ELECTROMAGNETIC EMISSIONS TEST REPORT

ACCORDING TO FCC PART 15, SUBPART C, §15.231

FOR ELMOTECH Ltd.

EQUIPMENT UNDER TEST
DATA EXTENDING UNIT
model DEU-500

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel. +972 6628 8001 Fax.+972 6628 8277 Email: mail@hermonlabs.com

Electrical

Description of equipment under test

Test items Data extending unit,

FCC ID:LSQ-DEU-500

Manufacturer Elmotech Ltd.

Type (Model) DEU-500

Serial number 65500

Applicant information

Applicant's representative & Mr. Natan Halpein responsible person project manager Company Elmotech Ltd.
Address 2 Habarzel St.

Postal code 69710
City Tel Aviv
Country Israel

Telephone number +972 3647 8871 Telefax number +972 3647 9139

Test performance

Project Number 13776

Location of the test Hermon Laboratories, Binyamina, Israel

Test performed November 10, 1999

Purpose of test The EUT certification in accordance with

CFR 47, part 2, §2.1033

Test specification(s) FCC part 15, subpart C, §15.231, §15.209,

§15.207

subpart B, §15.107, §15.109

Table of Contents

1.	SUMMARY AND SIGNATURES	4
2.	GENERAL INFORMATION	5
2.1	ABBREVIATIONS AND ACRONYMS	5
2.2	SPECIFICATION REFERENCES	6
2.3	EUT DESCRIPTION	6
3.	TEST FACILITY DESCRIPTION	8
3.1	General	8
3.2	EQUIPMENT CALIBRATION	8
3.3	LABORATORY PERSONNEL	9
3.4	STATEMENT OF QUALIFICATION.	9
4	EMISSION MEASUREMENTS	10
4.1	FIELD STRENGTH OF EMISSIONS ACCORDING TO § 15.231 (B)	10
4.2	BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C)	19
4.3	Periodic operation requirement §15.231 (a) (2)	21
4.4	Unintentional conducted emissions test according to §15.207, §15.107	22
4.5	Unintentional radiated emissions test according to §15.209, §15.109	28
APPEI	NDIX A - TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	30
APPFI	NDIX B-TEST EQUIPMENT CORRECTION FACTORS	31

1. Summary and signatures

The EUT, data extending unit DEU-500 was tested according to FCC part 15 subpart C, §.15.231 and part 15 subpart B §.15.109 and found to comply with the standard requirements.

Test performed by:	1, 1
Mr. M. Nikishin, test engineer	
Test report prepared by:	lice
Mrs. V. Mednikov, certification engineer	
Test report approved by:	1,
Mr. A. Usoskin, QA manager	///Soque_

The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation by A2LA.

Through this report period is used as decimal separator while thousands are separated by comma.

This report is in conformity with EN 45001 and ISO GUIDE 25.

The test results relate only to the items tested.

This test report must not be reproduced in any form except in full, with the approval of Hermon Labs Ltd.

2. General information

2.1 Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC alternating current

BW bandwidth dB decibel

dBm decibel referred to one milliwatt dB(μ V) decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

DC direct current

EUT equipment under test

GHz gigahertz H height

HL Hermon Laboratories

Hz hertz

IF intermediate frequency

kHz kilohertz
L length
m meter
mm millimeter
MHz megahertz
msec millisecond
NA not applicable

NARTE National Association of Radio and Telecommunications Engineers, Inc.

 Ω Ohm

QP quasi-peak (detector)
RBW resolution bandwidth
RF radio frequency
RE radiated emission
RMS root-mean-square

sec second V volt

2.2 Specification references

CFR 47 part 15: Radio Frequency Devices.

October 1998

ANSI C63.2:06/1996 American National Standard for Instrumentation-

Electromagnetic Noise and Field Strength, 10 kHz to 40

GHz-Specifications.

ANSI C63.4:1992 American National Standard for Methods of

Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the

Range of 9 kHz to 40 GHz.

2.3 EUT description

The EUT, Data extending unit (DEU ver.2.2), is a wall-mounted microprocessor based device, which is housed in a small plastic case. The DEU extends the reception range of a home arrest electronic monitoring receiver by receiving and re-transmitting data.

The DEU is composed of one PCB which includes a receiver circuit, a transmitter circuit, a CPU and a backup battery.

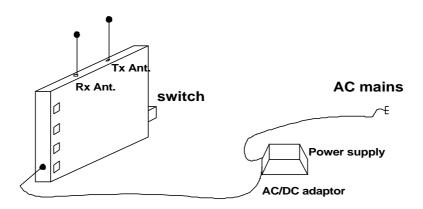
The DEU receives and transmits on 318.000 MHz. It utilizes two monopole antennas, one for receiver and one for the transmitter.

The external interface of the unit includes:

An on/off key,

1 DC jack for an external 7.5 V DC power supply,

4 LEDs for user indications.


Oscillators in the DEU:

Y1 – 307.3 MHz Quartz Crystal, Y101 – 16 MHz Quartz Crystal Y201 – 318.0 MHz SAW filter.

The EUT configuration is given in Figure 2.3.1.

Figure 2.3.1 EUT test configuration

3. Test facility description

3.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for radiated measurements (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R808 for OATS, R-809 for anechoic chamber, C-845 for conducted emissions site), assessed by NMi Certin B.V. (Netherlands) for a number of EMC, Telecommunications, Safety standards, and assessed by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety Information Technology Equipment (Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel

Telephone: +972 6628 8001 Fax: +9726 628 8277

Person for contact: Mr. Alex Usoskin, testing and QA manager.

3.2 Equipment calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A.

The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

3.2.1 Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Conducted emissions with LISN	9 kHz to 30 MHz: ± 2.1 dB
Radiated emissions in the anechoic chamber at 3 m measuring distance	Biconilog antenna: ±3.2 dB Double ridged guide antenna: ±2.36 dB

3.3 Laboratory personnel

The three people of Hermon Laboratories that have participated in measurements and documentation preparation are: Dr. Edward Usoskin - C.E.O., Mr. Michael Nikishin, EMC group leader and Mrs. Valeria Mednikov - certification engineer.

3.4 Statement of qualification

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications:

I am an engineer, graduated from university in 1996 with an M. Sc. EE degree and certified by NARTE as an EMC Accredited Test Laboratory engineer, the certificate No. is ATL-0005-E.

I have obtained 2 years experience in EMC measurements and have been with Hermon Laboratories since 1998.

Name: Mr. Michael Nikishin

Signature:

Date:

January 11, 2000

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I have a university degree and more than 10 years experience in document processing.

I have been with Hermon Laboratories since May 1999.

Name: Mrs. Valeria Mednikov Signature:

Position: certification engineer Date: January 11, 2000

I hereby certify that this test measurement report was prepared under my direction and that to the best of my knowledge and belief, the facts set in the report and accompanying technical data are true and correct. The following is a statement of my qualifications.

I have a Ph.D. degree in electronics, have obtained more than 42 years of experience in EMC measurements, electronic product design and have been with Hermon Laboratories since 1986.

.Also, I am an EMC engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA). The certificate no. is EMC-000623-NE, Senior Member.

Name: Dr. Edward Usoskin

Position: C.E.O.

Signature:

Date:

January 11, 2000

ELMFCC.13776.doc

Date: January, 2000 FCC ID: LSQ-DEU-500

Emission measurements 4

4.1 Field strength of emissions according to § 15.231 (b)

4.1.1 General

Specified limit at 3 m distance is given in Table 4.1.1 below

Table 4.1.1 The field strength limits

Frequency,	Average	detector	Peak d	letector
	Field strength of Field strength of		Field strength of	Field strength of
	fundamental,	spurious emissions,	fundamental,	spurious emissions,
MHz	dB(μV/m)	dB(μV/m)	dB(μV/m)	dB(μV/m)
0.4.0	75.0		25.0	0
318	75.8	55.8	95.8	75.8

4.1.2 Test procedure

The test was performed in the anechoic chamber at 3 meters test distance, i.e. the distance between measuring antenna and EUT boundary. The EUT was placed on the wooden table, as shown in Figure 4.1.1, Photographs 4.1.1 to 4.1.4 and operated in continuous transmitting mode. The frequency range from 30 MHz up to 10th harmonic was investigated. All harmonics were then separately investigated at the open field test site except the frequency 954.11 MHz at which an ambient noise was encountered, hence the measurements at this frequency were repeated in the anechoic chamber.

Log periodic and double ridged guide antennas were used at the open field test site and biconilog and double ridged guide antennas in the anechoic chamber. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The peak detector with RBW = 120 kHz at frequencies below 1 GHz and RBW = 1 MHz above 1 GHz was used in course of measurements.

The EUT has met the average emission requirements and peak emission limitations of §15.35.

The test results are recorded into Tables 4.1.2, 4.1.3. Average factor -24.7 dB was calculated according to the formula

Aver. factor = $20 \log (T_{ON} / 100)$,

where

T_{ON}, transmission duration within 100 msec, is 5.8 ms, see Plot 4.1.1,

 $20 \log (5.8 \text{ ms}/100 \text{ ms}) = -24.7 \text{ dB}.$

Reference numbers of test equipment used

HL 0025	HL 0034	HL 0038	HL 0041	HL 0091	HL 0181	HL 0275	HL 0287
HL 0465	HL 0509	HL 0521	HL 0554	HL 0580	HL 0590	HL 0604	

Full description is given in Appendix A.

Table 4.1.2

Radiated emission measurements peak limit

TEST SPECIFICATION: FCC part 15 subpart C § 15.209

DATE: November 10, 1999

RELATIVE HUMIDITY: 49% AMBIENT TEMPERATURE: 22°C

Frequency	Measured	Ant.	Ant.	RBW,	VBW,	Antenna	Cable	Radiated	Peak limit	Margin,	Pass/
	result,	type	pol.	,	,	factor,	loss	emission,	@ 3 m,	J	Fail
							and	peak			
							ampl.				
MHz	dB(μV)			MHz	MHz	dB(1/m)	gain, dB	dB (μV/m)	dB(μV/m)	dB	
318.048	75.4	LP	V	0.1	0.3	19	.0	94.4	95.8	1.4	Pass
636.087	40.9	LP	V	0.1	0.3	25.6	15.0	51.5	75.8	24.3	Pass
954.145	-	BL	V	0.1	0.3	-		60.4	75.8	15.4	Pass
1272.26	56.0	DR	V	1	3	25.2	25.0	56.2	75.8	19.6	Pass
1590.26	54.7	DR	Н	1	3	27.0	21.7	60.0	74	14.0	Pass
1908.30	45.2	DR	Н	1	3	29.1	14.8	59.5	75.8	16.3	Pass
2226.32	48.0	DR	Н	1	3	29.9	17.7	60.2	74	13.8	Pass
2544.14	41.9	DR	Н	1	3	31.1	17.0	56.0	75.8	19.8	Pass
2862.14	44.9	DR	Н	1	3	31.4	16.4	59.9	74	14.1	Pass
3180.48	38.4	DR	Н	1	3	31.9	17.9	52.4	75.8	23.4	Pass

Notes to table:

Peak detector was used.

Radiated emission $dB(\mu V/m)$ = peak measured result $(dB(\mu V))$ + ant. factor (dB(1/m)) + cable loss (dB) -amplifier gain (dB).

Ant. type = antenna type (LP – log periodic, BL – biconilog, DR – double ridged guide antenna).

Ant.pol. = antenna polarization (H – horizontal, V – vertical).

Average factor = -24.7 dB

Peak limit = average limit $dB(\mu V/m) +20 dB$

Margin = dB below (negative if above) limit.

ELMFCC.13776.doc

Date: January, 2000 FCC ID: LSQ-DEU-500

Table 4.1.3

Radiated emission measurements, average limit)

TEST SPECIFICATION: FCC part 15 subpart C § 15.209

DATE: November 10, 1999

RELATIVE HUMIDITY: 49% AMBIENT TEMPERATURE: 22°C

Frequency	Measured	Ant.	Ant.	RBW,	VBW.	Antenna	Cable	Radiated	Avg. limit	Margin,	Pass/
	result,	type	pol.	,	,	factor,	loss	emission,	@ 3 m,	J	Fail
							and	average			
							ampl.				
MHz	dB (μV)			MHz	MHz	dB(1/m)	gain, dB	dB (μV/m)	dB(μV/m)	dB	
318.02	75.4	LP	V	0.1	0.3	19	.0	69.7	75.8	6.1	Pass
636.04	40.9	LP	٧	0.1	0.3	25.6	15.0	26.8	55.8	29	Pass
954.11	-	BL	٧	0.1	0.3	-		35.7	55.8	20.1	Pass
1272.24	56.0	DR	٧	1	3	25.2	25.0	31.5	55.8	24.3	Pass
1590.14	54.7	DR	Η	1	3	27.0	21.7	35.3	54	21.7	Pass
1908.12	45.2	DR	Ι	1	3	29.1	14.8	34.8	55.8	21	Pass
2225.66	48.0	DR	Ι	1	3	29.9	17.7	35.5	54	18.5	Pass
2544.30	41.9	DR	Η	1	3	31.1	17.0	31.3	55.8	24.5	Pass
2861.74	44.9	DR	Ι	1	3	31.4	16.4	35.2	54	18.8	Pass
3180.30	38.4	DR	Ι	1	3	31.9	17.9	27.7	55.8	28.1	Pass

Notes to table:

Peak detector was used.

Radiated emission $dB(\mu V/m) = peak$ measured result $(dB(\mu V)) + ant.$ factor (dB(1/m)) + cable loss (dB) - amplifier gain(dB) + average factor (dB).

Ant. type = antenna type (LP – log periodic, BL – biconilog, DR – double ridged guide antenna).

Ant.pol. = antenna polarization (H – horizontal, V – vertical).

Average factor = -26 dB.

Average limit is in accordance with § 15.231(b).

Margin = dB below (negative if above) limit.

Plot 4.1.1

Transmission duration measurements

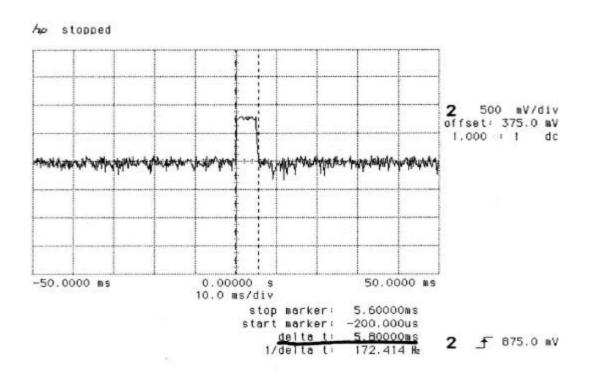
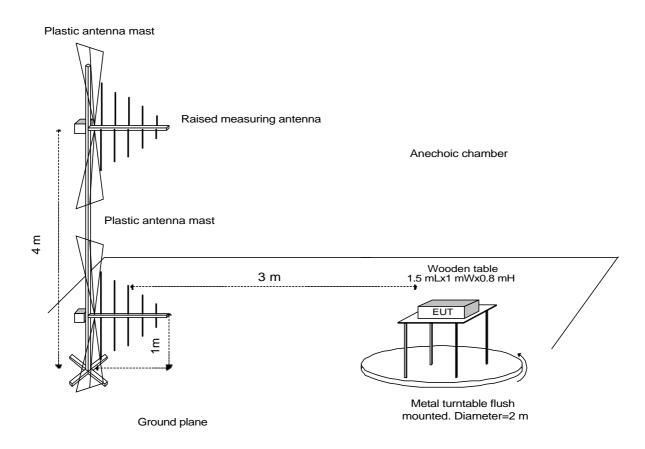
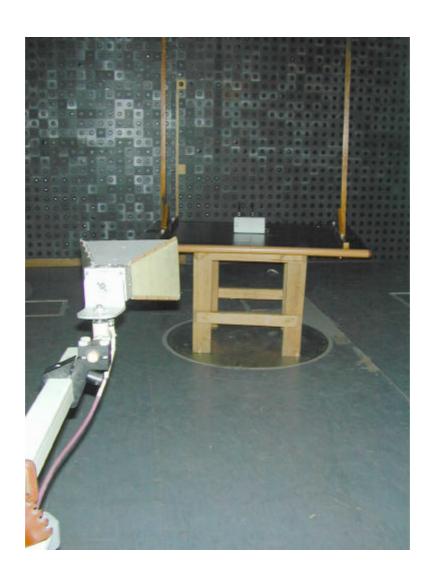
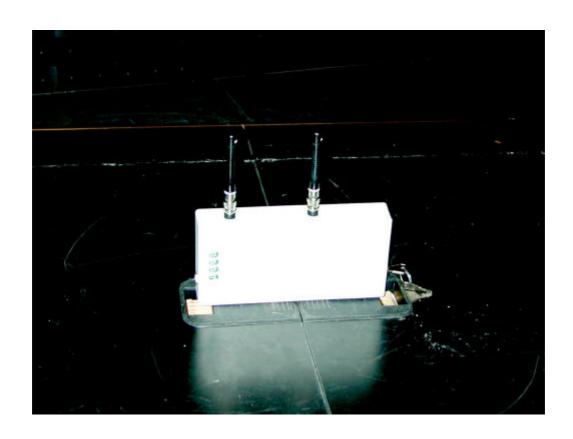



Figure 4.1.1 Radiated emission test setup

Photograph 4.1.1
Radiated emission measurements setup, frequency range 30 MHz – 1 GHz



Photograph 4.1.2
Radiated emission measurements setup, frequency range 30 MHz – 1 GHz



Photograph 4.1.3
Radiated emission measurements setup, frequency range 1 – 3.5 GHz

Photograph 4.1.4
Radiated emission measurements setup

4.2 Bandwidth of emission according to § 15.231 (c)

4.2.1 Specified limits

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

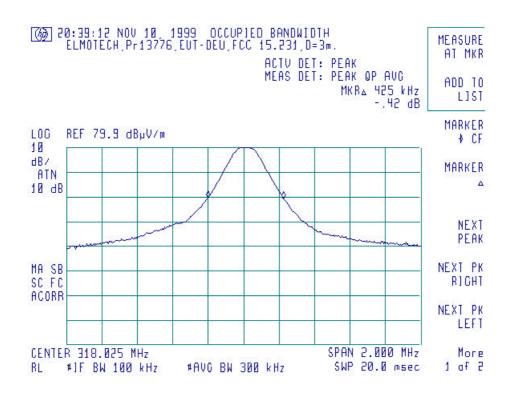
4.2.2 Test procedure and results

The maximum allowed occupied bandwidth was calculated as 0.0025 of the center frequency:

 $0.0025 \times 318 \text{ MHz} = 795 \text{ kHz}$

The spectrum trace data around transmitter fundamental frequency was obtained with the spectrum analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the modulated carrier. The occupied bandwidth of 425 kHz was measured which is narrower than admitted 795 kHz.

The test results are shown in Plot 4.2.1.


Reference numbers of test equipment used

HL 0465	HL 0521	HL 0604
---------	---------	---------

Full description is given in Appendix A.

Plot 4.2.1
Emission bandwidth measurements result

4.3 Periodic operation requirement §15.231 (a) (2)

(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

In the DEU the automatic non-periodic transmission duration is only 5 milliseconds, therefore the requirement is fully met.

4.4 Unintentional conducted emissions test according to §15.207, §15.107

4.4.1 General

This test was performed to measure conducted emissions from the incorporated digital device of the EUT and also to verify the EUT full compliance with §15.207.

Conducted emission measurements specification limits are given in Table 4.4.1 below.

Table 4.4.1
Limits for conducted emission on AC power lines

Frequency,	Class B equipment limit, dB(m/)
0.45 - 30	48

4.4.2 Test procedure

The conducted emissions measurements of the EUT incorporated digital device were performed in the shielded room in the frequency range from 450 kHz to 30 MHz. The EUT was placed on the wooden table as shown in Figure 4.4.1 and Photographs 4.4.1, 4.4.2, in configuration, given in Figure 2.3.1.

The measurements were performed on the 120 V AC 60 Hz power lines (both neutral and phase) by means of the LISN, connected to the spectrum analyzer. The unused coaxial connector of the LISN was terminated in 50 Ω . The position of the EUT cables was varied to determine maximum emission level. Quasi peak detector (resolution bandwidth = 9 kHz) was used.

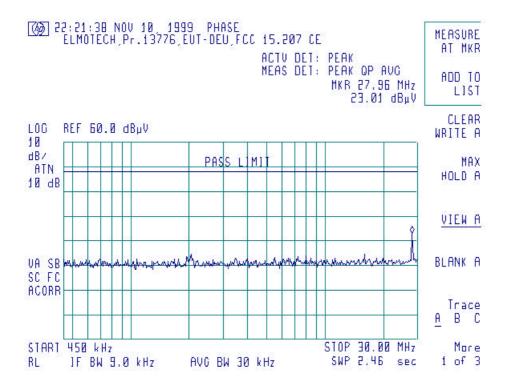
All the measured emissions were found at least 20 dB below specified limit.

The test results are shown in Plots 4.4.1, 4.2.2.

Reference numbers of test equipment used

LII 0460	LII 0466	LII 0504	HI 0787
HL 0163	HL 0466	HL 0521	HL 0787

Full description is in Appendix A.



Plot 4.4.1 Conducted emission measurements on power line

Test specification: FCC part 15 subpart B class B

Frequency range: 450 kHz-30 MHz

EUT: DEU Line: phase Detector: peak

Plot 4.4.2 Conducted emission measurements on power line

Test specification: FCC part 15 subpart B class B

Frequency range: 450 kHz-30 MHz

EUT: DEU Line: neutral Detector: peak

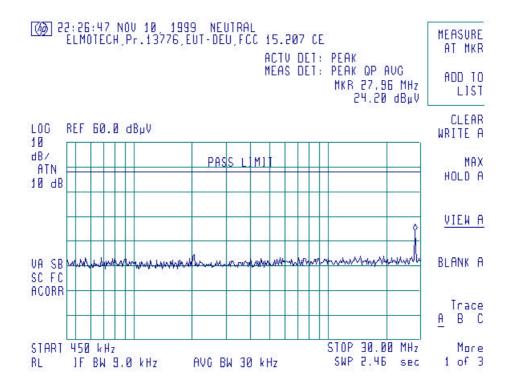
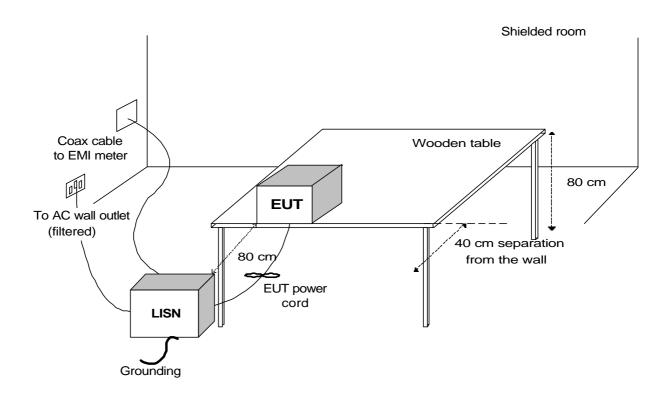



Figure 4.4.1 Conducted emissions test setup for table-top equipment

Photograph 4.4.1 Setup for conducted emissions measurements

Photograph 4.4.2 Setup for conducted emissions measurements

4.5 Unintentional radiated emissions test according to §15.209, §15.109

4.5.1 General

This test was performed to measure radiated emissions from the incorporated digital device of the EUT and also to verify the EUT full compliance with §15.209.

Radiated emission measurements specification limits are given in Table 4.4.1 below:

Table 4.5.1
Limits for electric field strength, quasi-peak detector

Frequency,	Class B equipment @3 meter distance,
MHz	dB(ml //m)
30 - 88	40
88 - 216	43.5
216 - 960	46
960 - 5000	54

4.5.2 Test procedure

The radiated emissions measurements of the EUT incorporated digital device were performed in the anechoic chamber at 3 meter measuring distance in the frequency range from 30 MHz to 1 GHz. The EUT was placed on the wooden table as shown in Figure 4.1.1 and Photographs 4.1.1, 4.1.2. The biconilog antenna was used. To find maximum radiation the turntable was rotated 360°, the measuring antenna height changed from 1 to 4 m, and the antenna polarization was changed from vertical to horizontal.

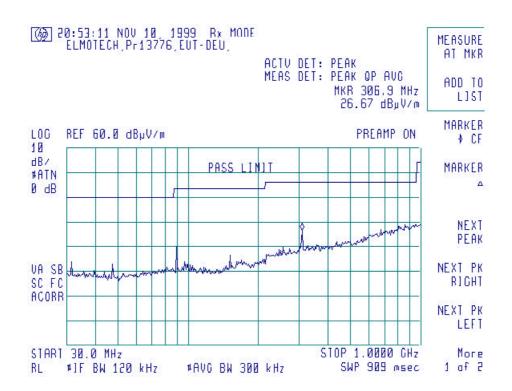
The EUT was tested in stand-by mode.

The measurements were performed with the EMI receiver settings: RBW=120 kHz, peak and quasi peak detectors.

All emissions were found at least 17 dB below the limit.

The test measurement results are shown in Plot 4.4.1.

Reference numbers of test equipment used


HL 0465	HL 0521	HL 0604
---------	---------	---------

Full description is given in Appendix A.

Plot 4.5.1

Test specification: §15.109 Radiated emissions of digital incorporated device

APPENDIX A – Test equipment and ancillaries used for tests

HL Serial No.	Serial No.	Description	Manufacturer	Model No.	Due Calibr.
0025	5837	Spectrum analyzer, 10 kHz-23 GHz	Anritsu	MS-710C	8/00
0034	1988	Log periodic antenna, 200 - 1000 MHz	Electro-Metrics	LPA 25/30	3/00
0038	028	Antenna mast, 1-4 m	Hermon Labs	AM-1	2/00 Check
0041	2811	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	8/00
0091	032	Position controller for antenna mast + turntable, OFTS	Hermon Labs	CRL-2	1/00 Check
0163	1314	LISN FCC/VDE/MIL -STD	Electro-Metrics	ANS-25/2	12/99
0181	3049A1 3950	Oscilloscope, Digitizing, 100 MHz	Hewlett Packard	HP, 54501A	11/00
0275	040	Table non-metallic, adjustable height, 1.5 x 1.0 x 0.8 m	Hermon Labs	TNM	3/00 Check
0287	042	Turntable, motorized diameter, 2m	Hermon Labs	TMD-2	4/00 Check
0465	023	Anechoic chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	3/00
0466	024	Shielded room 3 (L) x 3 (W) x 2.4 (H) m	Hermon Labs	SR-1	5/02 Check
0509	2509	Amplifier, low power, 0.009-50 MHz gain 28 dB and 0.1-1300 MHz gain 25 dB	Hewlett Packard	8447F opt H64	12/99
0521	0319	Spectrum analyzer with RF filter section (EMI receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	7/00
0554	4300	Amplifier, 2 – 18 GHz	Miteq	AFD-4	12/00
0580	580	DC block adaptor 10 kHz- 2.2 GHz	Anritsu	MA8601 A	1/00
0590	10	Attenuator 10 dB, 50 Ohm, N-type, 2W	Elisra Electronic Systems	MW2100-N- Type	6/00
0604	9611- 1011	Antenna biconilog log- periodic/T bow-tie, 26 - 2000 MHz	EMCO	3141	7/00
0787	1877	Transient limiter	Hewlett Packard	11947A-8ZE	11/00

APPENDIX B-Test equipment correction factors

Correction Factor Line Impedance Stabilization Network Model ANS-25/2 Electro-Metrics

Frequency, kHz	Correction Factor
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

Antenna Factor Log Periodic Antenna Electro-Metrics Model LPA-25/30 Ser.No.1988

Frequency MHz	Antenna Factor dB(1/m)	Frequency MHz	Antenna Factor dB(1/m)
200	12.6	625	20.4
225	12.2	650	20.9
250	13.4	675	22.0
275	14.3	700	22.2
300	15.2	725	22.7
325	15.7	750	22.5
350	15.9	775	22.7
375	16.4	800	22.8
400	17.0	825	23.2
425	17.4	850	23.5
450	17.9	875	23.9
475	18.6	900	24.0
500	19.1	925	24.0
525	19.3	950	24.2
550	19.6	975	24.7
575	19.8	1000	25.1
600	20.0		•

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ meter)

Antenna Factor Double Ridged Guide Antenna Model RGA-50/60 S/N 2811

Frequency, MHz	Antenna Factor, dB
1000	24.3
1500	25.4
2000	28.4
2500	29.2
3000	30.5
3500	31.6
4000	33.7
4500	32.2
5000	34.5
5500	34.5
6000	34.6
6500	35.3
7000	35.5
7500	35.9
8000	36.6
8500	37.3
9000	37.7
9500	37.7
10000	38.2
10500	38.5
11000	39.0
11500	40.1
12000	40.2
12500	39.3
13000	39.9
13500	40.6
14000	41.1
14500	40.5
15000	39.9
15500	37.8
16000	39.1
16500	41.1
17000	41.7
17500	45.1
18000	44.3

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ /meter

Antenna factor at 3m calibration
Biconilog antenna, EMCO, model 3141, Ser.No.1011

	Biconilog antenna, i	
Frequency, MHz	Antenna Factor,	
	dB(1/m)	
26	7.8	
28	7.8	
30	7.8	
40	7.2	
60	7.1	
70	8.5	
80	9.4	
90	9.8	
100	9.7	
110	9.3	
120	8.8	
130	8.7	
140	9.2	
150	9.8	
160	10.2	
170	10.4	
180	10.4	
190	10.3	
200	10.6	
220	11.6	
240	12.4	
260	12.8	
280	13.7	
300	14.7	
320	15.2	
340	15.4	
360	16.1	
380	16.4	
400	16.6	
420	16.7	
440	17.0	
460	17.7	
480	18.1	
500	18.5	
520	19.1	
540	19.5	
560	19.8	
580	20.6	
600	21.3	
620	21.5	
640	21.2	
660	21.4	
680	21.9	
700	22.2	
720	22.2	
740	22.1	
760	22.3	
780	22.6	
800	22.7	
820	22.9	
840	23.1	
860	23.4	
880	23.8	
900	24.1	
920	24.1	
i e e e e e e e e e e e e e e e e e e e		

CO, model 3141, Ser.No.1011		
Frequency, MHz	Antenna Factor, dB(1/m)	
940	24.0	
960	24.1	
980	24.5	
1000	24.9	
1020	25.0	
1040	25.2	
1060	25.4	
1080	25.6	
1100	25.7	
1120	26.0	
1140	26.4	
1160	27.0	
1180	27.0	
1200	26.7	
1220	26.5	
1240	26.5	
1260	26.5	
1280		
1300	26.6	
	27.0	
1320 1340	27.8	
	28.3	
1360	28.2	
1380	27.9	
1400	27.9	
1420	27.9	
1440	27.8	
1460	27.8	
1480	28.0	
1500	28.5	
1520	28.9	
1540	29.6	
1560	29.8	
1580	29.6	
1600	29.5	
1620	29.3	
1640	29.2	
1660	29.4	
1680	29.6	
1700	29.8	
1720	30.3	
1740	30.8	
1760	31.1	
1780	31.0	
1800	30.9	
1820	30.7	
1840	30.6	
1860	30.6	
1880	30.6	
1900	30.6	
1920	30.7	
1940	30.9	
1960	31.2	
1980	31.6	
2000	32.0	

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V/meter)$.