

DATE: 06 September 2010

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for ElmoTech Ltd.

Equipment under test: Smart Base Unit (SBU)

SBU2000418

Delidha

Written by:

D. Shidlowsky, Documentation

Approved by: _____

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd. This report relates only to items tested.

Measurement/Technical Report for

ElmoTech Ltd.

Smart Base Unit (SBU)

SBU2000418

FCC ID: LSQ-SBU2000418

This report concerns: Original Grant: x Class I change: Class II change:

Equipment type: Part 15 Security/Remote Control Transceiver

47CFR15 Section 15231 (a-d)

Measurement procedure used is ANSI C63.4-2003.

Application for Certification: prepared by: Gil Gemer Elmo Tech Ltd. 2 Habarzel St. Tel-Aviv, 61131 Israel Tel: +972-3-767-1700 Fax: +972-3-767-1701 e-mail: gil@elmotech.com

TABLE OF CONTENTS

1.	GENERAL INFORMATION	-
	1.1 Administrative Information	
	1.2 List of Accreditations	
	 1.3 Product Description 1.4 Test Methodology	
	1.4 Test Methodology1.5 Test Facility	
	1.6 Measurement Uncertainty	
-		
2.	SYSTEM TEST CONFIGURATION	-
	2.1 Justification2.2 Special Accessories	
	2.2 Special Accessories2.3 Equipment Modifications	
	2.3 Equipment Modifications	
-		
3.	CONDUCTED AND RADIATED MEASUREMENT TEST SET-UP PHOTO	
4.	CONDUCTED EMISSION DATA	
	4.1 Test Specification	
	4.2 Test Procedure	
	4.3 Measured Data	
	4.4 Test Instrumentation Used, Conducted Measurement	15
5.	AVERAGE FACTOR CALCULATION HELICAL ANTENNA TRANSMITTER	16
	5.1 Test Instrumentation Used	
6.	PERIODIC OPERATION HELICAL ANTENNA TRANSMITTER	19
0.	6.1 Specification	
	6.2 Requirements	
	6.3 Results	
7	FIELD STRENGTH OF FUNDAMENTAL HELICAL ANTENNA TRANSMITTER	22
7.	7.1 Test Specification	
	7.2 Test Procedure	
	7.3 Measured Data	
	7.4 Test Instrumentation Used, Field Strength of Fundamental	
8.	RADIATED EMISSION, 9 KHZ – 30 MHZ HELICAL ANTENNA TRANSMITTER	
ο.	8.1 Test Specification	21 27
	8.2 Test Procedure	
	8.3 Measured Data	
	8.4 Test Instrumentation Used, Radiated Measurements	
	8.5 Field Strength Calculation	28
9.	SPURIOUS RADIATED EMISSION HELICAL ANTENNA TRANSMITTER	29
0.	9.1 Test Specification	
	9.2 Test Procedure	
	9.3 Test Data	30
	9.4 Test Instrumentation Used, Radiated Measurements	32
10.	BANDWIDTH HELICAL ANTENNA TRANSMITTER	33
	10.1 Test procedure	
	10.2 Results table	
	10.3 Test Equipment Used	
11.	AVERAGE FACTOR CALCULATION F ANTENNA TRANSMITTER	36
	11.1 Test Instrumentation Used	
12.	PERIODIC OPERATION F ANTENNA TRANSMITTER	
	12.1 Specification12.2 Requirements	
	12.2 Requirements	

ElmoTech Ltd.

13.	FIELD ST	RENGTH OF FUNDAMENTAL F ANTENNA TRANSMITTER	42
	13.1	Test Specification	42
	13.2	Test Procedure	42
	13.3	Measured Data	
	13.4	Test Instrumentation Used, Field Strength of Fundamental	46
14.	RADIATE	D EMISSION, 9 KHZ – 30 MHZ F ANTENNA TRANSMITTER	47
	14.1		47
	14.2	Test Procedure	47
	14.3	Measured Data	
	14.4	Test Instrumentation Used, Radiated Measurements	48
	14.5	Field Strength Calculation	48
15.	SPURIOU	S RADIATED EMISSION HELICAL ANTENNA TRANSMITTER	49
	15.1	Test Specification	
	15.2		
	15.3	Test Data	
	15.4	Test Instrumentation Used, Radiated Measurements	
16.	BANDWI	OTH HELICAL ANTENNA TRANSMITTER	53
	16.1	Test procedure	
	16.2	Results table	
	16.3	Test Equipment Used	
17.		X A - CORRECTION FACTORS	56
	17 1		
	17.2		
	17.3	Correction factors for CABLE	
	12.6	Correction factors for LOG PERIODIC ANTENNA	
	17.4		
	17.5	Correction factors for BICONICAL ANTENNA.	
	17.6	Correction factors for ACTIVE LOOP ANTENNA	

1. General Information

1.1 Administrative Information

Manufacturer:	ElmoTech Ltd.
Manufacturer's Address:	P.O.B. 13236 2 Habarzel St., Tel-Aviv, 61132 Israel Tel: +972-3-767-1700 Fax: +972-3-767-1701
Manufacturer's Representative:	Shai Avigdori Arad Dudkevitz
Equipment Under Test (E.U.T):	Smart Base Unit (SBU)
Equipment Model No.:	SBU2000418
Equipment Serial No.:	Not Designated
Date of Receipt of E.U.T:	01.08.10
Start of Test:	02.08.10
End of Test:	30.08.10
Test Laboratory Location:	I.T.L (Product Testing) Ltd. Kfar Bin Nun, ISRAEL 99780
Test Specifications:	FCC Part 15 Sub-part C

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

ElmoTech Ltd.

1.3 Product Description

The smart base unit is a monitoring device that receives RF transmissions from transmitting devices and reports the status of the transmitters to a service center via a PSTN or cellular communication.

The unit incorporates two RF transceivers 418MHz with non-simultaneous transmission, a modular approved GSM module, FCC ID: QIPTC63I, which does not transmit at the same time as either of the two 418 MHz transceivers, and an approved PSTN modem.

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing September 3, 2009). I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Conducted Emission

The uncertainty for this test is $\pm 2 \text{ dB}$.

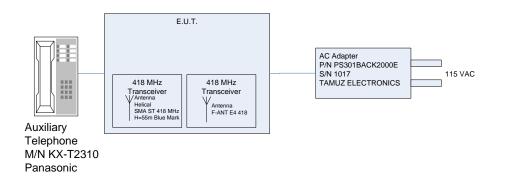
Radiated Emission

The Open Site complies with the ± 4 dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. System Test Configuration

2.1 Justification

The E.U.T. was tested as tabletop equipment with both 418 MHz transceivers not operating simultaneously since in normal operation, the transceivers transmit separately after detection of the RSSI received from a wireless bracelet. Testing was performed on each 418 MHz transceiver separately.


2.2 Special Accessories

No special accessories were needed.

2.3 Equipment Modifications

No modifications were needed in order to achieve compliance

2.4 Configuration of Tested System

Figure 1. Configuration of Tested System

3. Conducted and Radiated Measurement Test Set-up Photo

Figure 2. Conducted Emission Test

Figure 3. Radiated Emission Test

4. Conducted Emission Data

4.1 Test Specification

F.C.C., Part 15, Subpart C

4.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 3.1. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on an 0.8 meter high wooden table, 0.4 meter from the room's vertical wall.

The E.U.T was powered from 115 V AC / 60 Hz via a 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, and using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Measured Data

JUDGEMENT: Passed by 18.8 dB

The margin between the emission levels and the specification limit is, in the worst case, 20.5 dB for the phase line at 0.46 MHz and 18.8 dB at 0.43 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in Figure 4 to Figure 7.

TEST PERSONNEL:

Tester Signature: _____

Date: 02.09.10

Typed/Printed Name: A. Sharabi

E.U.T Description		Smart Base Unit (SBU)		
Туре		SBU2000418		
Serial Numb	ber:	Not Designated		
Specification:	F.C.C.,	Part 15, Subpart C		
Lead:	Phase			
Detectors:	Peak, Q	uasi-peak, Average		

Signal Number	Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Delta L 1 (dB)		Av Delta L 2 (dB)	Corr (dB)
1	0.190170	43.8	39.7	-24.3	18.1	-35.9	0.0
2	0.238487	39.0	35.8	-26.4	15.0	-37.2	0.0
3	0.458433	38.5	36.3	-20.5	22.8	-24.0	0.0
4	0.943780	26.1	21.5	-34.5	14.9	-31.1	0.0
5	3.444566	33.1	29.2	-26.8	20.7	-25.3	0.0
6	8.189171	28.3	24.0	-36.0	17.3	-32.7	0.0
7	19.690097	36.3	31.0	-29.0	23.9	-26.1	0.0

Figure 4. Detectors: Peak, Quasi-peak, AVERAGE .

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T DescriptionSmart Base Unit (SBU)TypeSBU2000418Serial Number:Not Designated

Specification:	F.C.C., Part 15, Subpart C
Lead:	Phase
Detectors:	Peak, Quasi-peak, Average

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 190 kHz 43.03 dBµV

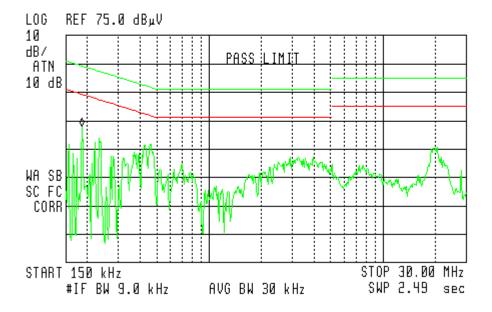


Figure 5. Detectors: Peak, Quasi-peak, Average

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification:F.C.C., Part 15, Subpart CLead:NeutralDetectors:Peak, Quasi-peak, Average

Signal Number	Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Delta L 1 (dB)	Avg (dBuV)	Av Delta L 2 (dB)	Corr (dB)
1	0.196349	44.1	40.1	-23.7	21.1	-32.7	0.0
2	0.233883	41.6	39.1	-23.3	28.8	-23.6	0.0
3	0.432250	40.7	38.5	-18.8	26.2	-21.0	0.0
4	3.837064	31.2	27.8	-28.2	20.5	-25.5	0.0
5	8.751356	27.5	23.0	-37.0	15.9	-34.1	0.0
6	19.230802	33.8	29.5	-30.5	23.2	-26.8	0.0

Figure 6. Detectors: Peak, Quasi-peak, AVERAGE

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T DescriptionSmart Base Unit (SBU)TypeSBU2000418Serial Number:Not Designated

Specification:	F.C.C., Part 15, Subpart C
Lead:	Neutral
Detectors:	Peak, Quasi-peak, Average

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 1BØ kHz 45.26 dBµV

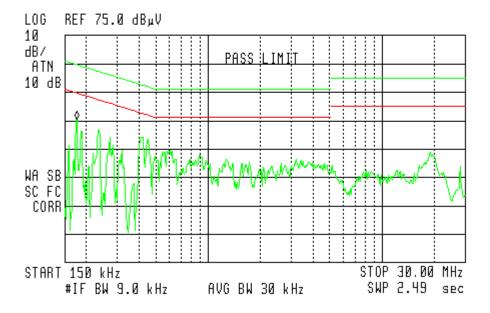


Figure 7 Conducted Emission: NEUTRAL Detectors: Peak, Quasi-peak, Average

Instrument	Manufactur er	Model	Serial No.	Last Calibration Date	Period
LISN	Fischer	FCC-LISN-2A	127	March 3, 2010	1 Year
LISN	Fischer	FCC-LISN-2A	128	March 3, 2010	1 Year
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1Year
RF Filter Section	HP	85420E	3705A00248	November 10, 2009	1Year
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

4.4 Test Instrumentation Used, Conducted Measurement

5. Average Factor Calculation Helical Antenna Transmitter


- 1. Burst duration = 2.8 msec
- 2. Time between bursts >100ms (minimum separation 14 seconds)

3. Average Factor = $20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100 \text{msec}} \times \text{Num of burst within 100 msec} \right]$

Note: Pulse duration and pulse period were considered worst case always ON since unit transmits randomly.

Average Factor =
$$20 \log \left[1 \times \frac{2.8}{100} \times 1 \right] = -31.05 dB / -20.0 Max$$

20

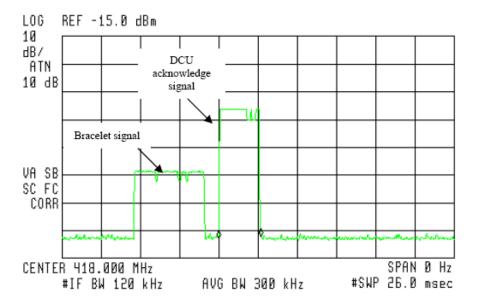


Figure 8. Burst Duration = 2.8 msec

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 9.5626 sec -101.49 dBm

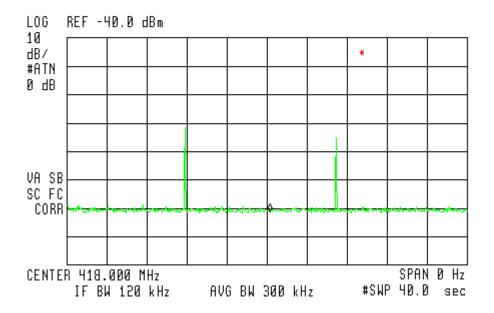


Figure 9. Time Between Bursts > 100 ms (Plot Sweep 40 sec)

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 Year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	August 1, 2010	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

5.1 Test Instrumentation Used

6. Periodic Operation Helical Antenna Transmitter

6.1 Specification

F.C.C., Part 15, Subpart C, Section 15.231(a)

6.2 Requirements

Requirement	Rationale	Verdict
Continuous transmissions are not permitted.	N/A	Complies
A manually operated transmitter shall be deactivated within not more than 5 seconds after releasing the switch.	N/A	Complies
An automatically operated transmitter shall cease operation within 5 seconds after activation.	N/A	Complies
Periodic transmissions at regular predetermined intervals are not permitted.	N/A	Complies
Polling or supervised transmissions to determine system integrity of transmitter used in security or safety applications shall not exceed more than 2 seconds per hour.	See plots in Figure 10 to Figure 11	Complies

6.3 Results

JUDGEMENT: Passed

The EUT met the FCC Part 15, Subpart C, Section 15.231(a) specification requirements.

3R

TEST PERSONNEL:

Tester Signature: _____

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Periodic Operation

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

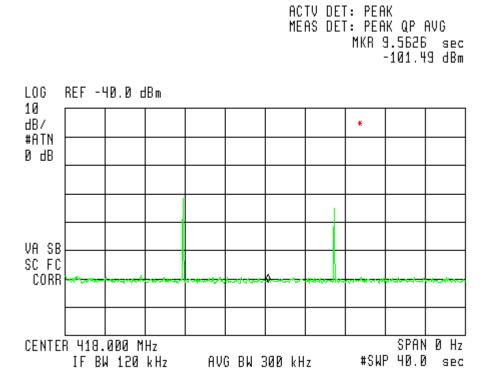


Figure 10. Signal Integrity as a Response to the Bracelet Minimum Transmission Every 14 seconds

Periodic Operation

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR⊾ 2.8000 msec .77 dB

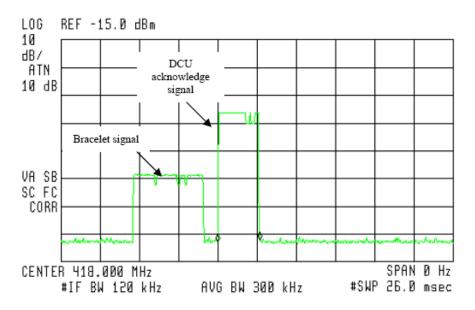


Figure 11. Signal Integrity burst as a Response to the Bracelet Transmission (Burst width 2.8msec x [3600/14] = 2.8 x 258 = 0.723 sec < 2 sec)

7. Field Strength of Fundamental Helical Antenna Transmitter

7.1 Test Specification

F.C.C., Part 15, Subpart C, Section 15.231(b)

7.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

The E.U.T. was placed on a non-conductive table, 0.8 meters above the O.A.T.S. ground plane.

The EMI receiver was set to the E.U.T. Fundamental Frequency (418 MHz) and Peak Detection.

The turntable and antenna mast were adjusted for maximum level reading on the EMI receiver.

The measurement was performed for vertical and horizontal polarizations of the test antenna.

The average result is:

Peak Level(dB μ V/m) + E.U.T. Duty Cycle Factor, in 100msec time window (dB)

7.3 Measured Data

JUDGEMENT:

Passed by 4.95 dB

The EUT met the FCC Part 15, Subpart C, Section 15.231(b) specification requirements.

The details of the highest emissions are given in Figure 12 to Figure 14.

TEST PERSONNEL:

Tester Signature:

Date: 0.20.09

Typed/Printed Name: A. Sharabi

Field Strength of Fundamental

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal/Vertical

Test Distance: 3 meters

Detector: Peak

Freq.	Pol.	Peak Reading	Average Factor	AVG Result	AVG Specification	Margin
(MHz)	V/H	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)
417.985	Н	97.00	-20.0	70.00	80.28	-10.28
417.985	V	95.33	-20.0	75.33	80.28	-4.95

Figure 12. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL/VERTICAL.

Notes:

- 1. Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.
- 2. "Peak Reading." ($dB\mu V/m$) included the "Correction Factors".
- "Correction Factors" (dB) = Test Antenna Correction Factor(dB) + Cable Loss.
- 4. "Average Result" (dBµV/m)=Peak Reading (dBµV/m)+D.C.F. (dB)

Field Strength of Fundamental

E.U.T DescriptionSmart Base Unit (SBU)TypeSBU2000418Serial Number:Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal Test Distance: 3 meters

Detector: Peak

ACTV DET: PEAK

MEAS DET: PEAK QP AVG MKR 417.943 MHz 97.00 dBµV/m LOG REF 105.0 dBµV/m 10 dB/ ٥ ATN 30 dB ×. -And eyete. MA SB SC FC ACORR SPAN 1.000 MHz CENTER 417.963 MHz #IF BW 120 kHz AVG BW 300 kHz SWP 20.0 msec

Figure 13. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL.

bp

Field Strength of Fundamental

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Vertical Test Distance: 3 meters

Detector: Peak

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 417.950 MHz 95.33 dBµV/m

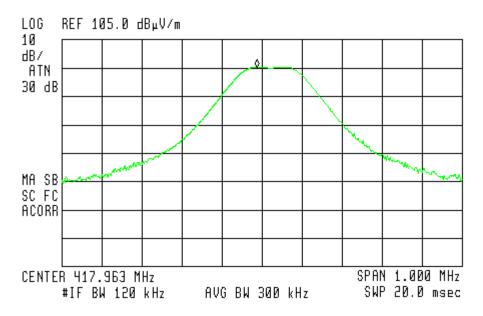


Figure 14. Field Strength of Fundamental. Antenna Polarization: VERTICAL.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

7.4 Test Instrumentation Used, Field Strength of Fundamental

8. Radiated Emission, 9 kHz – 30 MHz Helical Antenna Transmitter

8.1 Test Specification

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

8.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 3 meters.

The E.U.T. was operated at the frequency of 418 MHz. This frequency was measured using a peak detector.

8.3 Measured Data

JUDGEMENT: Passed

The EUT was tested and it met the requirements of the FCC Part 15, Subpart C, specification.

No signals were detected in the frequency range of 9 kHz – 30 MHz.

TEST PERSONNEL:

1/2 Tester Signature:

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2009	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

8.4 Test Instrumentation Used, Radiated Measurements

8.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

FS = RA + AF + CF

FS:	Field Strength [dBµv/m]
RA:	Receiver Amplitude [dBµv]
AF:	Receiving Antenna Correction Factor [dB/m]
CF:	Cable Attenuation Factor [dB]

Example: $FS = 30.7 dB\mu V (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB\mu V$

No external pre-amplifiers are used.

9. Spurious Radiated Emission Helical Antenna Transmitter

9.1 Test Specification

30 - 4500 MHz, F.C.C., Part 15, Subpart C

9.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3. See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 1. The signals from the list of the highest emissions were verified and the list was updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9 - 4.5 GHz, a spectrum analyzer including a low noise amplifier was used. The test distance was 3 meters. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The emissions were measured at a distance of 3 meters.

9.3 Test Data

JUDGEMENT: Passed by 20.2 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

The margin between the emission level and the specification limit was 20.2 dB in the worst case at the frequency of 1253.80 MHz, vertical polarization.

TEST PERSONNEL:

Tester Signature: ______

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Radiated Emission

E.U.T Description Smart Base Unit (SBU) Type Serial Number:

SBU2000418 Not Designated

Specification: FCC Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Antenna: 3 meters distance

Frequency range: 30 MHz to 4500 MHz **Detector: Peak**

Frequency	Antenna Polarity	Peak Reading	Average Factor	Average Result	Average Specification	Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
1253.80	Н	58.51	-20.0	38.51	60.28	-21.77
1253.80	V	60.05	-20.0	40.05	60.28	-20.23

Figure 15. Radiated Emission.

Note: Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	January 13, 2010	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	August 1, 2010	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

9.4 Test Instrumentation Used, Radiated Measurements

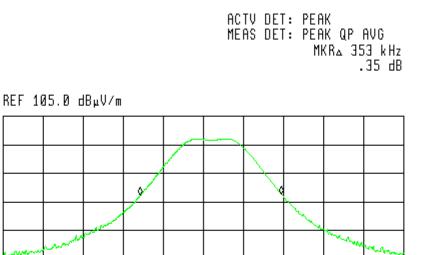
10. Bandwidth Helical Antenna Transmitter

10.1 Test procedure

The transmitter unit operated with normal modulation. The spectrum analyzer was set to 120 kHz resolution BW and center frequency of the transmitter fundamental. The spectrum bandwidth of the transmitter unit was measured and recorded. The BW was measured at 20 dBc points.

The EUT was set up as shown in Figure 1, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on the modulation envelope.

(p)


LOG

MA SB SC FC ACORR

CENTER 417.963 MHz

#IF BW 120 kHz

10 dB/ ATN 30 dB

SPAN 1.000 MHz SWP 20.0 msec

AVG BW 300 kHz

10.2 Results table

E.U.T Description: Smart Base Unit (SBU) Model: SBU2000418 Serial Number: Not Designated Specification: F.C.C. Part 15, Subpart C: (15.231(c))

Bandwidth	Specification	Margin
Reading	(1)	
(kHz)	(kHz)	(kHz)
353	1044.91	-691.91

Figure 17 Bandwidth

JUDGEMENT:

Passed by 691.91 kHz

TEST PERSONNEL:

2el Tester Signature: _____

Date: 02.09.10

Typed/Printed Name: A. Sharabi

(1) 0.25% of the E.U.T. fundamental frequency, Section 15.231(c).

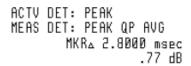
10.3 Test Equipment Used.

Bandwidth	1				
Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 18 Test Equipment Used

11. Average Factor Calculation F Antenna Transmitter

4. Burst duration = 2.8 msec


5. Time between bursts >100ms

6. Average Factor = $20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100 \text{msec}} \times \text{Num of burst within 100 msec} \right]$

Note: Pulse duration and pulse period were considered worst case always ON since unit transmits randomly.

Average Factor =
$$20 \log \left[1 \times \frac{2.8}{100} \times 1 \right] = -31.05 dB / -20.0 Max$$

 $t \sigma$

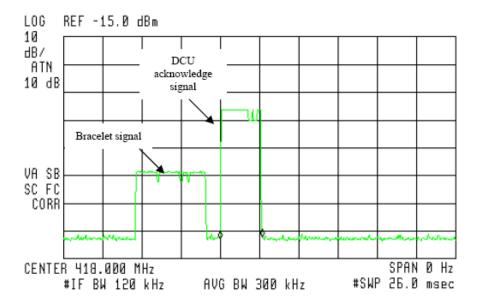


Figure 19. Burst Duration = 2.8 msec

ElmoTech Ltd.

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 9.5626 sec -101.49 dBm

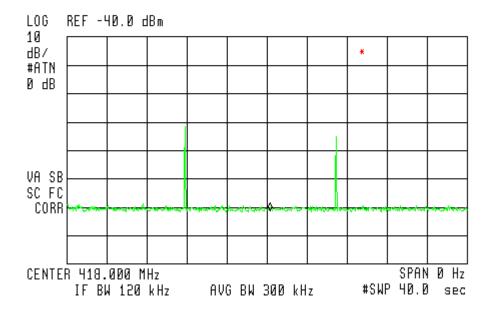


Figure 20. Time Between Bursts > 100 ms (Plot Sweep 40 sec)

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 Year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	August 1, 2010	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

11.1 Test Instrumentation Used

12. Periodic Operation F Antenna Transmitter

12.1 Specification

F.C.C., Part 15, Subpart C, Section 15.231(a)

12.2 Requirements

Requirement	Rationale	Verdict
Continuous transmissions are not permitted.	N/A	Complies
A manually operated transmitter shall be deactivated within not more than 5 seconds after releasing the switch.	N/A	Complies
An automatically operated transmitter shall cease operation within 5 seconds after activation.	N/A	Complies
Periodic transmissions at regular predetermined intervals are not permitted.	N/A	Complies
Polling or supervised transmissions to determine system integrity of transmitter used in security or safety applications shall not exceed more than 2 seconds per hour.	See plots in Figure 21 to Figure 22.	Complies

12.3 Results

JUDGEMENT: Passed

The EUT met the FCC Part 15, Subpart C, Section 15.231(a) specification requirements.

TEST PERSONNEL:

Sel Tester Signature: _____

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Periodic Operation

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

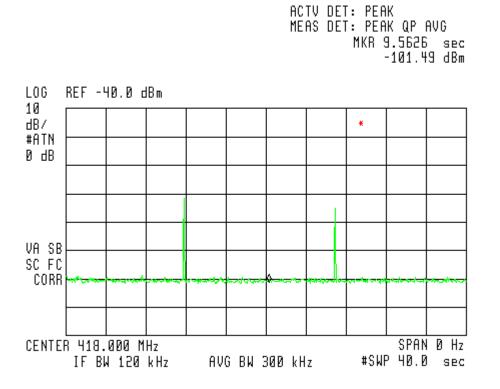
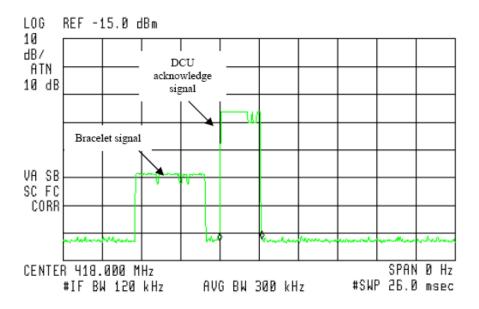
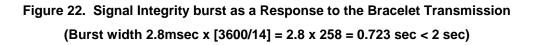


Figure 21. Signal Integrity as a Response to the Bracelet Minimum Transmission Every 14 seconds


Periodic Operation


E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR⊾ 2.8000 msec .77 dB

13. Field Strength of Fundamental F Antenna Transmitter

13.1 Test Specification

F.C.C., Part 15, Subpart C, Section 15.231(b)

13.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

The E.U.T. was placed on a non-conductive table, 0.8 meters above the O.A.T.S. ground plane.

The EMI receiver was set to the E.U.T. Fundamental Frequency (418 MHz) and Peak Detection.

The turntable and antenna mast were adjusted for maximum level reading on the EMI receiver.

The measurement was performed for vertical and horizontal polarizations of the test antenna.

The average result is:

Peak Level(dB μ V/m) + E.U.T. Duty Cycle Factor, in 100msec time window (dB)

13.3 Measured Data

JUDGEMENT:

Passed by 5.32 dB

The EUT met the FCC Part 15, Subpart C, Section 15.231(b) specification requirements.

The details of the highest emissions are given in Figure 12 to Figure 14.

TEST PERSONNEL:

Tester Signature:

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Field Strength of Fundamental

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal/Vertical

Test Distance: 3 meters

Detector: Peak

Freq.	Pol.	Peak Reading	Average Factor	AVG Result	AVG Specification	Margin
(MHz)	V/H	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)
417.99	Н	94.94	-20.0	74.94	80.28	-5.34
417.99	V	94.96	-20.0	74.96	80.28	-5.32

Figure 23. Field Strength of Fundamental.

Notes:

- 1. Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.
- 2. "Peak Reading." (dB μ V/m) included the "Correction Factors".
- 3. "Correction Factors" (dB) = Test Antenna Correction Factor(dB) + Cable Loss.
- 4. "Average Result" (dBμV/m)=Peak Reading (dBμV/m)+D.C.F. (dB)

Field Strength of Fundamental

E.U.T Description Smart Base Unit (SBU) Туре SBU2000418 Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal Test Distance: 3 meters

Detector: Peak

69

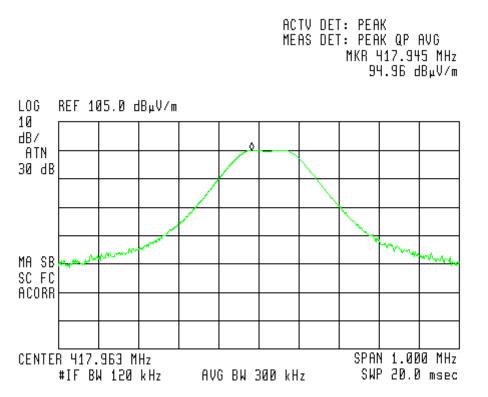


Figure 24. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL.

Field Strength of Fundamental

E.U.T Description	Smart Base Unit (SBU)
Туре	SBU2000418
Serial Number:	Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Vertical Test Distance: 3 meters

Detector: Peak

69

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 417.945 MHz 94.94 dBµV/m



Figure 25. Field Strength of Fundamental. Antenna Polarization: VERTICAL.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

13.4 Test Instrumentation Used, Field Strength of Fundamental

14. Radiated Emission, 9 kHz – 30 MHz F Antenna Transmitter

14.1 Test Specification

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

14.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 3 meters.

The E.U.T. was operated at the frequency of 418 MHz. This frequency was measured using a peak detector.

14.3 Measured Data

JUDGEMENT: Passed

The EUT was tested and it met the requirements of the FCC Part 15, Subpart C, specification.

No signals were detected in the frequency range of 9 kHz – 30 MHz.

TEST PERSONNEL:

68 Tester Signature:

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2009	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

14.4 Test Instrumentation Used, Radiated Measurements

14.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

FS = RA + AF + CF

FS:	Field Strength [dBµv/m]
RA:	Receiver Amplitude [dBµv]
AF:	Receiving Antenna Correction Factor [dB/m]
CF:	Cable Attenuation Factor [dB]

Example: $FS = 30.7 dB\mu V (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB\mu V$

No external pre-amplifiers are used.

15. Spurious Radiated Emission Helical Antenna Transmitter

15.1 Test Specification

30 - 4500 MHz, F.C.C., Part 15, Subpart C

15.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3. See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 1. The signals from the list of the highest emissions were verified and the list was updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9 - 4.5 GHz, a spectrum analyzer including a low noise amplifier was used. The test distance was 3 meters. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The emissions were measured at a distance of 3 meters.

15.3 Test Data

JUDGEMENT: Passed by 21.12 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

The margin between the emission level and the specification limit was 21.12 dB in the worst case at the frequency of 1253.80 MHz, horizontal and vertical polarizations.

Sel

TEST PERSONNEL:

Tester Signature:

Date: 02.09.10

Typed/Printed Name: A. Sharabi

Radiated Emission

E.U.T DescriptionSmart Base Unit (SBU)TypeSBU2000418Serial Number:Not Designated

Specification: FCC Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Antenna: 3 meters distance

Frequency range: 30 MHz to 4500 MHz Detector: Peak

Frequency	Antenna Polarity	Peak Reading	Average Factor	Average Result	Specification	Margin
(MHz)	(H/V)	(dBµV/m)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	(dB)
1253.80	Н	59.16	-20.0	39.16	60.28	-21.12
1253.80	V	59.16	-20.0	39.16	60.28	-21.12

Figure 26. Radiated Emission.

Note: Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	January 13, 2010	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	March 14, 2010	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	August 1, 2010	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

15.4 Test Instrumentation Used, Radiated Measurements

16. Bandwidth Helical Antenna Transmitter

16.1 Test procedure

The transmitter unit operated with normal modulation. The spectrum analyzer was set to 120 kHz resolution BW and center frequency of the transmitter fundamental. The spectrum bandwidth of the transmitter unit was measured and recorded. The BW was measured at 20 dBc points.

The EUT was set up as shown in Figure 1, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on the modulation envelope.

69

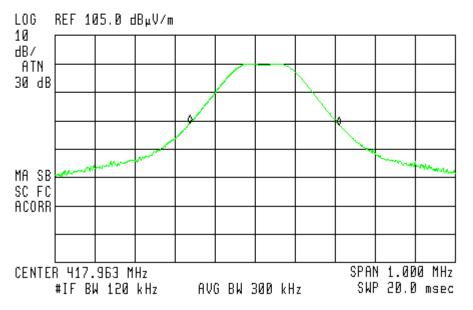


Figure 27

16.2 Results table

E.U.T Description: Smart Base Unit (SBU) Model: SBU2000418 Serial Number: Not Designated Specification: F.C.C. Part 15, Subpart C: (15.231(c))

Bandwidth	Specification	Margin
Reading	(1)	
(kHz)	(kHz)	(kHz)
373	1044.91	-671.91

Figure 28 Bandwidth

JUDGEMENT:

Passed by 671.91 kHz

TEST PERSONNEL:

Tel . Tester Signature: _____

Date: 02.09.10

Typed/Printed Name: A. Sharabi

(1) 0.25% of the E.U.T. fundamental frequency, Section 15.231(c).

16.3 Test Equipment Used.

Bandwidth	1				
Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1 year
RF Section	HP	85420E	3705A00248	November 10, 2009	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	March 24, 2010	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 29 Test Equipment Used

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)	(MHz)	(dB)
10.0	0.3	1200.0	7.3
20.0	0.6	1400.0	7.8
30.0	0.8	1600.0	8.4
40.0	0.9	1800.0	9.1
50.0	1.1	2000.0	9.9
60.0	1.2	2300.0	11.2
70.0	1.3	2600.0	12.2
80.0	1.4	2900.0	13.0
90.0	1.6		
100.0	1.7		
150.0	2.0		
200.0	2.3		
250.0	2.7		
300.0	3.1		
350.0	3.4		
400.0	3.7		
450.0	4.0		
500.0	4.3		
600.0	4.7		
700.0	5.3		
800.0	5.9		
900.0	6.3		
1000.0	6.7		

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

17.2 Correction factors for

CABLE from EMI receiver to test antenna

at 3 meter range.

FREQUENCY	CORRECTION
	FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.

17.3 Correction factors for

CABLE

from spectrum analyzer to test antenna above 2.9 GHz

FREQUENCY	CORRECTION	FREQUENCY	CORRECTION
	FACTOR		FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.

12.6 Correction factors for LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of	3 meters	Distance of 10 meters	
FREQUENCY	AFE	FREQUENCY	AFE
(MHz)	(dB/m)	(MHz)	(dB/m)
200.0	9.1	200.0	9.0
250.0	10.2	250.0	10.1
300.0	12.5	300.0	11.8
400.0	15.4	400.0	15.3
500.0	16.1	500.0	15.6
600.0	19.2	600.0	18.7
700.0	19.4	700.0	19.1
800.0	19.9	800.0	20.2
900.0	21.2	900.0	21.1
1000.0	23.5	1000.0	23.2

NOTES:

1. Antenna serial number is 1038.

- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

17.4 Correction factors for

FREQUENCY	ANTENNA
_	FACTOR
(GHz)	(dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".

17.5	Correction	factors for
17.5	CONCLUM	

BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

FREQUENCY	AFE
(MHz)	(dB/m)
20.0	(dB/III) 19.4
30.0	19.4
40.0	14.8
40.0 50.0	10.2
50.0 60.0	9.1
70.0	9.1 8.5
80.0	8.9
90.0	8.9 9.6
90.0 100.0	9.0
	10.5
110.0	
120.0	11.5
130.0 140.0	11.7 12.1
150.0	12.6
160.0	12.8
170.0	13.0
180.0	13.5
190.0	14.0
200.0	14.8
210.0	15.3
220.0	15.8
230.0	16.2
240.0	16.6
250.0	17.6
260.0	18.2
270.0	18.4
280.0	18.7
290.0	19.2
300.0	19.9
310	20.7
320	21.9
330	23.4
340	25.1
350	27.0

NOTES:

1. Antenna serial number is 1041.

2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

17.6 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2