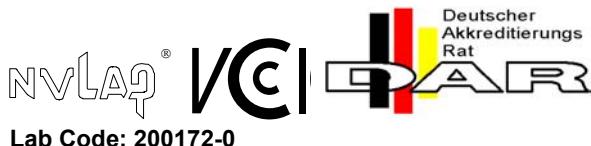


FCC Test Report for FCC standard 47CFR15 §15.209, Subpart C for Intentional Radiators

on
BMW LP_MDD Microwave Sensor
[FCC ID: LQN2889]


part number
902889

ITC report number
20031103-01-F15rc

manufacturer
Connaught Electronics Ltd.
IDA Industrial Estate
Dunmore Road, Tuam
County Galway, Ireland

judgement
Complies

tests and report by
ITC Engineering Services, Inc. (ITC)
9959 Calaveras Road, P.O. Box 543
Sunol, California 94586
Tel.: (925) 862-2944
Fax: (925) 862-9013
E-Mail: docs@itcemc.com
Web Site: www.itcemc.com

EN45001 Accredited Compliance Laboratory (RES-GmbH)
Registration number: TTI-P-G 159/98-00 (RES-GmbH)

Table of Contents

PART 1 General.....	4
Test Information.....	4
Accuracy of Test Data	4
Tests Performed:	4
Test Methodology	5
Test Facility	5
Declaration/Disclaimer	6
PART 2 RF MEASUREMENTS	7
Test Specification: 47 CFR PART 15, Sub-Part C	7
General Test Procedure – RF Tests	7
Spectrum Analyzer Configuration (during swept frequency scans) – Radiated Emissions	8
FIELD STRENGTH OF FUNDAMENTAL.....	9
FIELD STRENGTH Measurement.....	9
Site Used – Field Strength of Fundamental Measurements	9
Administrative Details and Environmental Conditions – Field Strength Measurements.....	9
Test Data – Field Strength of Fundamental	9
Average Level Calculation	10
Average Level Calculation of Field Strength of Fundamental with Duty Cycle correction	10
OCCUPIED BANDWIDTH measurement.....	11
Site Used – Occupied Bandwidth Measurements	11
Administrative Details – Occupied Bandwidth Measurements	11
Test Measurement: Occupied Bandwidth Measurements (Performed in Anechoic Chamber).....	11
Occupied Bandwidth Measurement Plot	12
Spectrum Mask Measurement.....	12
Occupied Bandwidth Data:	12
SPURIOUS EMISSIONS, HARMONICS, and Emissions in the RESTRICTED BANDS	13
Test Procedure – Spurious Emissions:.....	13
Site Used – Harmonics Emissions Measurements	13
Administrative Details and Environmental Conditions– Spurious and Restricted Bands	13
Spectrum Analyzer Configuration (during swept frequency scans) – Spurious and Restricted Emissions	13
Test Details – Spurious and Restricted Bands Emissions.....	14
PART 3 APPENDICES.....	16
A. EUT Technical Specification	16
B. Modification Letter	17

List of Tables

Table 1 Radio Device Measurement Information	5
Table 2 Measurement Uncertainty	5
Table 3: Support Equipment – RF Measurements	7
Table 4: Test Equipment – RF Measurements.....	7
Table 5 Support Equipment – Radiated Emissions Tests	7
Table 6 Data Table Legend and Field Strength Calculation – Radiated Emissions Tests.....	8
Table 7: Field Strength of Fundamental Test Data – Peak Measurement @ 1 meter	10
Table 8: Spectrum Analyzer Configuration (during swept frequency scans) – Occupied Bandwidth	11
Table 9 Test Data – Spurious and Restricted Bands Emissions below 1GHz @ 3 meters	14
Table 10 Test Data for Radiated Emissions Measurement above 1 GHz @ 3 meters (Measurements to 40 GHz)	14

List of Figures

Figure 1: Plot of Field Strength of Fundamental Average Measurement Performed at 3-Meter Distance	9
Figure 2: Occupied Bandwidth Plot	12

PART 1 General

Test Information

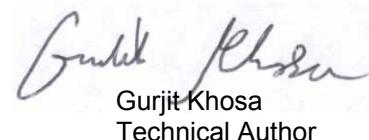
Product Name Model(s)	LP_MDD Microwave Sensor 902889	
Manufacturer's Name Manufacturer's Address	Connaught Electronics, Ltd. IDA Industrial Estate Dunmore Road, Tuam, Co. Galway, Ireland	
Contact	Tel: +353-93-25128 Mr. Joe Danaher	Fax: +353 932-5133 Email: Danaherjoe@cel.ie
Test Laboratory	ITC Engineering Services, Inc. 9959 Calaveras Road, PO Box 543 Sunol, CA 94586-0543 Email: docs@itcemc.com Web Site: http://www.itcemc.com	Tel: +1(925) 862-2944 Fax: +1(925) 862-9013
Test Number and Report Numbers	20031103-01	20031103-01-F15rc
Test Date(s) & Issue Date	December 23, 2003 to January 22, 2004	March 10, 2004
Test Engineer(s)	Lan Vu	Bandele Adepoju
Documentation	Bandele Adepoju	
Test Results	<input checked="" type="checkbox"/> Complies as tested	<input type="checkbox"/> Fail
Total Number of Pages	17	

The electromagnetic interference tests, which this report describes, were performed by an independent electromagnetic compatibility consultant, ITC Engineering Services, Inc. (ITC), in accordance with the emissions requirements specified in the FCC rules, 47CFR Part 15, Subparts B and C. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics. Any modifications specified in this report for compliance must be implemented in all production units for compliance to be maintained.

Accuracy of Test Data

The test results contained in this report accurately represent the emissions generated by the sample equipment under test. ITC Engineering Services, Inc. (ITC) as an independent testing laboratory declares that the equipment as tested complies with the functional requirements of:

1. FCC standard 47CFR15.209.


for Intentional Radiators Operation.

Tests Performed:

RF Requirements:

- FIELD STRENGTH OF FUNDAMENTAL in accordance with the FCC 47 CFR 15.209.
- HARMONIC EMISSIONS in accordance with the FCC 47 CFR 15.209.
- SPURIOUS EMISSIONS in accordance with the FCC 47 CFR 15.209.
- POWERLINE CONDUCTED EMISSIONS in accordance with FCC 47 CFR 15.207.

Bandele Adepoju
Project Engineer

Gurjit Khosa
Technical Author

PART 1 General (Cont.)

Test Methodology

The electromagnetic interference tests, which this report describes, were performed by an independent electromagnetic compatibility consultant, ITC Engineering Services, Inc., in accordance with the FCC test procedure ANSI C63.4-1992.

Test Facility

The open area test site, the conducted measurement facility, and the test equipment used to collect the emissions data is located in Sunol, California, and is fully described in site attenuation report. The approved site attenuation description is on file at the Federal Communications Commission.

Table 1 Radio Device Measurement Information

Table 2 Measurement Uncertainty

150kHz to 30MHz:		
Combined standard uncertainty $uc(y)$	± 1.68 dB	Normal
Expanded uncertainty U	± 3.36 dB	Normal ($k = 2$)
30MHz to 1GHz:		
Combined standard uncertainty $uc(y)$	± 3.24 dB	Normal
Expanded uncertainty U	± 6.48 dB	Normal ($k = 2$)
1GHz to 18GHz:		
Combined standard uncertainty $uc(y)$	± 2.48 dB	Normal
Expanded uncertainty U	± 4.96 dB	Normal ($k = 2$)
Above 18GHz:		
Radiated emission up to 26 GHz	± 3 dB	
Radiated emission up to 40 GHz	± 3 dB	
Radiated emission up to 75 GHz	± 3 dB	

PART 1 General (Cont.)

Declaration/Disclaimer

ITC Engineering Services, Inc. (ITC) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. ITC Engineering Services, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from ITC Engineering Services, Inc. issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full with our written approval. The applicant/manufacturer shall not use this report to claim product endorsement by NIST, NVLAP or any US Government agency.

ITC Engineering Services, Inc. (ITC) is:

Accepted by the Federal Communications Commission (FCC) for FCC Methods, CISPR Methods and AUSTEL Technical Standards (Ref: NVLAP Lab Code 200172-0)

Approved by the Industry Canada for Telecom Testing

Certified by Rockford Engineering Services GmbH for EMC Testing according to the European EMC Directive 89/336/EEC per EN45001

Certified by Reg. TP for EMC Testing according to the European EMC Directive 89/336/EEC per EN45001 for RES GmbH (DAR-Registration number: TTI-P-G 159/98-00)

Certified by the Voluntary Control Council for Interference by Information Technology Equipment (VCCI) for EMC testing, in accordance with the Regulations for Voluntary Control Measures, Article 8, Registration Numbers - Site 1: C-1582 and R-1497.

PART 2 RF MEASUREMENTS

Test Specification: 47 CFR PART 15, Sub-Part C

EUT Description:

Connaught's LP_MDD Microwave Sensor, or the "EUT" as referred to in this report, is intentional radiator. It comes with an antenna permanently attached. The EUT, was set up on a wooden table, 80cm above the ground reference plane in an anechoic chamber and or on an open field. It was powered and tested in normal continuous mode.

Supply Voltage Tested: 13.5VDC

Table 3: Support Equipment – RF Measurements

Description	Manufacturer	Model No.	Serial No.	Calibration Due
DC Power Supply	BK Precision	1688		n/a
Digital Multimeter	Fluke	16	79510141	December 14, 2004

Table 4: Test Equipment – RF Measurements

Equipment Description	Manufacturer	Model Name	Serial Number	Calibration Due
Preamplifier	Hewlett-Packard	8449B	3008A00101	N/A
Preselector	Hewlett-Packard	85685A	2620A00265	12-11-2004
Biconical Antenna	EMCO	3104	9111-4463	01-16-2004
I.p. Ant (200 -1000MHz)	EMCO	3146	2261	01-22-2004
Quasi Peak Adapter	Hewlett-Packard	85650A	2521A00737	12-11-2004
Spectrum Analyzer	Hewlett-Packard	8568B	2841A04315	12-11-2004
Spectrum Analyzer Display	Hewlett-Packard	-	-	12-11-2004
Horn. Ant (Below 18GHz)	EMCO	3115	8812-3050	01-19-2004
Horn. Ant (Below 40GHz)	HP	3116	4663	02-18-2004
Spectrum Analyzer	Hewlett-Packard	8569A	2128A00270	04-23-2004

Table 5 Support Equipment – Radiated Emissions Tests

Description	Manufacturer	Model No.	Serial No.	Calibration Due
DC Power Supply	BK Precision	1688		n/a
Digital Multimeter	Fluke	16	79510141	December 14, 2004

General Test Procedure – RF Tests

The measurement range investigated for radiated emissions was from 30 MHz to 60 GHz.

For the spurious and harmonics measurements, below 18GHz, the BMW LP_MDD Microwave Sensor (the EUT) was set up at a 3 meter distance from the receiving antenna, on an Open Area Test Site (OATS), with the EUT running in a continuous mode. The EUT was rotated 360 degrees azimuth and the search antenna height varied 1 to 4m in order to maximize the emissions. Significant peaks from the EUT were then recorded to determine margin to the limits. For measurements above 18GHz, the EUT was set up at a 1 meter distance from the antenna, in a semi-anechoic chamber, with the EUT running in a continuous mode. The EUT was rotated 360 degrees azimuth and the search antenna height varied 1 to 4m in order to maximize the emissions. Significant peaks from the EUT were then recorded to determine margin to the limits.

For the field strength measurements of the fundamental frequency, the EUT was setup in an anechoic chamber at a 3 meter distance from the receiving antenna. The EUT was rotated 360 degrees azimuth and the search antenna height varied 1 to 4m in order to maximize the field strength emission of the fundamental. The maximum level of the fundamental emission from the EUT was measured and recorded at optimum antenna and table orientation to determine margin to the limits.

RF MEASUREMENTS (cont.)

Spectrum Analyzer Configuration (during swept frequency scans) – Radiated Emissions

IF Bandwidth..... 120 kHz

Measurements below 1000 MHz (unless stated otherwise)

Analyzer Mode (for Peak Measurements) Peak/Log

Resolution Bandwidth..... 100 kHz

Video Bandwidth..... 100 kHz

Analyzer Mode (for Quasi-Peak Measurements)

Quasi-Peak/Linear Resolution Bandwidth..... 1000 kHz

Video Bandwidth..... 1000 kHz

Measurements above 1000 MHz (unless stated otherwise)

Quasi-Peak Adapter Mode Disabled (if available)

Analyzer Mode (for Peak Measurements) Peak

Resolution Bandwidth..... 1000 kHz

Video Bandwidth..... 1000 kHz

Analyzer Mode (for Average Measurements) Video Filter

Resolution Bandwidth..... 1000 kHz

Video Bandwidth..... 10 Hz

Table 6 Data Table Legend and Field Strength Calculation – Radiated Emissions Tests

Detector mode: Peak (P) or Quasi-Peak (QP) or Average (A)

	Polarization	Antenna	Freq Range (MHz)
VB	Vertical	EMCO 3104/sn 4463 Biconical	30 – 200
HB	Horizontal	EMCO 3104/sn 4463 Biconical	30 – 200
VL	Vertical	EMCO 3146/sn. 2261 Log Periodic	200 – 1000
HL	Horizontal	EMCO 3146/sn. 2261 Log Periodic	200 – 1000
VH1	Vertical	EMCO 3115/sn. 8812-3050 Horn	Below 18000
HH1	Horizontal	EMCO 3115/sn. 8812-3050 Horn	Below 18000
VH2	Vertical	HP 3116/sn. 4663 Horn	Below 26500
HH2	Horizontal	HP 3116/sn. 4663 Horn	Below 26500
VH4	Vertical	S&D DBD-520 Horn	Below 75000
HH4	Horizontal	S&D DBD-520 Horn	Below 75000

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH Measurement

The EUT was set up described above. The measurement instrumentation used was an Analyzer with bandwidth parameters as stipulated in ANSI C63.4-2001.

Site Used – Field Strength of Fundamental Measurements

- Test Site 1 - Shielded Room: 16' x 12' x 9'
- Test Site 1 - 3m Open Field Radiated Site
- Test Site 1 - 10m Open Field Radiated Site
- Test Site 2 - Environmental Lab
- EMC Lab 1 - Test Laboratory
- Semi-Anechoic Absorber Lined Shielded Room
- Other:

Administrative Details and Environmental Conditions – Field Strength of Fundamental Measurements

Test Date(s):	January 22, 2004
Test Engineer(s):	Lan Vu
Temperature	16.3°C
Humidity	52%

Lan Vu

Test Data – Field Strength of Fundamental

The measurement plot below represents the maximum worst-case result from the measurement performed in accordance to the requirements of this section.

Field Strength of Fundamental Plot

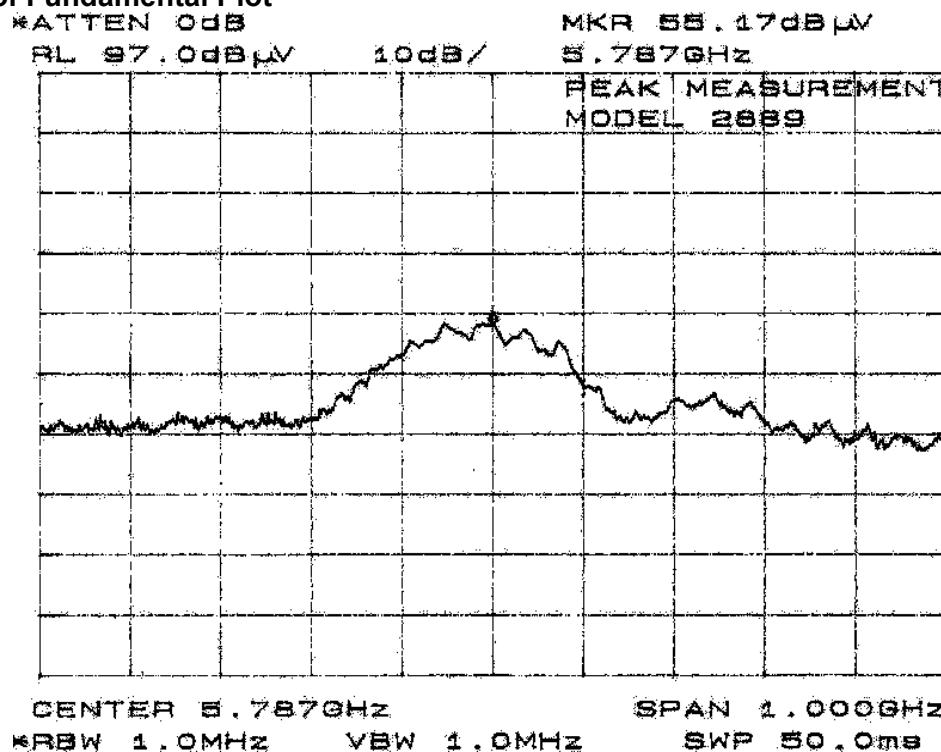


Figure 1: Plot of Field Strength of Fundamental Average Measurement Performed at 3-Meter Distance

FIELD STRENGTH OF FUNDAMENTAL (cont.)

INDICATED		CORRECTION		CORR	TURNTABLE ANT			CLASS A		CLASS B		
FREQ	AMPL	ANT	CAB / AMP	AMPL	ANG	HT	POL	AMPL	MARG	AMPL	MARG	DET
GHz	dBuV/m	dB	dB	dBuV/m	DEG	m	-	dBuV/m	dB	dBuV/m	dB	MODE
5.787	55.17	-19.2	34.4	70.30	90	1.2	VH	-	-	74	-3.7	p
5.787	52.98	-19.0	36.0	69.90	0	1.0	HH	-	-	74	-4.1	P

Table 7: Field Strength of Fundamental Test Data – Peak Measurement @ 1 meter

The margin in Table 12 is calculated as follows:

Margin = Corrected Amplitude – Limit, where Corrected Amplitude = Spectrum Analyzer Amplitude + Cable Loss + Antenna Factor – Pre-Amp Gain.

Test-Data Summary – Peak Measurement:

Center Frequency = 5800 MHz
 Peak Level: = 70.30dB μ V/m
 Peak Limit (15.209) = 74.00dB μ V/m (54dB μ V/m + 20dB)

Average Level Calculation

47CFR 15.35c:

Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Average Level Calculation of Field Strength of Fundamental with Duty Cycle correction

The duty cycle rating as provided by the manufacturer is 0.83% (or 0.0083) over a 100mSec interval = 0.0083 seconds.

dB (in μ V) Duty Cycle Correction = 0.0083 secs = 20log(0.0083) = -41.62dB μ V
 Peak Level with Duty Cycle Correction = 70.30dB μ V/m - 20dB = 50.30dB μ V/m

Test-Data Summary – Average Measurement:

Center Frequency = 5800 MHz
 Average Level: = 50.30dB μ V/m (Calculated)
 Average Limit (15.209) = 54.00dB μ V/m

Conclusion

The BMW LP_MDD Microwave Sensor meets the requirements of the test reference for Fundamental Frequency Field Strength.

FIELD STRENGTH OF FUNDAMENTAL (cont.)

OCCUPIED BANDWIDTH measurement

For the measurements, a spectrum analyzer was used. The EUT was measured according to the method specified in ANSI C63.4-2001.

Site Used – Occupied Bandwidth Measurements

- Test Site 1 - Shielded Room: 16' x 12' x 9'
- Test Site 1 - 3m Open Field Radiated Site
- Test Site 1 - 10m Open Field Radiated Site
- Test Site 2 - Environmental Lab
- EMC Lab 1 - Test Laboratory
- Semi-Anechoic Absorber Lined Shielded Room
- Other: _____

Administrative Details – Occupied Bandwidth Measurements

Test Date(s):	January 9, 2004	<i>Lan Vu</i>
Test Engineer(s):	Lan Vu	
Temperature	17°C	
Humidity	63%	

Test Measurement: Occupied Bandwidth Measurements (Performed in Anechoic Chamber)

The EUT was set up on a wooden non-conductive tabletop, 80 cm above the ground plane of the test location. Pre-scan measurements were first performed with a spectrum analyzer at 3 meter from a receiving antenna, in a Semi-Anechoic Chamber at the pre-determined worst-case height at 1 meter and in vertical polarity. The EUT running in continuous mode and was rotated 360 degrees azimuth in its x-y-z axis positions. It was also measured in the horizontal polarity. The analyzer was then placed in 'max-hold' mode to record signal level.

Table 8: Spectrum Analyzer Configuration (during swept frequency scans) – Occupied Bandwidth

Start Frequency	5.277 GHz
Stop Frequency	6.277 GHz
Sweep Speed	50 mSecs
RES Bandwidth.....	1000 kHz
Video Bandwidth.....	1000 kHz
Quasi Peak Adapter Mode	Bypass
Quasi peak Adapter Bandwidth.....	Disabled

FIELD STRENGTH OF FUNDAMENTAL (cont.)

Occupied Bandwidth Measurement Plot

The plot and test data below represents the maximum worst-case results from the measurements performed in accordance to the requirements of the standard and extreme test conditions specified at the beginning of this Part.

Spectrum Mask Measurement

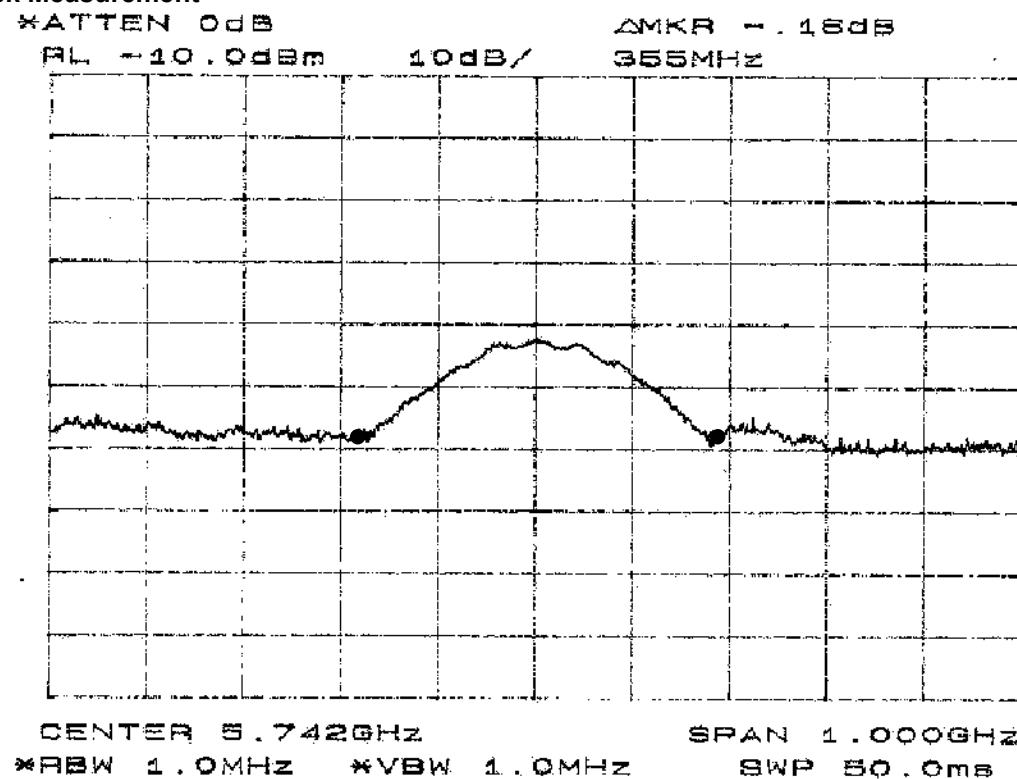


Figure 2: Occupied Bandwidth Plot

Test-Data Summary – Occupied Bandwidth:

Center frequency: 5742 MHz
Mask Bandwidth: 355 MHz

Occupied Bandwidth Data:

Upper Frequency (F_u)	$=f_0 + 355/2$	$=5742 \text{ MHz} + 177.5$	$=5564.5 \text{ MHz}$
Lower Frequency (f_L)	$=f_0 - 355/2$	$=5742 \text{ MHz} - 177.5$	$=5919.5 \text{ MHz}$

SPURIOUS EMISSIONS, HARMONICS, and Emissions in the RESTRICTED BANDS

Test Specification: FCC PART 15, SECTION 47 CFR 15.205
FCC PART 15, SECTION 47 CFR 15.209

Test Procedure – Spurious Emissions:

The measurement range investigated was from 30 MHz to 18 GHz due to lack of emissions activity above 5.8GHz. The measurement instrumentation used was an Analyzer with bandwidth parameters as stipulated in ANSI C63.4-2001

Site Used – Harmonics Emissions Measurements

- Test Site 1 - Shielded Room: 16' x 12' x 9'
- Test Site 1 - 3m Open Field Radiated Site
- Test Site 1 - 10m Open Field Radiated Site
- Test Site 2 - Environmental Lab
- EMC Lab 1 - Test Laboratory
- Semi-Anechoic Absorber Lined Shielded Room
- Other:

Administrative Details and Environmental Conditions– Spurious and Restricted Bands Emissions

Test Date:	December 26, 2003
Test Engineer:	Lan Vu
Temperature:	19°C
Humidity:	68%

Spectrum Analyzer Configuration (during swept frequency scans) – Spurious and Restricted Emissions

IF Bandwidth.....120 kHz

Measurements below 1000 MHz (unless stated otherwise)

Analyzer Mode (for Peak Measurements) Peak/Log
Resolution Bandwidth..... 100 kHz
Video Bandwidth..... 100 kHz

Analyzer Mode (for Quasi-Peak Measurements)
Quasi-Peak/Linear Resolution Bandwidth..... 1000 kHz
Video Bandwidth..... 1000 kHz

Measurements above 1000 MHz (unless stated otherwise)

Quasi-Peak Adapter Mode Disabled (if available)

Analyzer Mode (for Peak Measurements) Peak
Resolution Bandwidth..... 1000 kHz
Video Bandwidth..... 1000 kHz

Analyzer Mode (for Average Measurements) Video Filter
Resolution Bandwidth..... 1000 kHz
Video Bandwidth..... 10 Hz

SPURIOUS, HARMONICS, and RESTRICTED BANDS Emissions (cont.)

Test Details – Spurious and Restricted Bands Emissions

Transmitter	Operating Mode
Limit	47CFR 15.209 (a)

The tables below shows the summary of the highest amplitudes of the spurious RF radiated emissions from the equipment under test.

Table 9 Test Data – Spurious and Restricted Bands Emissions below 1GHz @ 3 meters

INDICATED		CORRECTION		CORR	TURNTABLE ANT			CLASS A		CLASS B		
FREQ	AMPL	ANT	CAB	AMPL	ANG	HT	POL	AMPL	MARG	AMPL	MARG	DET
MHz	dBuV/m	dB	dB	dBuV/m	DEG	m	-	dBuV/m	dB	dBuV/m	dB	MODE
34.90	16.20	10.1	0.9	27.2	90	1.0	VB	-	-	40.0	-12.8	P
35.20	14.80	11.6	0.9	27.3	90	1.5	HB	-	-	40.0	-12.7	P
50.12	17.10	10.3	1.1	28.5	90	1.0	VB	-	-	40.0	-11.5	P
84.90	12.50	8.3	2.4	23.2	90	1.0	VB	-	-	40.0	-16.8	P
115.80	11.60	14.2	3.4	29.2	90	1.0	VB	-	-	40.0	-10.8	P
142.80	11.70	12.5	4.5	28.7	90	1.0	VB	-	-	43.0	-14.3	P
210.18	9.60	11.5	3.7	24.8	0	1.0	VL	-	-	43.0	-18.2	P
225.00	11.80	11.3	0.9	24.0	0	1.0	VL	-	-	46.0	-22.0	P
243.80	16.30	12.5	3.9	32.6	90	1.0	VL	-	-	46.0	-13.4	P
243.90	17.20	12.4	3.9	33.5	90	1.0	HL	-	-	46.0	-12.5	P
490.20	10.50	17.6	5.1	33.2	90	1.0	VL	-	-	46.0	-12.8	P
547.20	10.00	18.9	7.6	36.5	90	1.5	HL	-	-	46.0	-9.5	P
621.90	6.90	19.0	6.7	32.6	90	1.0	VL	-	-	46.0	-13.4	P

No emission of significant level was observed above 621.90MHz.

Table 10 Test Data for Radiated Emissions Measurement above 1 GHz @ 3 meters (Measurements to 40 GHz)

INDICATED		CORRECTION		CORR	TURNTABLE ANT			CLASS A		CLASS B		
FREQ	AMPL	ANT	CAB/Pre-Amp	AMPL	ANG	HT	POL	AMPL	MARG	AMPL	MARG	DET
MHz	dBuV/m	dB	dB	dBuV/m	DEG	m	-	dBuV/m	dB	dBuV/m	dB	MODE
1165.00	47.00	25.0	-36.0	36.0	90	1.0	VH	-	-	54.0	-18.0	P
1188.00	42.00	25.4	-36.0	31.4	90	1.0	VH	-	-	54.0	-22.6	P
1189.00	40.00	25.4	-36.0	29.4	90	1.5	HH	-	-	54.0	-24.6	P
1209.00	44.00	25.7	-36.0	34.7	90	1.0	VH	-	-	54.0	-19.3	P
1235.00	48.00	25.8	-36.0	37.8	90	1.0	VH	-	-	54.0	-18.2	P
1235.00	47.00	25.5	-36.0	36.5	0	1.0	HH	-	-	54.0	-17.5	P
1295.00	47.00	26.0	-36.0	37.0	0	1.0	VH	-	-	54.0	-17.0	P
1315.00	51.00	26.2	-36.0	41.2	90	1.0	VH	-	-	54.0	-12.8	P
1315.00	49.00	26.2	-36.0	39.2	90	1.0	HH	-	-	54.0	-14.8	P
1350.00	51.00	26.8	-36.0	41.8	90	1.0	VH	-	-	54.0	-12.2	P
1386.00	46.00	27.0	-36.0	37.0	0	1.0	VH	-	-	54.0	-17.0	P
1624.00	47.00	27.7	-35.0	39.7	90	1.2	HH	-	-	54.0	-14.3	P
1625.00	44.00	27.7	-35.0	36.7	90	1.0	VH	-	-	54.0	-17.3	P
1662.00	47.00	28.0	-35.0	40.0	90	1.0	VH	-	-	54.0	-14.0	P
5787.00*	55.17	34.4	-19.2	70.3	90	1.2	VH	-	-	54.0	16.3	P
5787.00*	52.98	36.0	-19.0	69.9	0	1.0	HH	-	-	54.0	15.9	P
11574.00**	9.20	39.2	-18.0	30.4	90	1.2	VH	-	-	54.0	-23.6	P
11574.00**	9.10	39.3	-18.0	30.4	90	1.0	HH	-	-	54.0	-23.6	P
17361.00**	7.20	44.3	-8.0	43.5	90	1.0	VH	-	-	54.0	-10.5	P
17361.00**	7.00	43.6	-8.0	42.6	90	1.0	HH	-	-	54.0	-11.4	P

No emission of significant level was observed above 17361.00 MHz.

* Fundamental Frequency

** Noise Floor

Prepared By: ITC Engineering Services, Inc.

9959 Calaveras Road, PO Box 543

Sunol, California 94586-0543

Tel: [925] 862-2944

Fax: [925] 862-9013

Email: docs@itcemc.com

Web: www.itcemc.com

BMW LP_MDD Microwave Sensor
P/N: 902889

FCC ID:LQN2889

SPURIOUS, HARMONICS, and RESTRICTED BANDS Emissions (cont.)

Test-Data Summary – Spurious, Harmonics, and Restricted Bands Measurements

The margin in the Table 6 is calculated as follows:

Margin = Corrected Amplitude – Limit, where Corrected Amplitude = Spectrum Analyzer Amplitude + Cable Loss + Antenna Factor – Pre-Amp Gain.

Conclusion

The BMW LP_MDD Microwave Sensor meets the requirements of the test reference for Spurious and Restricted Bands emissions levels specified in the 47CFR15.209

PART 3 APPENDICES**A. EUT Technical Specification**

Applicant	Connaught Electronics, Ltd.		
Product Specifications			
Description	5.8GHz SDR Sensor		
Frequency Range	5564.5 MHz to 5919.5 MHz		
Part Number(s)	CEL	902889	
	BMW	6 943 584 E46C	
Trade Name	BMW LP_MDD Sensor B		
Serial Number(s)	0000000000000005A		
Central Processor	16LF876-041/SO		
Cable(s)	n/a		
Peak Output Power	-36dBm		
Mainboard	Manufacturer	CEL	
	Model	CTX 0337	
	Part Number	152887 Rev 002	
	Dimension	Approx. 65mm x 60mm	
	Connector(s)	One (1) 4-pin, p/n. 4-1393472-9	
Antenna Board	Manufacturer	CEL	
	Model	CTX/A 0336	
	Part Number	489304	
	Dimension	Approx. 23mm x 10mm	
	Layers	2-sided	
Ports	Antenna		
	Two (2) 10mm Dual loop, 1mm traces		
	One (1) 4-pin		
	Power Supply(s)	DC Cell	
		Input 9V to 16V/50mA	
		Output n/a	
Crystals/Oscillators			
Resonator (U8) – 4MHz			

B. Modification Letter

To Whom It May Concern:

This is to certify that no modifications were necessary for BMW LP_MDD Microwave Sensor, model 902889 to comply with the required Requirements of:

FCC Rules and Regulations per 47 CFR 15.209

It is the manufacturer's responsibility to ensure that additional production units of the BMW LP_MDD Microwave Sensor model 902889 are manufactured with identical electrical and mechanical characteristics. For further information, please contact the manufacturer at:

Connaught Electronics, Ltd.
IDA Industrial Estate, Dunmore Road, Tuam,
Co. Galway, Ireland

Tel: +353 932-5128
Attention: Mr. Joe Danaher