
RF ambient conditions - refl.	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	×
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	× ×
Validation Dipole								
Dev. of exp. dipole from num.	5.0	Normal	1	1	1	5.0	5.0	∞
Input power and SAR drift (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	8
Dipole axis to liquid distance (< 2deg)	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Phantom and Set-up								
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	8
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	8
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	8
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	8
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	×
Combined Standard Uncertainty						10.7	10.6	
Coverage Factor for 95%						kp)=2	
Expanded Standard Uncertainty						21.5	21.2	

Table 16: Uncertainty budget for SAR system validation.

8 Report History

Revision History				
Revision	Description of Revision	Date	Revised Page	Revised By
/	Initial Release	November 28, 2017	-	-
- 1 -	FCC ID and IC number changed, frequency range changed, channel 13 removed, highest reported SAR changed, plot for channel 11 added	March 29, 2018	1,4,14,15,17,27	AR

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles