

pulsarTM

Model RX5

RX5 software v1.0a

Installation and Operating Manual

*Through-Air
Radar Level Transmitter*

 Magnetrol[®]

STI

Read this Manual Before Installing

This manual provides information on the Pulsar Radar transmitter. It is important that all instructions are read carefully and followed in sequence. The *QuickStart Installation* instructions are a brief guide to the sequence of steps for experienced technicians to follow when installing the equipment. Detailed instructions are included in the *Complete Installation* section of this manual.

Conventions Used in this Manual

Certain conventions are used in this manual to convey specific types of information. General technical material, support data, and safety information are presented in narrative form. The following styles are used for notes, cautions, and warnings.

Notes

Notes contain information that augments or clarifies an operating step. Notes do not normally contain actions. They follow the procedural steps to which they refer.

Cautions

Cautions alert the technician to special conditions that could injure personnel, damage equipment, or reduce a component's mechanical integrity. Cautions are also used to alert the technician to unsafe practices or the need for special protective equipment or specific materials. In this manual, a caution box indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

Warnings

Warnings identify potentially dangerous situations or serious hazards. In this manual, a warning indicates an imminently hazardous situation which, if not avoided, could result in serious injury or death.

Safety Messages

The Through-Air Radar system is designed for use in Category II, Pollution Degree 2 installations. Follow all standard industry procedures for servicing electrical and computer equipment when working with or around high voltage. Always shut off the power supply before touching any components. Although high voltage is not present in this system, it may be present in other systems.

Electrical components are sensitive to electrostatic discharge. To prevent equipment damage, observe safety procedures when working with electrostatic sensitive components.

Low Voltage Directive

For use in Installations Category II, Pollution Degree 2. If equipment is used in a manner not specified by the manufacturer, protection provided by equipment may be impaired.

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

FCC ID: LPN R95

Any unauthorized changes or modifications not expressly approved by the party responsible for compliance could void user's authority to operate this equipment.

WARNING! Explosion hazard. Do not connect or disconnect designs rated Explosion-proof or Non-incendive unless power has been switched off and/or the area is known to be non-hazardous

Notice of Copyright and Limitations

Copyright © 2003 Magnetrol International, Incorporated
All rights reserved.

Magnetrol reserves the right to make changes to the product described in this manual at any time without notice. Magnetrol makes no warranty with respect to the accuracy of the information in this manual.

Warranty

All Magnetrol/STI electronic level and flow controls are warranted free of defects in materials or workmanship for one full year from the date of original factory shipment.

If returned within the warranty period; and, upon factory inspection of the control, the cause of the claim is determined to be covered under the warranty; then, Magnetrol/STI will repair or replace the control at no cost to the purchaser (or owner) other than transportation.

Magnetrol/STI shall not be liable for misapplication, labor claims, direct or consequential damage or expense arising from the installation or use of equipment. There are no other warranties expressed or implied, except special written warranties covering some Magnetrol/STI products.

Quality assurance

The quality assurance system in place at Magnetrol/STI guarantees the highest level of quality throughout the company. Magnetrol is committed to providing full customer satisfaction both in quality products and quality service.

Magnetrol's quality assurance system is registered to ISO 9001 affirming its commitment to known international quality standards providing the strongest assurance of product/service quality available.

Pulsar Through-Air Radar Transmitter

Table of Contents

1.0 QuickStart Installation	
1.1 Getting Started.....	1
1.1.1 Equipment and Tools	1
1.1.2 Configuration Information.....	2
1.2 QuickStart Mounting.....	3
1.2.1 Antenna	3
1.2.2 Transmitter.....	3
1.3 QuickStart Wiring	3
1.4 QuickStart Configuration	4
2.0 Complete Installation	
2.1 Unpacking	6
2.2 Electronic Discharge (ESD) Handling Procedure.....	6
2.3 Before You Begin.....	7
2.3.1 Site Preparation	7
2.3.2 Equipment and Tools	7
2.3.3 Operational Considerations.....	7
2.3.3.1 Maximum Distance.....	8
2.3.3.2 Minimum Distance.....	8
2.3.3.3 Problematic Applications; GWR Alternative	8
2.4 Mounting.....	9
2.4.1 Installing the Antenna.....	9
2.4.1.1 Location.....	9
2.4.1.2 Beam Angle.....	9
2.4.1.3 Obstructions	10
2.4.1.4 Nozzles.....	10
2.4.2 Installing the Transmitter	11
2.4.2.1 Orientation	11
2.4.2.2 Initial Installation.....	12
2.4.2.3 Signal Loss	12
2.5 Wiring	13
2.5.1 General Purpose or Non-Incendive	13
2.5.2 Intrinsically Safe	13
2.5.3 Explosion Proof.....	14
2.6 Configuring the Transmitter.....	15
2.6.1 Operating Parameters	15
2.6.2 Setting Up for Shop Configuration	15
2.6.3 Transmitter Display and Keypad	15
2.6.4 Password Protection (Default = 0)	16
2.6.5 Menu: Step-By-Step Procedure.....	17
2.6.5.1 Radar Transmitter Menu Table.....	18
2.7 Configuration Using HART®	22
2.7.1 Connections	22
2.7.2 Display Menu.....	22
2.7.3 HART Revision Table	22
2.7.3.1 Model RX5	22
2.7.4 HART Menu.....	23
3.0 Reference Information	
3.1 Description	24
3.2 Theory of Operation	24
3.2.1 Pulse Burst Radar	24
3.2.2 Equivalent Time Sampling	25
3.3 Troubleshooting	26
3.3.1 System Problems	26
3.3.2 Error Messages	27
3.4 Agency Approvals.....	29
3.4.1 Agency Drawing and Entity Parameters	30
3.5 Parts	31
3.5.1 Replacement Parts	31
3.5.2 Recommended Spare Parts	31
3.6 Specifications	32
3.6.1 Functional – Transmitter	32
3.6.2 Performance	33
3.6.3 Functional – Dielectric Rod/Horn	34
3.6.4 Antenna Pressure-Temperature Ratings	34
3.6.5 Physical	34
3.7 Model Numbers	36
3.7.1 Pulsar Radar Transmitter	36
3.7.2 Radar Antennas – Dielectric Rod	37
3.7.3 Radar Antennas – Horn	39
Glossary	40
Model RX5 Configuration Data Sheet.....	43

1.0 QuickStart Installation

The QuickStart Installation procedures provide the key steps for mounting, wiring, and configuring the Pulsar radar level transmitter. These procedures are intended for experienced installers of electronic level measurement instruments. See Complete Installation, Section 2.0, for detailed installation instructions.

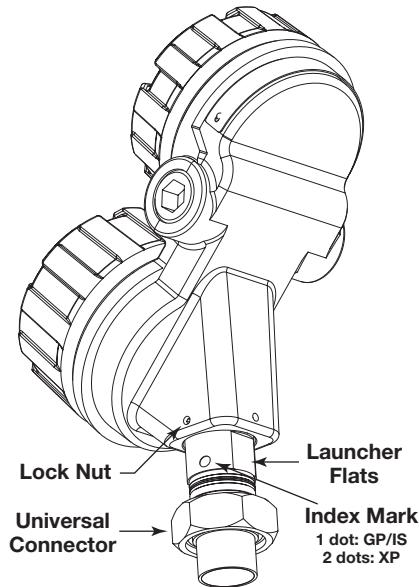
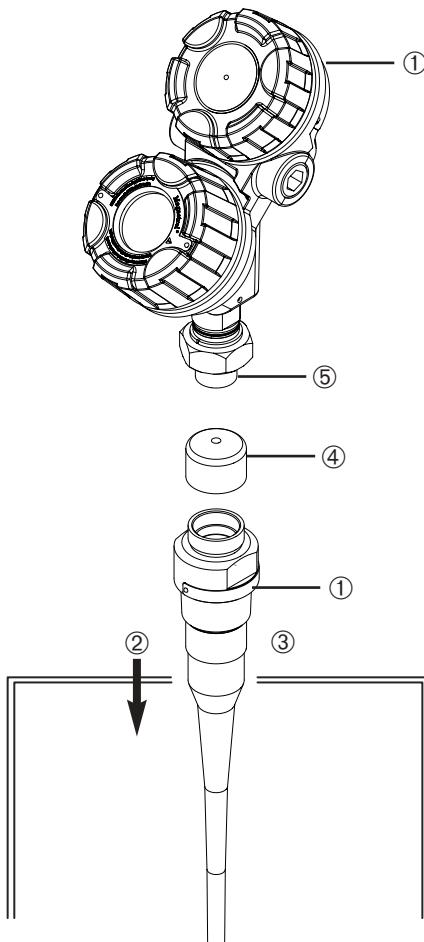
1.1 Getting Started

Before beginning the QuickStart Installation procedures, have the right equipment, tools, and information available.

1.1.1 Equipment and Tools

No special tools are needed. The following items are recommended:

• Threaded antenna and transmitter	2" (50 mm)
• Transmitter/antenna connection	1¾" (44 mm)
• Transmitter adjustment	1⅓" (28 mm), ¾" (2.5 mm) Hex
• Torque wrench	highly desirable
• Flat-blade screwdriver	
• Digital multimeter or volt/ammeter	Optional
• 24 VDC (23 mA) power supply	Optional



1.1.2 Configuration Information

Some key information is needed to configure the Pulsar radar transmitter. Complete the following operating parameters table before beginning configuration.

NOTE: The transmitter will already be configured if this information was provided with the order.

Display	Question	Answer
Units	What units of measurement will be used?	_____
Antenna Type	What type of antenna is being used? Select first 7 digits of Model number. (See nameplate on side of antenna)	_____
Antenna Extension	What is maximum nozzle length that the antenna can be used? Select last 3 digits of Model number. (See nameplate on side of antenna)	_____
Antenna Mount	Is the antenna mounting NPT, BSP, or flanged?	_____
Sensor Offset	What is the distance from the top (100%) of the tank and the Sensor Reference point (bottom of NPT thread, top of BSP thread, or face of flange?)	_____
Tank Top	Is the Tank Top Flat, Horizontal Cylinder, Dome, Irregular or other (non-metallic)?	_____
Tank Height	What is the tank height?	_____
Blocking	What is the distance from Sensor Reference point to Maximum Level? Maximum level should never be less than 2" (50 mm) from bottom of antenna.	_____
Level Offset	Is there a region at the very bottom of the vessel that cannot be measured due to heating coils, angle tank bottom, etc.?	_____
Dielectric	What is the dielectric of the process medium?	_____
Turbulence	Is turbulence a consideration?	_____
Rate of Change	What is the maximum rate the level will rise or fall?	_____
Foam	Will there be foam on the surface?	_____
Set 4.0 mA	What is the 0% reference point for the 4.0 mA value?	_____
Set 20.0 mA	What is the 100% reference point for the 20.0 mA value?	_____

1.2 QuickStart Mounting

NOTE: Confirm the configuration style and process connection (size and type) of the Pulsar radar transmitter. Make sure it matches the requirements of the installation before continuing with the QuickStart installation.

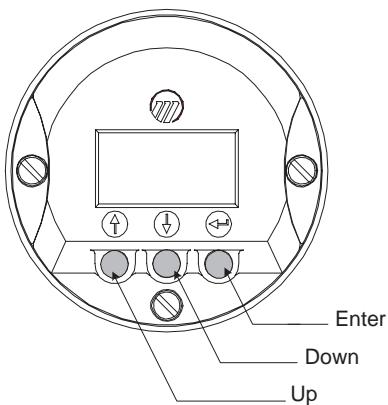
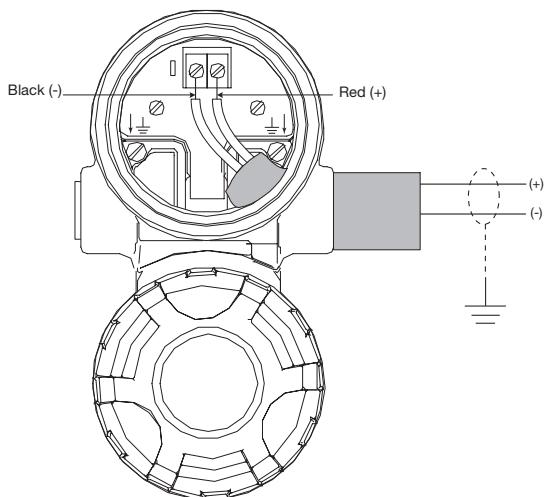
- ① Confirm the model and serial numbers on the nameplates of Pulsar electronics and antenna are identical.

1.2.1 Antenna

- ② Carefully place the antenna into the vessel.
- ③ Secure the antenna to the vessel.
- ④ Leave the protective plastic cap in place until ready to install the transmitter.

NOTE: Do not use sealing compound or TFE tape on antenna connection to transmitter. This connection is sealed by a Viton O-ring.

1.2.2 Transmitter

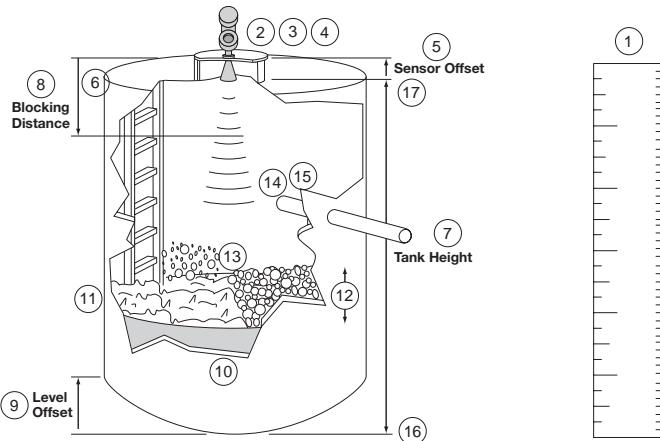


1. Remove the protective plastic cap from the top of the antenna and store for future use. Make sure the bottom of the Universal connector (TFE) ⑤ and inside of the antenna are clean and dry. Clean with isopropyl alcohol and cotton swabs if necessary.
2. Place the transmitter on the antenna.
3. Ensure the housing/launcher lock nut is loose and the housing can be turned. Align the antenna "flats" so they are at an angle of 45° to a line from the radar unit to the nearest tank wall.
4. Rotate the transmitter so that it is in the most convenient position for wiring, configuring, and viewing.
5. While keeping the housing and launcher aligned, tighten both the housing/launcher lock nut and large Universal connector Hex nut. Tighten the universal connector to 30 ft./lbs of force. A torque wrench is highly desirable. **DO NOT LEAVE HAND TIGHT.**
 - Do not place insulating material around any part of the Radar transmitter including the antenna flange.

1.3 QuickStart Wiring

WARNING! Explosion hazard. Do not remove covers unless power has been switched off or the area is known to be non-hazardous.

NOTE: Make sure the electrical wiring to the Pulsar radar transmitter is complete and in compliance with all regulations and codes.

1. Remove the cover of the wiring compartment.


2. Attach a conduit fitting and mount the conduit plug in the spare opening. Pull the power supply wire through the conduit fitting.
3. Connect shield to an earth ground at power supply and leave floating at the transmitter.
4. Connect the positive supply wire to the (+) terminal and the negative supply wire to the (-) terminal. For Explosion Proof Installations, see Wiring, Section 2.5.3.
5. Replace the cover and tighten.

1.4 QuickStart Configuration

The Radar transmitter comes factory-calibrated and can be configured in minutes for specific applications. Bench configuration provides a convenient and efficient way to set up the transmitter before going to the tank site to complete the installation (disregard Fault messages due to unattached antenna). The minimum configuration instructions follow. Use the information from the operating parameters table before beginning configuration. See Configuration Information, Section 1.1.2.

1. Power-up the transmitter.
Upon initial start-up, NO FALSE TARGET REJECTION error message will be displayed. Once in the vessel the FALSE TARGET routine must be run for proper operation. During normal operation the display changes every 5 seconds to show one of the four measured values: Level, Quality, %Output, and Loop.
2. Remove the cover of the electronic compartment.
3. Use the Up or Down Arrow (\uparrow \downarrow) keys to move from one step of the configuration program to the next step.
4. Press the Enter Arrow (\leftarrow \rightarrow) key. If a PASSWORD is active, enter it here. The default=0 (no password necessary). The last character in the first line of the display Units!
xxx changes to an exclamation point (!).
5. Use the Up or Down Arrow (\uparrow \downarrow) keys to increase or decrease the value in the display or to scroll through the choices.
6. Press the Enter Arrow (\leftarrow \rightarrow) key to accept a value and move to the next step of the configuration program.

The following configuration entries are the minimum required for configuration. The default password is 0.

1 <input type="button" value="Units (select)"/>	Select the Units of measurement for the level readout (cm, inches, meters, feet).	9 <input type="button" value="LevlOfst xxx.x"/>	Enter the Level Offset ; the distance at the bottom of the vessel where measurement may be unreliable due to heating coils, irregular bottom, etc.
2 <input type="button" value="Antna Typ (select)"/>	Select the Antenna Type to be used as printed on the transmitter nameplate; first 7 digits of model number.	10 <input type="button" value="Dielectrc (select)"/>	Select the proper Dielectric range for the process medium.
3 <input type="button" value="Antna Ext (select)"/>	Select the Antenna Extension to be used as printed on the antenna nameplate; last 3 digits of model number.	11 <input type="button" value="Turbulnc (select)"/>	Select the value of Turbulence that corresponds to the application.
4 <input type="button" value="Antna Mnt (select)"/>	Select the type of Antenna Mounting to be used.	12 <input type="button" value="RateChg (select)"/>	Select the Rate of Change value that corresponds to the maximum rate the level will rise or fall.
5 <input type="button" value="SnsrOfst xxxx"/>	Enter the Sensor Offset value; the distance from the top (100%) point of the vessel to the Sensor Reference point (bottom of an NPT thread, top of a BSP thread, face of a flange).	13 <input type="button" value="Foam (select)"/>	Select the Foam value that corresponds to the application.
6 <input type="button" value="Tank Top (select)"/>	Select the type of Tank Top ; choices are Flat, Horizontal cylinder, Dome, Irregular, or Other (non-metallic).	14 <input type="button" value="Targets"/>	Examine the list of reflections detected by the transmitter to ensure the actual level reflection is present. It may be necessary to rotate the launcher for optimum performance.
7 <input type="button" value="Tank Ht xxxx"/>	Enter the exact Tank Height ; inaccurate values will create inaccurate level readings.	15 <input type="button" value="TargRej (status)"/>	Run the Target Rejection routine to cancel all false reflections in the vessel; ideally with tank empty.
8 <input type="button" value="BlockDis xxxx"/>	Enter the Blocking Distance ; the distance close to the antenna where measurement is unreliable due to antenna ringing. Minimum value = antenna length + 2" (50 mm)	16 <input type="button" value="Set 4mA xx.x"/>	Enter the minimum level value (0%) for the 4 mA point.
		17 <input type="button" value="Set 20mA xx.x"/>	Enter the maximum level (100%) for the 20 mA point.

2.0 Complete Installation

This section provides detailed procedures for properly installing, configuring, and, as needed, troubleshooting the Pulsar Radar Level Transmitter.

2.1 Unpacking

Unpack the instrument carefully. Make sure all components have been removed from the packing material. Check all the contents against the packing slip and report any discrepancies to the factory.

Before proceeding with the installation, do the following:

- Inspect all components for damage. Report any damage to the carrier within 24 hours.
- Make sure the nameplate model number on the antenna and transmitter agree with the packing slip and purchase order.
- Record the model and serial numbers for future reference when ordering parts.

2.2 Electrostatic Discharge (ESD) Handling Procedure

Magnetrol's electronic instruments are manufactured to the highest quality standards. These instruments use electronic components that may be damaged by static electricity present in most work environments.

The following steps are recommended to reduce the risk of component failure due to electrostatic discharge.

- Ship and store circuit boards in anti-static bags. If an anti-static bag is not available, wrap the board in aluminum foil. Do not place boards on foam packing materials.
- Use a grounding wrist strap when installing and removing circuit boards. A grounded workstation is recommended.
- Handle circuit boards only by the edges. Do not touch components or connector pins.
- Make sure that all electrical connections are completely made and none are partial or floating. Ground all equipment to a good, earth ground.

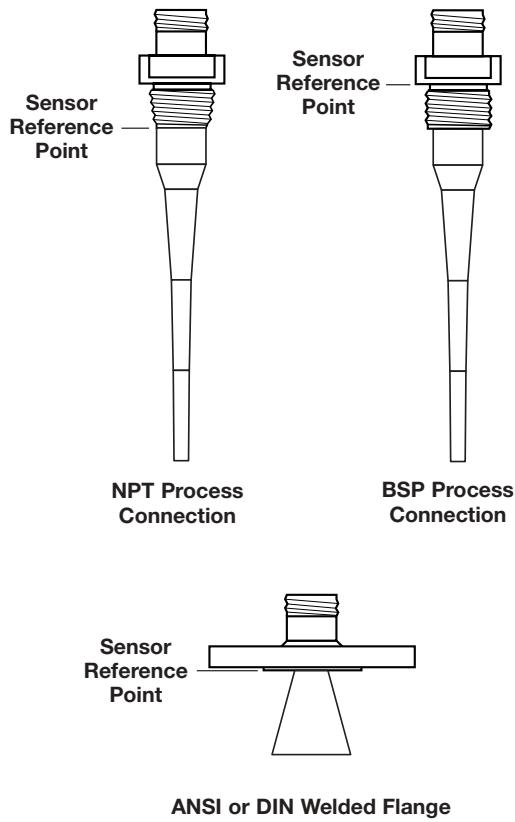
2.3 Before You Begin

2.3.1 Site Preparation

Each Pulsar Radar transmitter is built to match the specific physical specifications of the required installation. Make sure the antenna connection is correct for the threaded or flanged mounting on the vessel or tank where the transmitter will be placed. See Mounting, Section 2.4.

Make sure that the wiring between the power supply and Radar transmitter are complete and correct for the type of installation.

When installing the Radar transmitter in a general purpose or hazardous area, all local, state, and federal regulations and guidelines must be observed. See Wiring, Section 2.5.


2.3.2 Equipment and Tools

No special tools are needed. The following items are recommended:

- Threaded antenna and transmitter 2" (50 mm)
- Transmitter/antenna connection 1 $\frac{3}{4}$ " (44 mm)
- Transmitter adjustment 1 $\frac{1}{8}$ " (28 mm), $\frac{3}{32}$ " (2.5 mm) Hex
- Torque wrench highly desirable
- Flat-blade screwdriver
- Digital multimeter or volt/ammeter Optional
- 24 VDC (23 mA) power supply Optional

2.3.3 Operational Considerations

Radar applications are characterized by three basic conditions; Dielectric, Distance (measuring range) and Disturbances (turbulence, foam, false targets, multiple reflections and rate of change). The Pulsar Radar transmitter is offered with three antenna configurations—Dielectric Rod, 4" (DN100) Horn and 6" (DN150) Horn. Ideally, the 6" (DN150) Horn antenna should be used to ensure the best possible performance in all operational conditions.

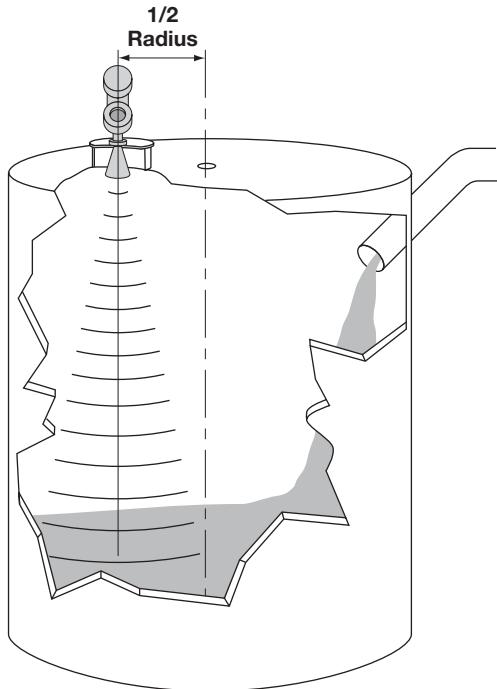
2.3.3.1 The chart below shows the maximum measuring range (Distance) of each antenna based on fundamental conditions of Dielectric, Distance and Turbulence. Maximum distance is calculated as Tank Height + Sensor Offset (see Page 17). It is measured from the Sensor Reference Point (bottom of NPT thread, top of BSP thread or face of a flange).

MAXIMUM DISTANCE feet (meters)

Dielectric	Turbulence	Dielectric Rod (1½")	4" Horn	6" Horn
1.7-3.0	None	35 (10.7)	40 (12.2)	45 (13.7)
	Light, < 0.5"	28 (8.5)	33 (10.1)	37 (11.3)
	Moderate, < 1.0"	21 (6.4)	26 (7.9)	29 (8.8)
	Heavy, > 1.0"	15 (4.6)	17 (5.2)	20 (6.1)
3.0-10.0	None	50 (15.2)	55 (16.8)	60 (18.3)
	Light, < 0.5"	40 (12.2)	44 (13.4)	48 (14.6)
	Moderate, < 1.0"	30 (9.1)	33 (10.1)	35 (10.7)
	Heavy, > 1.0"	20 (6.1)	22 (6.7)	25 (7.6)
10.0-100	None	65 (2.4)	65 (2.4)	65 (2.4)
	Light, < 0.5"	52 (15.8)	52 (15.8)	53 (16.2)
	Moderate, < 1.0"	39 (11.9)	39 (11.9)	41 (12.5)
	Heavy, > 1.0"	25 (7.6)	27 (8.2)	30 (9.1)

2.3.3.2 Minimum Distance

If the liquid level is allowed onto the antenna, noise and media build-up drastically decrease reliable measurement. Liquid should not be allowed closer than 2 inches (50 mm) from the bottom of the antenna.

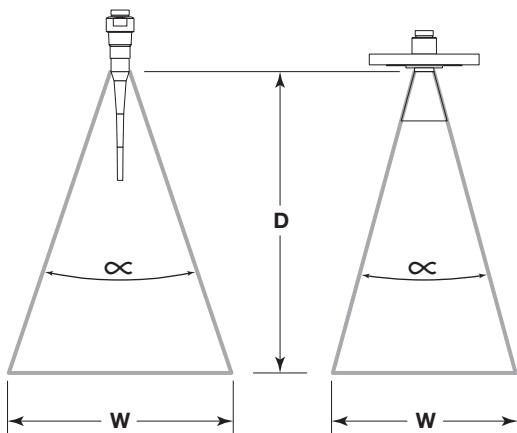

2.3.3.3 Problematic Applications; GWR Alternative

Some application concerns can be problematic for Radar. For these, Guided Wave Radar is recommended:

- Extremely low dielectric media ($\epsilon_r < 2.0$)
- Stillwells, standpipes, bridles, cages and bypass columns.
- Very weak reflections from the liquid surface, particularly during turbulence, can cause poor performance.
- Tanks heavily cluttered with false targets (mixers, pumps, ladders, pipes, etc.)
- During times of very low liquid levels of low dielectric media, the metal tank bottom may be detected deteriorating performance.
- Foam can either absorb or reflect the microwave energy depending upon the depth, dielectric, density and wall thickness of the bubbles. Due to typical variations in the amount (depth) of foam, it is impossible to quantify performance. It may be possible to receive most, some or none of the transmitted energy.
- Extremely high liquid levels (Overflow) conditions when liquid very near the antenna can cause erroneous readings and measurement failure.

Refer to Eclipse bulletin 57-101

2.4 Mounting



The Pulsar Radar transmitter can be mounted to a vessel using a variety of process connections. Generally, either a threaded or flanged connection is used.

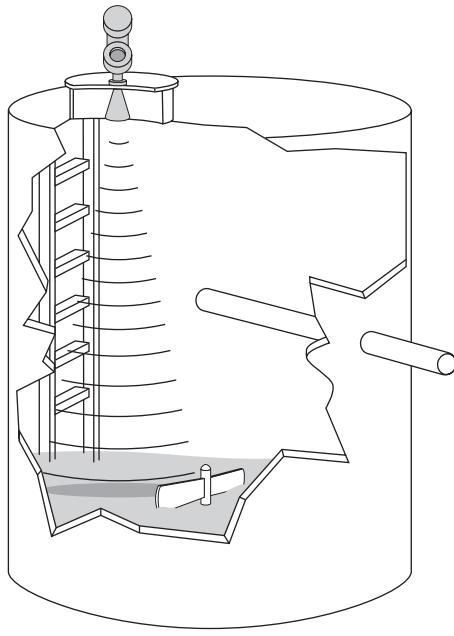
2.4.1 Installing the Antenna

Before installing, make sure:

- Model and Serial numbers on the nameplates of the Pulsar antenna and transmitter are identical.
- Process temperature, pressure, dielectric, turbulence and distance are within the antenna specifications for the installation.
- Rod of a Dielectric Rod antenna is protected from bending or breaking; there is no metal sub-structure.
- Kynar process connection is used only in non-metallic process connections.
- Insulating material is not placed around any part of the Radar transmitter including the antenna flange.
- Protective cap is left on the antenna if the transmitter is to be installed at a later time.
- Antenna is being mounted in the optimal location. See following sections Location, Beam Angle, Obstructions and Nozzles for specific information.

2.4.1.1 Location

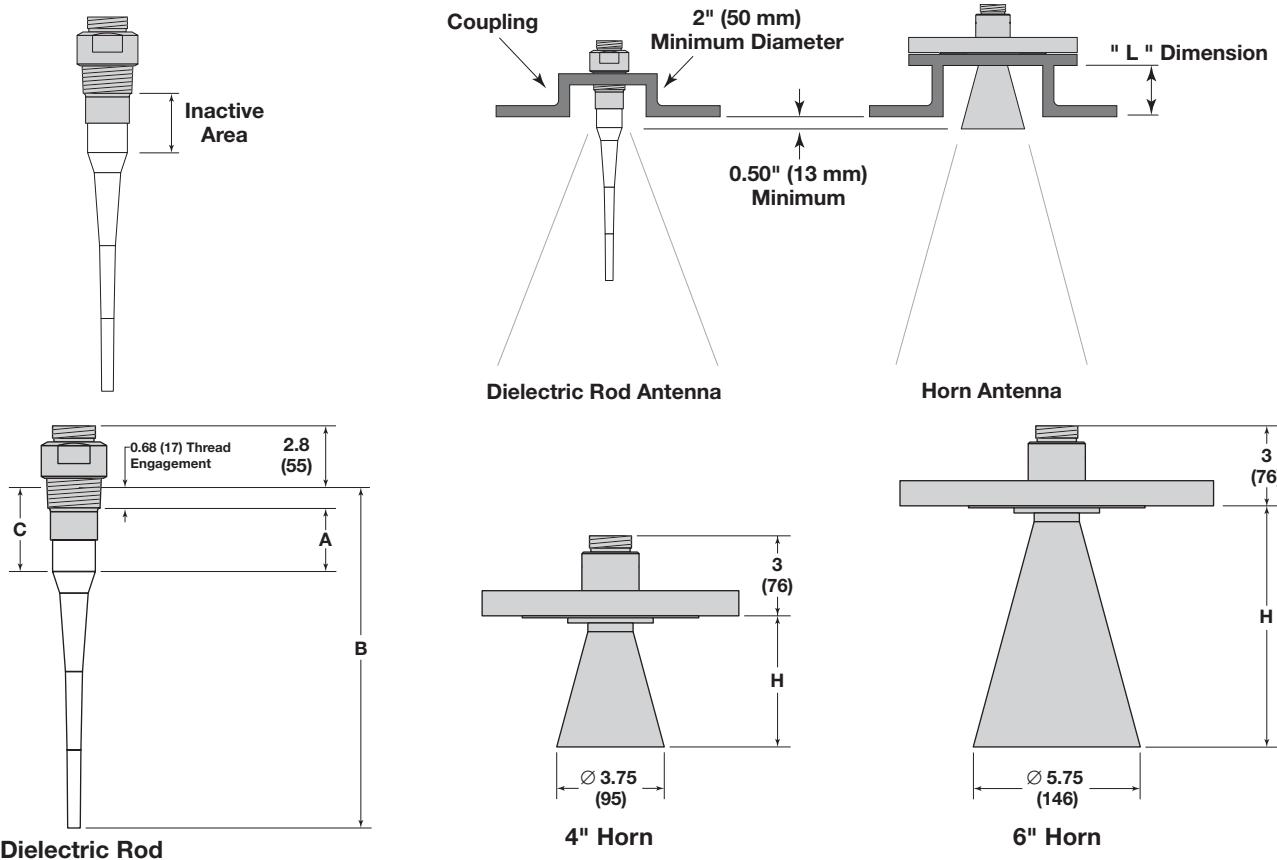
Ideally, the Radar transmitter should be mounted providing an unobstructed signal path to the liquid surface where it should illuminate (with microwave energy) the largest, possible surface area. See Section 2.4.1.2 Beam Angle.


Unavoidable obstacles will produce reflections that must be minimized during field configuration. See Section 2.6.5.1, Target Rejection.

2.4.1.2 Beam Angle

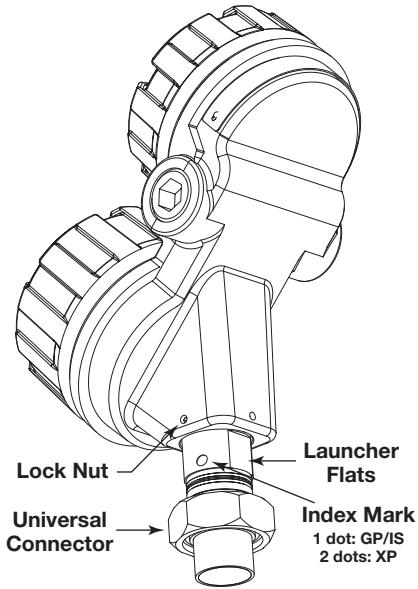
The various antenna designs exhibit different beam patterns. Ideally, the beam pattern should illuminate the maximum liquid surface with a minimum striking other objects in the vessel including the tank wall. Use these drawings to determine the optimum installation location.

	Beam Spread, W @-3dB; ft (m)		
Antenna	Dielectric Rod	4" Horn	6" Horn
Beam Angle (∞)	25°	25°	17°
Distance, D			
10 (3)	4.5 (1.37)	4.5 (1.37)	3.0 (0.91)
20 (6)	8.9 (2.71)	8.9 (2.71)	6.0 (1.83)
30 (9)	13.3 (4.05)	13.3 (4.05)	9.0 (2.74)
40 (12)	17.8 (5.43)	17.8 (5.43)	12.0 (3.66)
50 (15)	22.2 (6.77)	22.2 (6.77)	15.0 (4.57)
60 (18)	26.6 (8.11)	26.6 (8.11)	18.0 (5.49)
65 (20)	28.9 (8.81)	28.9 (8.81)	19.5 (5.95)


2.4.1.3 Obstructions

Almost any object that falls within the beam pattern will cause reflections that may be misinterpreted as a false liquid level. Although Pulsar has a powerful False Target Rejection routine, all possible precautions should be taken to minimize false target reflections with proper installation and orientation.

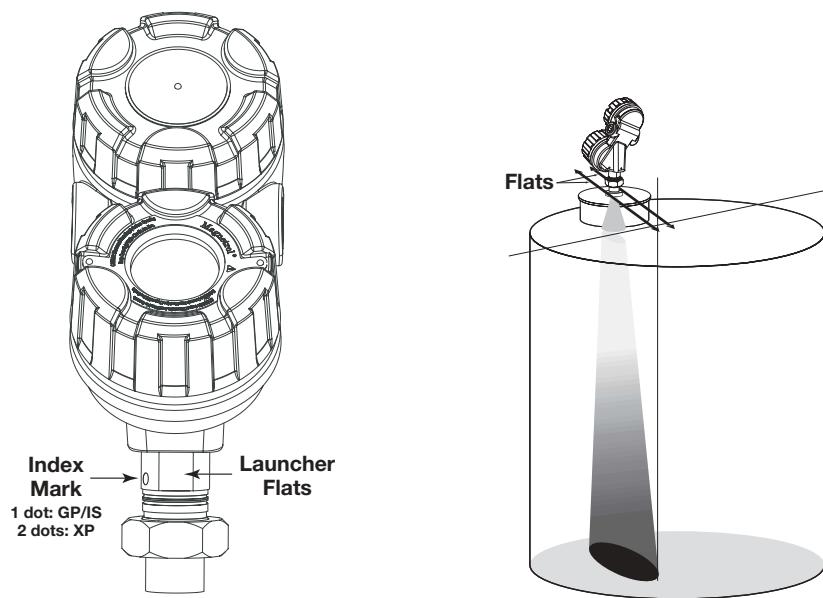
2.4.1.4 Nozzles


Improper installation in a nozzle creates “ringing” that will adversely affect measurement. The antenna should always be mounted so the active section of the antenna is a minimum of 0.5" (12mm) outside the nozzle. Antenna extensions are offered to allow the Pulsar transmitter to work reliably in nozzles with “L” dimensions of 1" (25 mm), 4" (100mm), 8" (200mm) or 12" (300mm). Standard antennas (no extension) are shown below for reference. See Section 3.6.4 for dimensional drawings of all antenna designs including nozzle extensions.

Dielectric Rod

Model #	Antenna Extension (maximum “L” dimension)	DIELECTRIC RODS			HORNS	
		All	All	BSP	4"	6"
		Dim A	Dim B	Dim C	Dim H	Dim H
0	1" (25)	2.3 (58)	11.1 (282)	3 (76)	↓	
1	4" (100)	5.1 (130)	14 (356)	5.9 (150)	4.6 (117)	↓
2	8" (200)	9.1 (231)	18 (457)	9.9 (251)	8.4 (213)	8.3 (211)
3	12" (300)	13.1 (333)	22 (559)	13.9 (353)	12.4 (315)	12.4 (315)

2.4.2 Installing the Transmitter



- Remove the protective plastic cap from the top of the antenna
- Carefully place the transmitter on the antenna
- Rotate the transmitter to face the most convenient direction for wiring, configuration and viewing. Do not tighten the universal connector (large hex nut) nor the locking nut on the housing base. The transmitter launcher must be oriented properly for optimal performance. Proceed to the next section (2.4.2.1 Orientation).
- Do not place insulating material around any part of the Radar transmitter including the antenna flange.

2.4.2.1 Orientation

The Pulsar transmitter utilizes a linearly polarized, microwave beam that can be rotated to improve its performance. Proper orientation can minimize unwanted target reflections, decrease sidewall reflections (multipath) and maximize direct reflections from the liquid surface. The wrench flats located on the side of the launcher are oriented in the same direction as the polarization.

An index mark is also present for reference (1 dot: GP/IS or 2 dots: XP). The launcher is considered to be at 0° when the index mark is closest to the tank wall.

Polarization Pattern

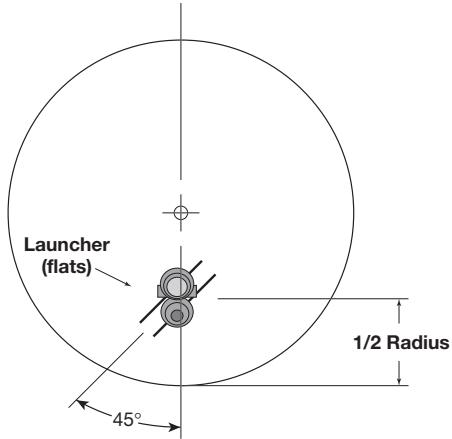
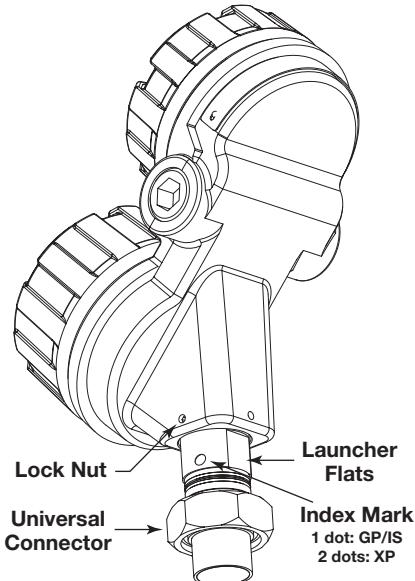


Figure
Top View
Mounted $\frac{1}{2}$ radius

2.4.2.2 Initial Installation


Ideally, the transmitter should be mounted half the radius from the tank wall. Align the wrench flats so they are at an angle of 45 degrees to a line from the radar unit to the nearest tank wall. Once properly oriented, tighten set screws and Universal connector (30 ft-lbs of force).

A transmitter mounted within 18" (45mm) of a tank wall may demand orientation adjustments to limit multipath and optimize performance. See Section 2.4.2.3 Signal Loss.

NOTE: ALWAYS RUN THE TARGET REJECTION ROUTINE AFTER MAKING CHANGES TO MENU CHOICES (Antenna Type, Antenna Mount, Sensor Offset, Tank Height, Blocking Distance, Dielectric, Turbulence, Rate Change, Foam) or when launcher is repositioned.

2.4.2.3 Signal Loss

If the Level signal is lost repeatedly at a specific point in the vessel, it is usually a symptom that multipath (side-wall reflections) are causing cancellation by returning to the transmitter exactly 180° out of phase with the Level signal. Utilize the following procedure:

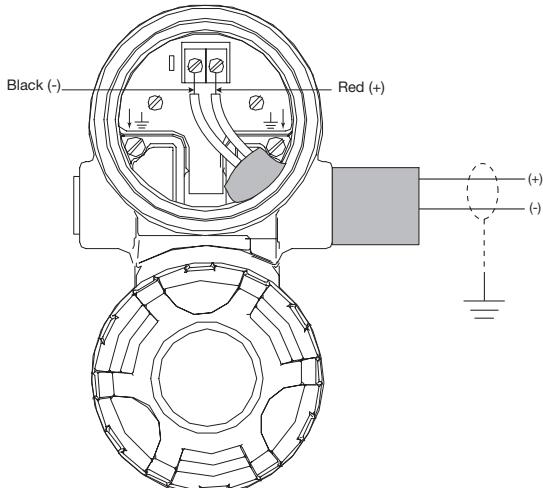
- Go to transmitter screen #4 which shows both Level and signal Quality.
- Bring the Level up (or down) to the exact point where the signal is repeatedly lost. Monitor the Quality value as this point is being approached. The Quality value will degrade to a low point before it begins to increase.
- At the point of poorest Quality, loosen both the Universal connector and the locking nut. Slowly rotate the launcher flats Clockwise approximately 10–20° (the transmitter can be rotated independently). Allow the unit to stabilize for approximately 1 minute. Repeat this process until the signal Quality value is optimized.
- Without disturbing the position of the launcher, position the transmitter head back to its most convenient location.
- Tighten both the Universal connector (30 ft-lbs of force) and Launcher set screw.

NOTE: ALWAYS RUN THE TARGET REJECTION ROUTINE AFTER MAKING CHANGES TO MENU CHOICES (Antenna Type, Antenna Mount, Sensor Offset, Tank Height, Blocking Distance, Dielectric, Turbulence, Rate Change, Foam) or when launcher is repositioned.

2.5 Wiring

Caution The Pulsar Radar transmitter operates at voltages of 16-36 VDC (GP), 16-28.6 VDC (IS) and 16-36 VDC (XP). Higher voltage will damage the transmitter.

Wiring between the power supply and the Radar transmitter should be made using 18-22 AWG shielded twisted pair instrument cable. Within the transmitter enclosure, connections are made to the terminal strip and the ground connections. The directions for wiring the Radar transmitter depend on the application:

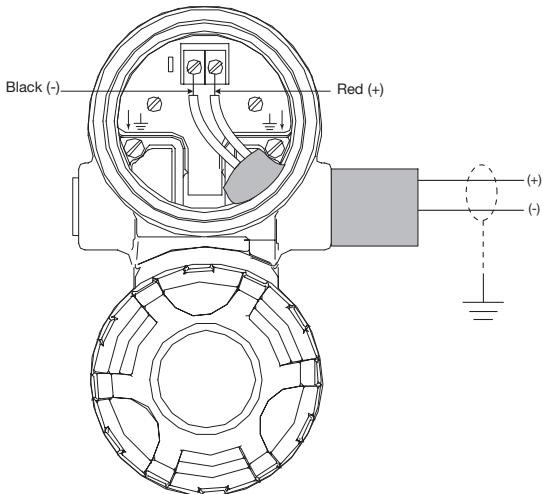

- General Purpose or Non-incendive (Cl I, Div. 2)
- Intrinsically Safe
- Explosion Proof

WARNING! Explosion hazard. Do not remove covers unless power has been switched off or the area is known to be non-hazardous.

2.5.1 General Purpose or Non-incendive (Cl I, Div. 2)

A general purpose installation does not have flammable media present. Areas rated non-incendive (Cl I, Div. 2) have flammable media present only under abnormal conditions. No special electrical connections are required. If flammable media is contained in the vessel, the transmitter must be installed per Cl I, Div. 1 standards of area classification.

To install General Purpose or Non-incendive wiring:


2.5.2 Intrinsically Safe

An intrinsically safe (IS) installation potentially has flammable media present. An approved IS barrier must be installed in the non-hazardous (safe) area.

To install Intrinsically Safe wiring:

1. Make sure the IS barrier is properly installed in the safe area (refer to local plant or facility procedures). Complete the wiring from the barrier to the Radar transmitter.
2. Remove the cover to the wiring compartment of the transmitter. Install the conduit plug in the unused opening.
3. Install a conduit fitting and pull the supply wires.
4. Connect shield to an earth ground at power supply and leave floating at the transmitter.
5. Connect an earth ground wire to the nearest green ground screw (not shown in illustration).
6. Connect the positive supply wire to the (+) terminal and the negative supply wire to the (-) terminal.
7. Replace the cover to the wiring compartment of the transmitter.

2.5.3 Explosion Proof

Explosion Proof (XP) is a method of designing equipment for installation in hazardous areas. A hazardous location is an area in which flammable gases or vapors are, or may be, present in the air in quantities sufficient to produce explosive or ignitable mixtures. The wiring for the transmitter must be contained in Explosion Proof conduit extending into the safe area. Due to the specialized design of the Radar transmitter, no Explosion Proof conduit fitting (EY seal) is required within 18" of the transmitter. An Explosion Proof conduit fitting (EY seal) is required between the hazardous and safe areas.

To install Explosion Proof wiring:

1. Install Explosion Proof conduit from the safe area to the conduit connection of the Radar transmitter (refer to local plant or facility procedures).
2. Remove the cover to the wiring compartment of the transmitter.
3. Connect shield to an earth ground at the power supply and leave floating at the transmitter.
4. Connect an earth ground wire \pm to the nearest green ground screw. (Not shown in illustration.)
5. Connect the Intrinsic Safety (IS) terminal to ground per NFPA 70, the CeC, or the local inspector.
6. Connect the positive supply wire to the (+) terminal and the negative supply wire to the (-) terminal.
7. Replace the cover to the wiring compartment of the transmitter.

2.6 Configuring the Transmitter

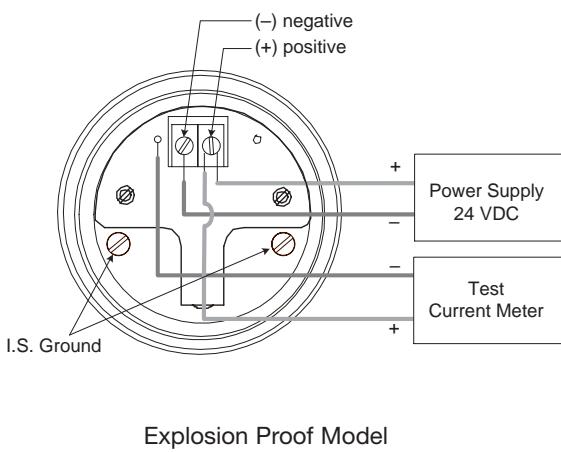
The Radar transmitter comes factory-calibrated and can be configured in minutes for specific applications.

Before configuring the transmitter, collect the operating parameters information. Then, power-up the transmitter on the bench and follow through the step-by-step procedures for the menu-driven transmitter display. Information on configuring the transmitter using a HART communicator is given in Configuration Using HART (Section 2.7).

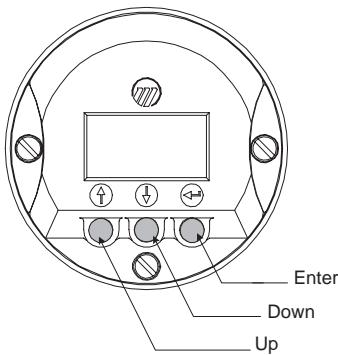
2.6.1 Operating Parameters

Some key information is needed to configure the Radar transmitter. If necessary, complete the configuration information table in Section 1.1.2.

2.6.2 Setting Up for Shop Configuration


The Radar transmitter can be configured at a test bench by connecting a 24 VDC power supply directly to the transmitter terminals. The connections are illustrated in the accompanying diagrams. An optional digital multimeter is shown if current measurements are desired.

1. When using a HART communicator for configuration, a minimum 250Ω line load resistance is required. See the HART communicator manual for more information.
2. The transmitter can be configured without the antenna, but disregard error messages due to the unattached antenna. Radar transmitter may indicate a LEVEL value >0 when disconnected from antenna.


2.6.3 Transmitter Display and Keypad

The Radar transmitter has a liquid-crystal display (LCD) capable of showing two lines of 8 characters each. Transmitter measurements and configuration menu screens are shown on the LCD.

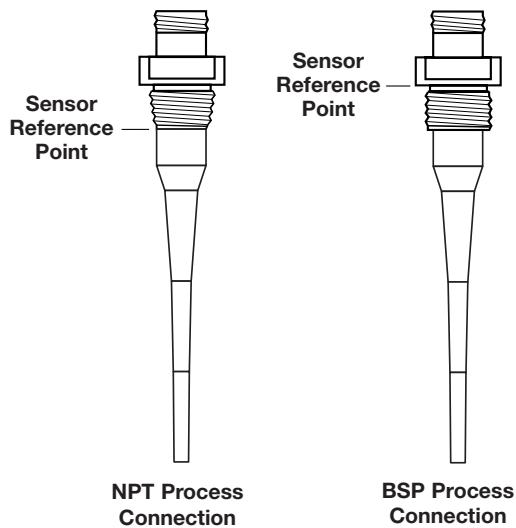
The transmitter default display is the measurement screen. It cycles every 5 seconds to display LEVEL, %OUTPUT, QUALITY, and LOOP information. The transmitter defaults to this display after 5 minutes if no keystrokes are sensed with the exception of LEVEL, DISTANCE, %OUTPUT, QUALITY, and LOOP screens. The display will not return to the default screen if left in one of these screens.

Explosion Proof Model

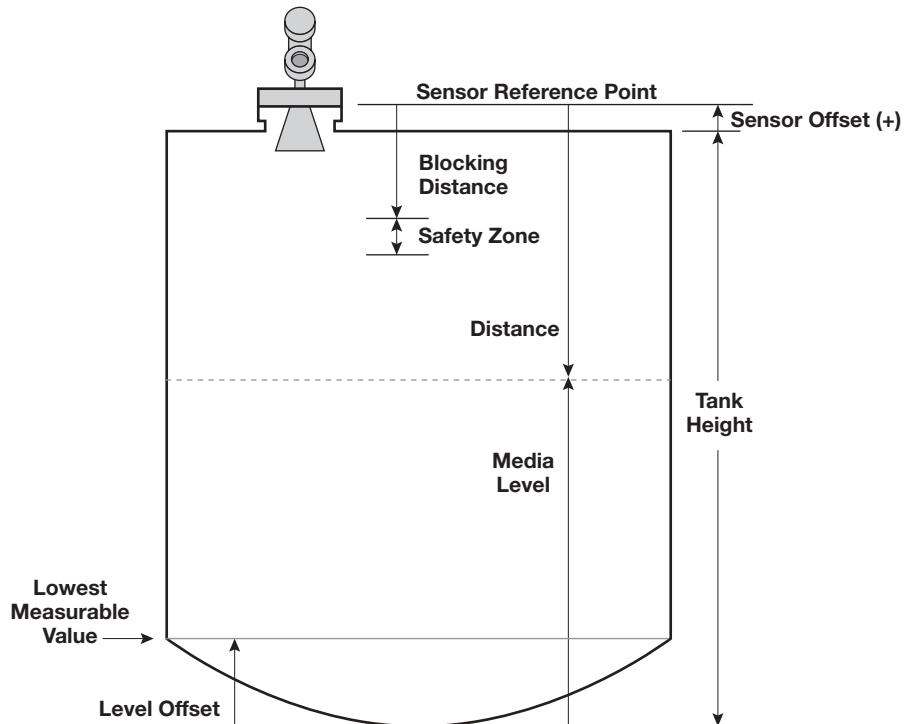
The keypad has three arrows used to scroll through the displays and to calibrate the transmitter – the Up and Down Arrow () keys and the Enter () key.

Arrows	Function in Display Mode	Function in Configuration Mode
Up and Down 	Moves forward and backward in the configuration program from one display to another.	Increases or decreases the value displayed or moves to another choice. <i>Note: Hold arrow key for rapid scrolling.</i>
Enter 	Enters the configuration mode (noted by an exclamation point (!) as the last character in the top display line).	Accepts a value and moves to the next step of the configuration program.

2.6.4 Password Protection (Default = 0)



The Radar transmitter is password protected to restrict access to certain portions of the menu structure that affect the operation of the system. When the proper password is entered, an exclamation point (!) appears as the last character of the first line of the display. The password can be changed to any numerical value up to 255. The password is required whenever configuration values are changed.


The default password installed in the transmitter at the factory is 0 (password disabled). The last step in the configuration menu provides the option to enter a new password. If 0 is entered as a password, the transmitter is no longer password protected and any value in the menu can be altered (except diagnostic values) without entering a confirming password.

NOTE: If the password is not known, the menu item New Password displays an encrypted value representing the present password. Call the factory with this encrypted value to determine the actual password.

2.6.5 Menu: Step-By-Step Procedure

ANSI or DIN Flange (Welded)

The following table provides a complete explanation of the software menus displayed by the Radar transmitter. Use this table as a step-by-step guide to configure the transmitter.

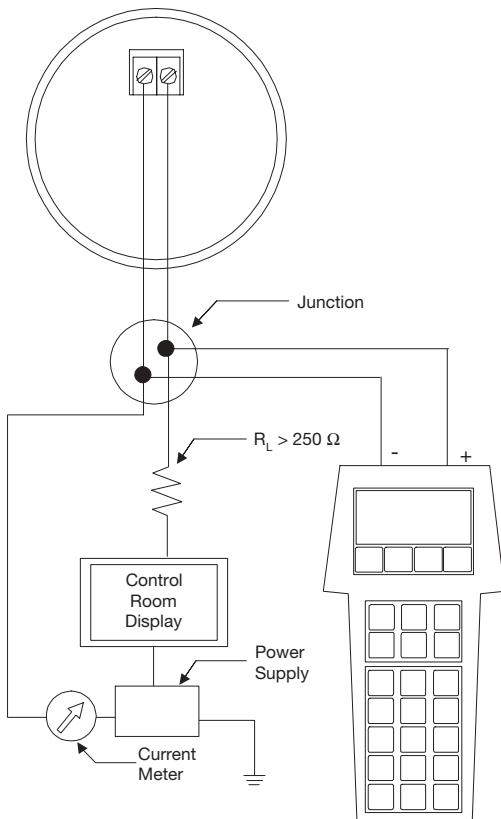
The first column presents the menus shown on the transmitter display. The displays are in the order they would appear if the arrow keys were used to scroll through the menu. The numbers are not shown on the display. They are provided as a reference.

The second column provides the actions to take when configuring the transmitter. Additional information or an explanation of an action is given in the third column.

The following drawings are provided as reference for the configuration procedure.

2.6.5.1 Radar Transmitter Menu Table

	Display	Action	Comment
1	*Level* *Quality* *%Output* *Loop*	Transmitter Display	Transmitter default display. <i>Level</i> , <i>Signal Quality</i> , <i>%Output</i> , and <i>Loop</i> values cycle every 5 seconds. All screens (except 2-6) default to this screen after 5 minutes of no keystrokes or if a Fault or Warning message is displayed.
2	Level xxx.x units	Transmitter Display	Transmitter displays <i>Level</i> measurement in chosen unit of measure.
3	Distance xxx.x units	Transmitter Display	Transmitter displays <i>Distance</i> measurement in chosen unit of measure. Measurement includes <i>Sensor Offset</i> value.
4	Qual xx xxx.x units	Transmitter Display	Transmitter display showing <i>Level</i> and <i>Quality</i> of signal reflection. Good values are 20-90
5	%Output xx.x%	Transmitter Display	Transmitter displays <i>%Output</i> measurement derived from 20 mA span.
6	Loop xx.xx mA	Transmitter Display	Transmitter displays <i>Loop</i> value (mA).
7	Units (select)	Select units of measure	Select cm (xxxx), inches (xxx.x), meters (xx.xx) or feet (xx.xx). Allowable decimal position is controlled; four characters is maximum reading. Decimal position is controlled by <i>Units</i> and <i>Tank Height</i> .
8	AntnaTyp (select)	Select the Antenna Type used.	Select <u>first</u> 7 digits of the Model Number (first 4 are significant). Information is located on the nameplate mounted on the side of transmitter housing. Pressing ENTER exposes the <i>Antenna Extension</i> pop-up screen.
9	AntnaExt (select)	Select the Antenna Extension used.	Select <u>last</u> 3 digits of the Model Number corresponding to the Antenna Extension. This relates to the maximum nozzle length where it can be used: 0** ≤ 1" (25 mm), -1** ≤ 4" (100 mm), -2** ≤ 8" (200 mm), -3** ≤ 12" (300 mm)
10	AntnaMnt (select)	Select the type of Antenna Mounting	Select NPT , BSP , or Flange
11	SnsrOfst xx.x units	Enter the Sensor Offset value.	<i>Sensor Offset</i> is the distance (+ or -) from the Sensor reference point (bottom of NPT thread or flange face, top of BSP thread) to the top of the tank.
12	Tank Top (select)	Select the shape/type of tank top	Select the metallic tank top structure: Flat , Horizontal Cylinder , Dome , Irregular , or Other (non-metallic) .
13	Tank Ht xxx.x units	Enter the Tank Height	<i>Tank Height</i> is distance from the bottom to the top of tank.
14	Block Dis xxx.x units	Enter the Blocking Distance	<i>Blocking Distance</i> defines an area near the antenna where reflections can not be measured effectively due to antenna ringing. It is measured from the <i>Sensor Reference</i> point. Recommended value is 6" (2" minimum); larger values are encouraged. Output will be held at value corresponding to <i>Blocking Distance</i> . Do not allow liquid on to the antenna.
15	LevlOfst xxx.x units	Enter the Level Offset	<i>Level Offset</i> defines an area at the bottom of the vessel where reflections can not be measured effectively due to angled bottoms, heating coils, reflections from metal tank bottom in low dielectric applications, etc. It is the distance from the bottom of the tank to the lowest valid level reading. Level reading will never be lower than <i>Level Offset</i> value.
16	Dielectrc (select)	Select the Dielectric range value	Select the Dielectric range of the medium. Choices are: 1.7-3.0 ; 3.0-10.0 ; 10.0-100.0


	Display	Action	Comment
17	Turbulnc (select)	Select amount of <i>Turbulence</i> of the liquid	None, Light, Medium, Heavy. Increase choice if Quality value is consistently <20.
18	RateChng (select)	Select <i>Rate of Change</i> of the liquid	Select the MAXIMUM Rate of Change of the level surface (rising or falling) in inches (cm)/minute; <5 (13), 5-20 (13-50), 20-60 (50-150), >60 (>150)
19	Foam (select)	Select amount of <i>Foam</i>	None, Light, Medium, Heavy Increase choice if Quality value is consistently <20.
20	Targets	Press Enter to view all <i>Targets</i>	Review all Targets detected by the transmitter including false targets (targets other than Level). Ensure the proper Level target is available then move to <i>False Target Rejection</i> . If reported LEVEL is close to actual and the Quality number is >20, it is probably correct. Check the <i>Tank Height</i> and <i>Sensor Offset</i> values to ensure accurate LEVEL reading. Liquid level can be viewed by LEVEL or DISTANCE; access under MODE sub-menu. Choose ESCAPE to exit
21	Targ Rej (status)	<p>Select YES to store false target profile for Empty or Partially full tank.</p> <p>Unit will show Enabled after running the routine. <i>False Target Rejection</i> can be suspended for troubleshooting purposes by choosing Disable.</p>	<ul style="list-style-type: none"> • Do not proceed with this procedure until confirming LEVEL and QUALITY values in TARGETS screen. • FALSE TARGET REJECTION should be run with vessel at or near empty when all targets are exposed; re-run this routine if initial calibration is done with significant liquid in vessel. • The false target profile will be disabled and this routine should be re-run if the following parameters are modified: ANTENNA TYPE, ANTENNA MOUNT, SENSOR OFFSET, TANK HEIGHT, BLOCKING DISTANCE, DIELECTRIC, TURBULENCE, RATE CHANGE, FOAM or when launcher is repositioned. <p>The NO FALSE TARGET REJECTION message will be displayed if this algorithm is not enabled.</p> <p>The <i>Target Rejection</i> routine detects, stores and cancels false targets to ensure detection of the proper level signal.</p> <ol style="list-style-type: none"> 1 Choose if Tank is Empty or Partial (some liquid present) 2a If Empty is chosen, press Enter, then select YES to run false target rejection routine for entire tank. 2b If Partial is chosen, various <i>Level</i> targets will be offered; choose the Target reflection that represents the actual <i>Level</i>; all other targets will be cancelled. 3 If correct <i>Level</i> is not offered, ensure Tank dimensional information is correct; information must be entered correctly to ensure reflections offered show correct <i>Level</i> values. 4 If Level cannot be found, manually enter correct value. Choose Entr Lvl, then enter the correct level value.
22	Set 4mA xxx.x units	Enter the value for the 4 mA point	During normal operation, mA value will never read into the area defined by the <i>Level Offset</i> value. Refer to #15.
23	Set 20mA xxx.x units	Enter the value for the 20 mA point	During normal operation, mA value will never read into the area defined by the <i>Blocking Distance</i> value. Refer to #14.
24	Damping xx	Enter the <i>Damping</i> factor	A damping factor (0-45) may be added to smooth a noisy display and/or output due to turbulence.

	Display	Action	Comment
25	SysFault (select)	Select the system <i>Fault</i> value	Select 3.6 mA, 22 mA or HOLD (last value). See Section 3.3.2 for Fault information.
26	LOEFault (select)	Select the <i>Loss of Echo Fault</i> value	Select 3.6 mA, 22 mA or HOLD (last value).
27	LOEDelay (xxx sec)	Enter value for <i>Loss of Echo Delay</i>	Select a value 0–255; 30 is default
28	SZ Fault (select)	Select the <i>Safety Zone Fault</i>	<i>Safety Zone</i> is a user-defined area just below the <i>Blocking Distance</i> . See drawing on page 17. Enable Fault if necessary to ensure safe, reliable high-level readings in critical applications. Choices are None, 3.6 mA, 22 mA, Latch 3.6 or Latch 22 . If Latch 3.6 or Latch 22 is chosen, the loop current will remain in alarm until it is manually cleared with the <i>SZ Alarm Reset</i> below (#30)
29	SZHeight (xx.x units)	Enter a <i>Safety Zone Height</i>	Enter a distance value that develops a safety zone just below the <i>Blocking Distance</i> . Here the unit will report a <i>Safety Zone Fault</i> (#28) if the level rises into this area.
30	SZ Alarm Reset	Reset <i>Safety Zone Latch</i>	Clear a latched <i>Safety Zone</i> alarm.
31	Poll Addr (xx)	Enter HART <i>Poll Address</i> number	Enter a HART <i>Poll Address</i> (0–15). Enter 0 for a single transmitter installation; enter 1–15 for multi-drop network.
32	Trim 4	Fine tune the 4 mA point	Attach a mA meter to the output. If the output does not equal 4.00 mA, adjust the value on the display until meter reads 4.00 mA.
33	Trim 20	Fine tune the 20 mA point	Attach a mA meter to the output. If the output does not equal 20.00 mA, adjust the value on the display until meter reads 20.00 mA.
34	Trim Lvl xxx.x units	Fine Tune the <i>Level</i> value	<i>Trim Lvl</i> is an offset value to be used to force the transmitter to output the exact Level. This should only be used after all parameters have been entered correctly, <i>Tank Height</i> and <i>Sensor Offset</i> have been confirmed accurate and it has been confirmed that the transmitter is tracking the correct level target.
35	Loop Tst xx.xx mA	Enter a mA Output value	Enter a mA Output of any given value to perform loop test.
36	New Pass xxx	Enter new <i>Password</i>	Use arrows to select desired value between 0 and 255; 0=No Password. During normal operation, an encrypted password is shown.
37	Status	Review <i>Status</i> information	<i>Status</i> information is updated continuously showing only the most recent diagnostic events. See <i>Diagnostic</i> screen in Factory Menu for a cumulative review.
38	Language	Select <i>Language</i>	Select the <i>Language</i> that will be displayed on the transmitter screen.
39	ModelRX5 Verxx.xx	Revision information	Processor firmware Rev level Coprocessor firmware Rev level (HART units only)

It is encouraged that all setup information be recorded for future use. Table on page 45 is offered for this information.

	Display	Action	Comment
40	Disp Fact	Review Factory parameters	Select YES to reveal Factory parameters; NO to hide
41	Diagnost	Review Diagnostic messages	A cumulative review of all diagnostic messages
42	Launcher	None, do not adjust	Diagnostic, factory setting
43	Fact Cal	None, do not adjust	Diagnostic, factory setting
44	Peaks	None, do not adjust	Diagnostic, factory setting
45	Algorithm	None, do not adjust	Diagnostic, factory setting
46	Range	None, do not adjust	Diagnostic, factory setting
47	TVG Type	None, do not adjust	Diagnostic, factory setting
48	TVG Max	None, do not adjust	Diagnostic, factory setting
49	Fid Pos	None, do not adjust	Diagnostic, factory setting
50	Fid Gain	None, do not adjust	Diagnostic, factory setting
51	Sys Gain	None, do not adjust	Diagnostic, factory setting
52	Conversion Factor	None, do not adjust	Diagnostic, factory setting
53	Cef dm/s	None, do not adjust	Diagnostic, factory setting
54	Scale Offset	None, do not adjust	Diagnostic, factory setting
55	Distance Correction	None, do not adjust	Diagnostic, factory setting
56	Echo Amp	None, do not adjust	Diagnostic, factory setting
57	#Run Average	None, do not adjust	Diagnostic, factory setting
58	Adaptive Filter	None, do not adjust	Diagnostic, factory setting
59	#Adap Average	None, do not adjust	Diagnostic, factory setting
60	Scatter High	None, do not adjust	Diagnostic, factory setting
61	Rate High	None, do not adjust	Diagnostic, factory setting
62	Scatter Rate	None, do not adjust	Diagnostic, factory setting
63	Peak Detect Threshold	None, do not adjust	Diagnostic, factory setting
64	Peak Detect Reference	None, do not adjust	Diagnostic, factory setting
65	Minimum Threshold	None, do not adjust	Diagnostic, factory setting
66	ROC/min	None, do not adjust	Diagnostic, factory setting
67	Max Rate	None, do not adjust	Diagnostic, factory setting
68	Max dD	None, do not adjust	Diagnostic, factory setting
69	SZ Hysteresis	None, do not adjust	Diagnostic, factory setting
70	DataLog	None, do not adjust	Diagnostic, factory setting
71	SZ Hysteresis	None, do not adjust	Diagnostic, factory setting
72	DataLog	None, do not adjust	Diagnostic, factory setting

2.7 Configuration Using HART

A HART (Highway Addressable Remote Transducer) remote unit, such as a HART communicator, can be used to provide a communication link to the Pulsar transmitter. When connected to the control loop, the same system measurement readings shown on the transmitter are shown on the communicator. In addition, the communicator can be used to configure the transmitter.

To confirm HART hand-held communications, attach unit per Section 2.7.1. If communicator reads GENERIC on first two lines, the HART hand-held does not contain the current DDs (device description) for the Pulsar Radar transmitter. Contact your local HART Service Center and specify a Magnetrol Pulsar Model RX5 device descriptor.

See HART Revision Table, Section 2.7.3

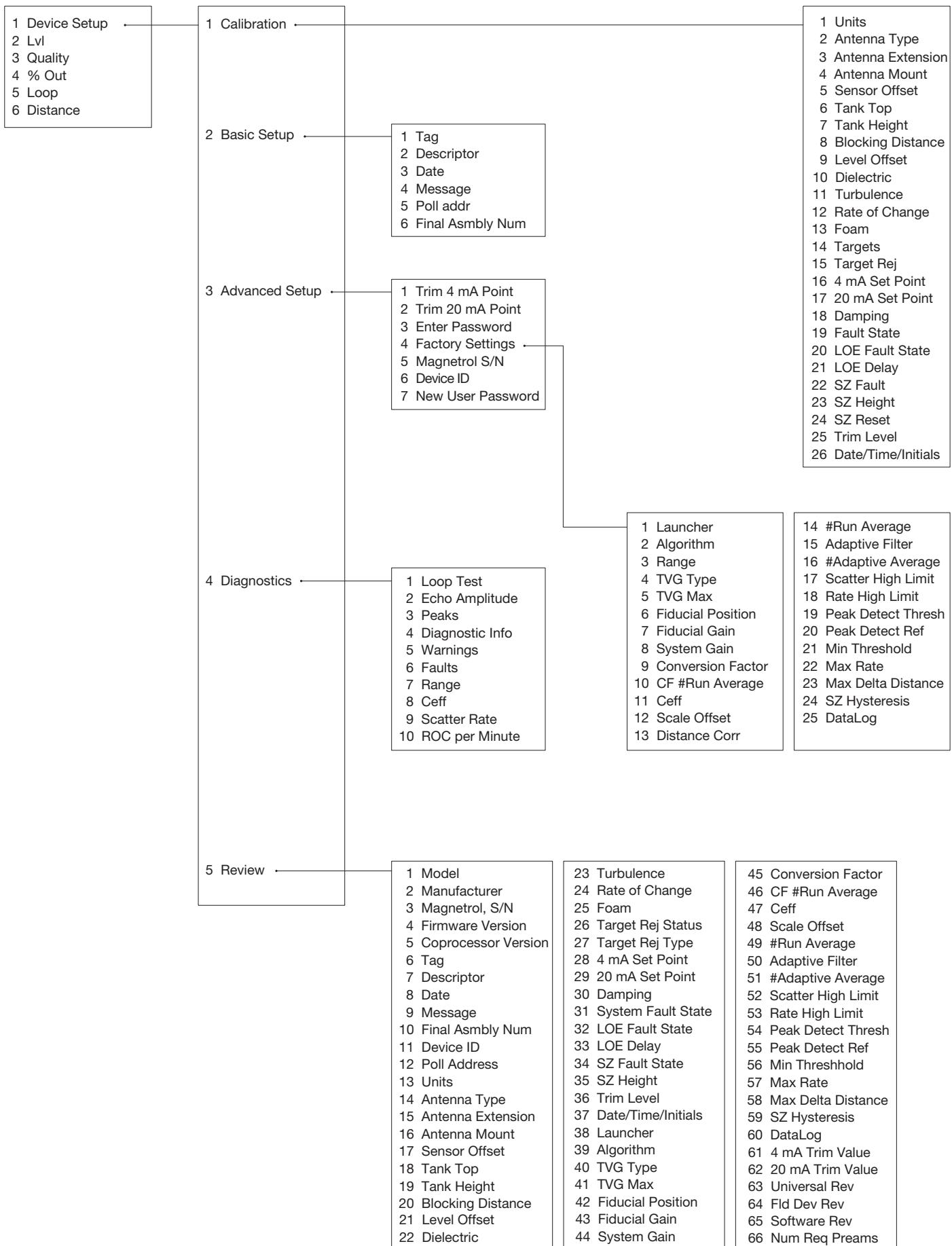
2.7.1 Connections

A HART communicator can be operated from a remote location by connecting it to a remote junction or by connecting it directly to the terminal block in the electronics housing of the Pulsar transmitter.

HART uses the Bell 202 frequency shift key technique of high-frequency digital signals. It operates on the 4-20 mA loop and requires 250 Ω load resistance. A typical connection between a communicator and the Pulsar transmitter is illustrated.

2.7.2 Display Menu

A typical communicator display is an 8-line by 21-character LCD. When connected, the top line of each menu displays the model (Model RX5) and its tag number or address. Usually the bottom line of each menu is reserved for software-defined function keys (F1-F4). For detailed operating information, refer to the instruction manual provided with the HART communicator.


The Pulsar transmitter online menu trees are shown in the following illustration. Open the menu by pressing the alphanumeric key 1, Device Setup, to display the second-level menu.

2.7.3 HART Revision Table

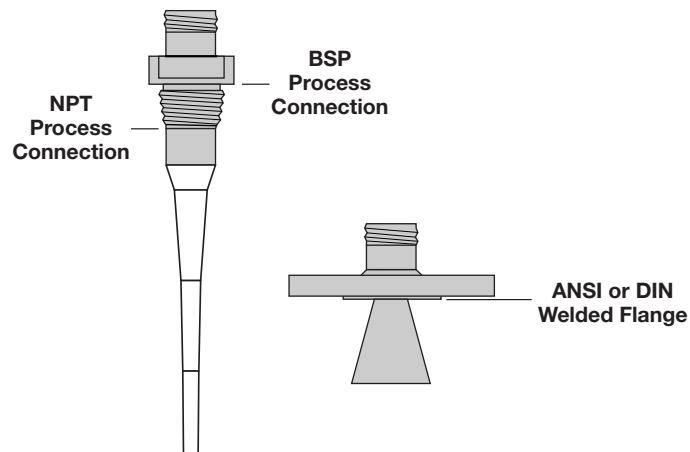
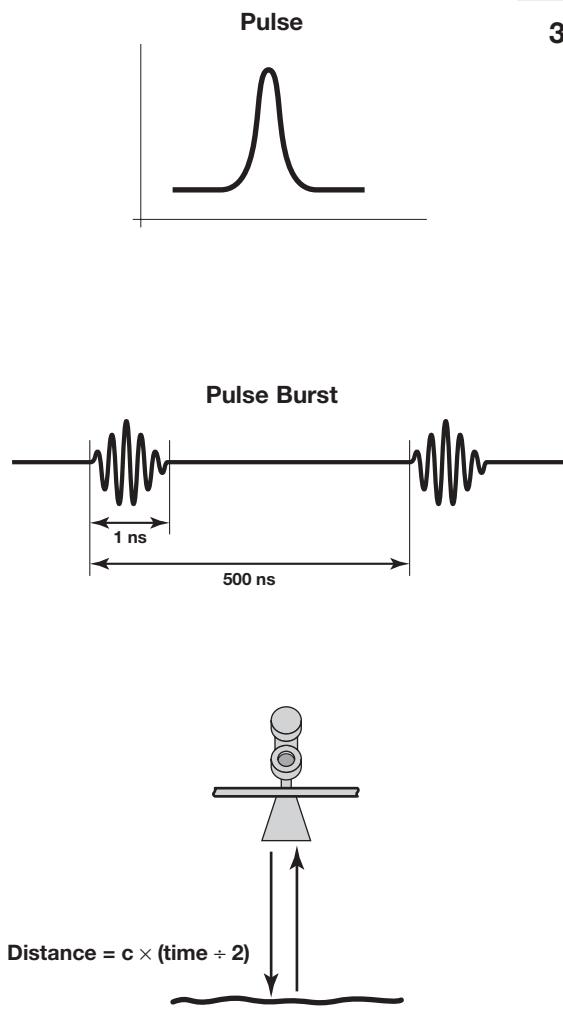
2.7.3.1 Model RX5

HART Version	HCF Release Date	Compatible with RX5 Software
Dev V2 DD V1	July 2003	Version 1.1a

2.7.4 HART Menu

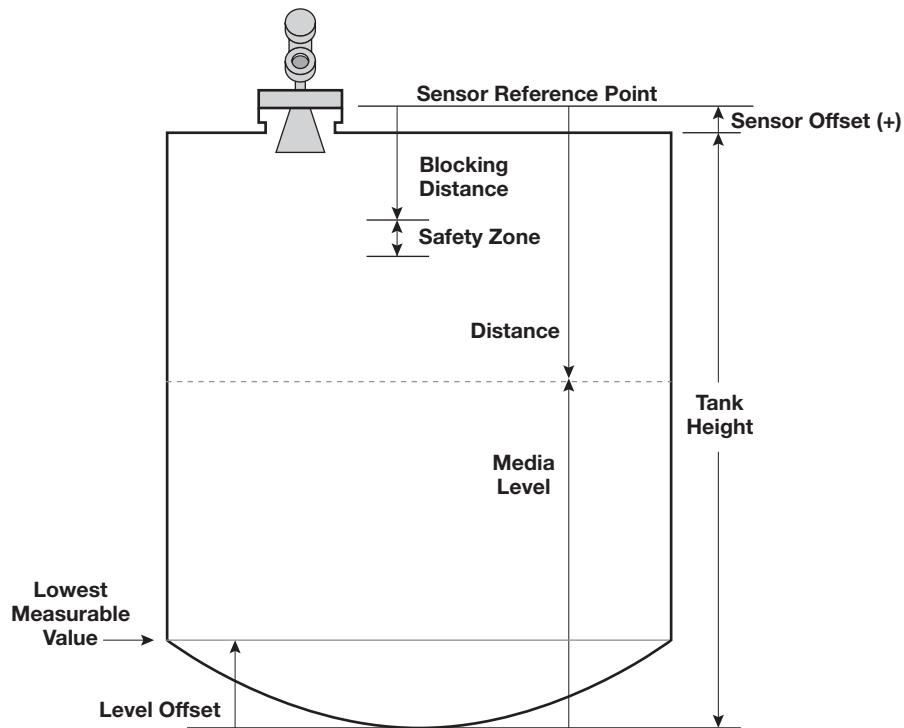
3.0 Reference Information

This section presents an overview of the operation of the Pulsar Radar Level Transmitter, information on troubleshooting, common problems, listings of agency approvals, lists of replacement and recommended spare parts, and detailed physical, functional and performance specifications.



3.1 Description

Pulsar is a two-wire, 24 VDC, level transmitter based on the concept of pulse burst radar. The electronics are housed in an ergonomic housing comprised of two tandem compartments angled at a 45 degree angle for ease of wiring and calibration. These two compartments connect via an explosion-proof and watertight feed-through.

3.2 Theory of Operation


3.2.1 Pulse Burst Radar

Pulsar is a top-mounted, downward-looking pulse burst radar operating at 5.8GHz (Europe) or 6.3 GHz (North America). Unlike true pulse devices that transmit a single, sharp (fast rise-time) waveform of wide-band energy, Pulsar emits short bursts of 5.8 or 6.3GHz energy and measures the transit time of the signal reflected off the liquid surface. Distance is calculated utilizing the equation $\text{Distance} = C \times \text{Transit time}/2$, then developing the Level value by factoring in Tank Height and Sensor Offset information. The exact reference point for distance and level calculations is the Sensor Reference Point- bottom of an NPT thread, top of a BSP thread or face of a flange.

Sensor Reference Point

The exact level measurement is extracted from false target reflections and other background noise via the use of sophisticated signal processing. The new Pulsar circuitry is extremely energy efficient so no duty cycling is necessary to accomplish effective measurement. For this reason, Pulsar can track high rates of change that were heretofore impossible with existing loop-powered radar transmitters.

3.2.2 Equivalent Time Sampling

ETS, or Equivalent Time Sampling, is used to measure the high speed, low power EM (electromagnetic) energy. ETS is a critical key in the application of Radar to vessel level measurement technology. The high speed electromagnetic energy ($1000 \text{ ft}/\mu\text{s}$) is difficult to measure over short distances and at the resolution required in the process industry. ETS captures the EM signals in real time (nanoseconds) and reconstructs them in equivalent time (milliseconds), which is much easier to measure with today's technology.

ETS is accomplished by scanning the tank to collect thousands of samples. The round-trip event on a 65 foot (20m) tank takes only 133 nanoseconds in real time. After it is reconstructed in equivalent time it measures 200 milliseconds.

3.3 Troubleshooting

The Pulsar transmitter is designed and engineered for trouble-free operation over a wide range of operating conditions. Common transmitter problems are discussed in terms of their symptoms and recommended corrective actions.

WARNING! Explosion hazard. Do not remove covers unless power has been switched off or the area is known to be non-hazardous.

3.3.1 Troubleshooting System Problems

Symptom	Problem	Solution
Level reading drops out at a repeatable position in the vessel	Multipath is cancelling good level signal	Orient launcher to reduce multipath; turn launcher 20-30 degrees at a time until multipath at this point disappears. Refer to Section 2.4.2.1
Level reading locked onto a value that is not correct Level	Measurement engine finding a reflection it believes is level signal	<ol style="list-style-type: none">1. Is high dielectric ($\epsilon > 20$) foam present2. Run False Target Rejection routine with Level below this point (or with Empty tank) to eliminate false echoes
LEVEL, % Output and LOOP values are all inaccurate	Basic configuration data questionable	<ol style="list-style-type: none">1. Check validity of all configuration data2. Check DISTANCE value of device against manually measured distance
LEVEL readings are repeatable but consistently high (or low) from actual by a fixed amount	Configuration data does not accurately match tank dimensions	<ol style="list-style-type: none">1. Ensure proper values for Tank Height and Sensor Offset2. Check vessel for present liquid level. Trim Level can be used to ensure exact measurement3. Reconfigure LOOP values if necessary
LEVEL reading on Display is correct but LOOP is stuck at 4 mA	HART Poll Address set a value of 1-15	Set HART Poll Address to 0
LEVEL reading on Display stuck at value related to Blocking Distance	Device believes antenna is flooded (level very near or on antenna)	Check actual level. If antenna is not flooded, power down, then power up transmitter with the level well below the antenna.

3.3.2 Error Messages

The Pulsar Radar transmitter utilizes a 3-section hierarchy for reporting diagnostic conditions: FAULTS, WARNINGS, and INFORMATION. This information can be reviewed at the STATUS screen in the user menu. This screen captures only current conditions. Historical information can be viewed at the DIAGNOSTIC screen in the Factory menu.

FAULT: The highest level in the hierarchy of diagnostics announcing a defect or failure in circuitry or software that precludes reliable measurement. The current (mA) value unit defaults to 3.6, 22, or HOLD and a message is displayed on the rotating screen. Further error information can be obtained by viewing the Status or Diagnostic (Factory Menu) screens.

WARNING (MESSAGE): The second level in the hierarchy of Diagnostics announcing conditions that are not fatal but may affect measurement. A message will occur on the main (rotating) screen when a Warning is detected but will not affect output current. Further error information can be obtained by viewing the Status or Diagnostic screens.

INFORMATION (MESSAGE): The lowest level in the hierarchy of diagnostic conditions providing operational factors that are not critical to measurement. Further error information can be obtained by viewing the Status or Diagnostic (Factory Menu) screens.

EFFECTS OF EACH DIAGNOSTIC MESSAGE

	mA Loop	Display Message	Diagnostic (history)
Fault	3.6/22/HOLD	Yes	Yes
Warning	No Effect	Yes	Yes
Information	No Effect	No	Yes

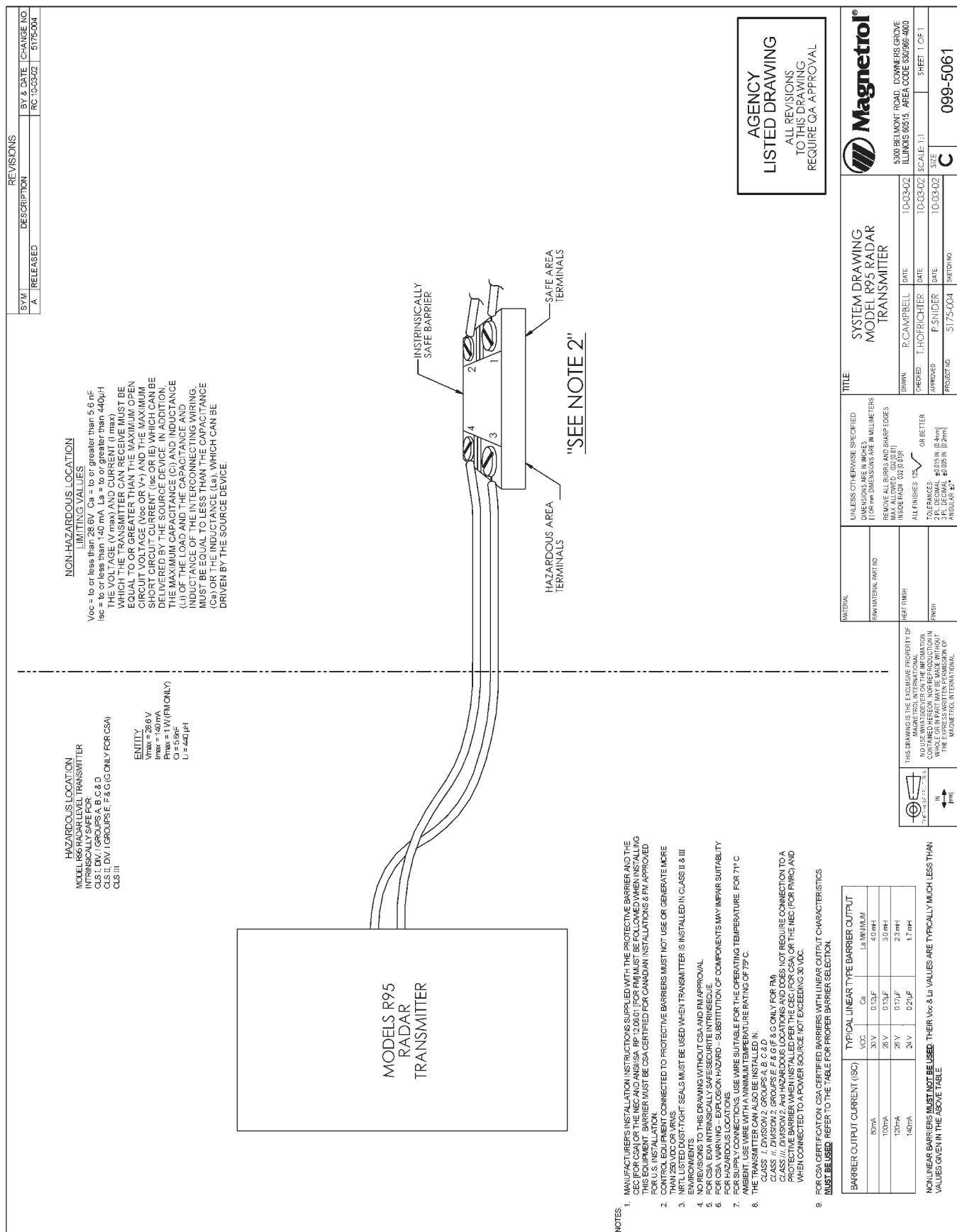
ERROR MESSAGES

	Symptom	Problem	Solution
Faults	Echo Lost	Target peak cannot be found	<ul style="list-style-type: none"> • Increase Turbulence setting • Decrease Dielectric setting • Increase ROC setting • Increase LOE delay • Confirm valid False Target Rejection; re-run if necessary • Possible multipath if lost repeatedly at same point in tank (See Section 2.4.2.3)
	No Fiducial	Can not find valid fiducial signal	Ensure transmitter/antenna Universal connector is tight; Consult Factory if this problem persists
	Safety ZoneAlrm	Level within Safety Zone and SZ Alarm parameters enabled	Normal operation; modify SZ Alarm parameter screens if not operating to expectations
	Corrupt Paramtrs	Configuration parameters are incorrect for application	Modifying one parameter clears this condition; check validity of all parameters
	Sfwr Err Inv Arg	Software algorithms corrupted	Consult Factory
	EE Write failure	EEPROM Write failure	Consult Factory
	EE Read failure	EEPROM Read failure	Consult Factory
	CPU failure	Microprocessor failure	Consult Factory
Warnings	NoTrgRej	False Target Rejection has not been run or manually disabled	Re-run False Target Rejection routine or manually enable
	CorptTgR	Invalid False Target Rejection data	Re-run False Target Rejection routine; Consult Factory if problem persists
	Bad Fid	Fiducial signal quality questionable	Ensure transmitter/antenna connection is tight; Consult Factory
	OutofCal	Invalid Calibration Data	Transmitter requires re-calibration of Factory parameters; the instrument will continue to operate with reduced performance; Consult Factory
Information (available only in Status or Diagnostic screens)	Co-processor Communications		
	IPC bus	Internal communication error	Consult Factory
	IPC chks	Internal communication error	Consult Factory
	IPC leng	Internal communication error	Consult Factory
	IPC ack	Internal communication error	Consult Factory
	Signal		
	DC Noise	Excessive noise on A/D channel	Consult Factory
	Signal Too High	Level signal amplitude excessive	Choose higher Dielectric range, reduce Turbulence or Foam settings; Consult Factory if problem persists
	Signal Too Low	Level signal amplitude insufficient	Choose lower Dielectric range, increase Turbulence or Foam settings; Consult Factory if problem persists
	Quality		
	CluOffHi	False target only partially captured	Re-run False Target Routine with level lower in vessel
	ScattTgt	Return signals scattered due to turbulence	
	UncerTgt	Target is missing but not determined to be lost	Device is holding last valid value while confirming the target position; will continue based upon setting in LOE Delay screen; Consult Factory if problem persists
	TankInv	Tank dimensions exceed maximum range of the transmitter	Reduce Tank Height and/or Sensor Offset values

3.4 Agency Approvals

AGENCY	MODEL	PROTECTION METHOD	AREA CLASSIFICATION
	RX5-5X0A-110	Intrinsically Safe	Class I, Div. 1; Groups A, B, C, & D Class II, Div. 1; Groups E, F, & G Class III, NEMA 4X, T4@80C Entity
	RX5-5X0A-310	Explosion Proof	Class I, Div. 1; Groups B, C & D Class II, Div. 1; Groups E, F, & G Class III, NEMA 4X, T5@80C
	RX5-5X0A-X10	Non-Incendive ①	Class I, Div. 2; Groups A, B, C, & D Class II, Div. 2; Groups F & G Class III, NEMA 4X
	RX5-5X0A-110	Intrinsically Safe	Class I, Div. 1; Groups A, B, C, & D Class II, Div. 1; Groups E, F & G Class III, Type 4X, T4@80C Entity
	RX5-5X0A-310	Explosion Proof	Class I, Div. 1; Groups B, C & D Class II, Div. 1; Groups E, F, & G Class III, Type 4X, T5@80C
	RX5-5X0A-X10	Non-Incendive ①	Class I, Div. 2; Groups A, B, C, & D Class II, Div. 2; Groups E, F, & G Class III, Type 4X, T4@80C
	R05-5X0A-110	Intrinsically Safe	EEx ia IIC T4 (pending)
	R05-5X0A-310	Explosion Proof	EEx d (ia) IIC T4
	R05-5X0A-110	Non-Incendive ①	EEx n IIC T6

① Installations with flammable media inside vessel must be installed per CL I, Div 1 (Ex d or ia).

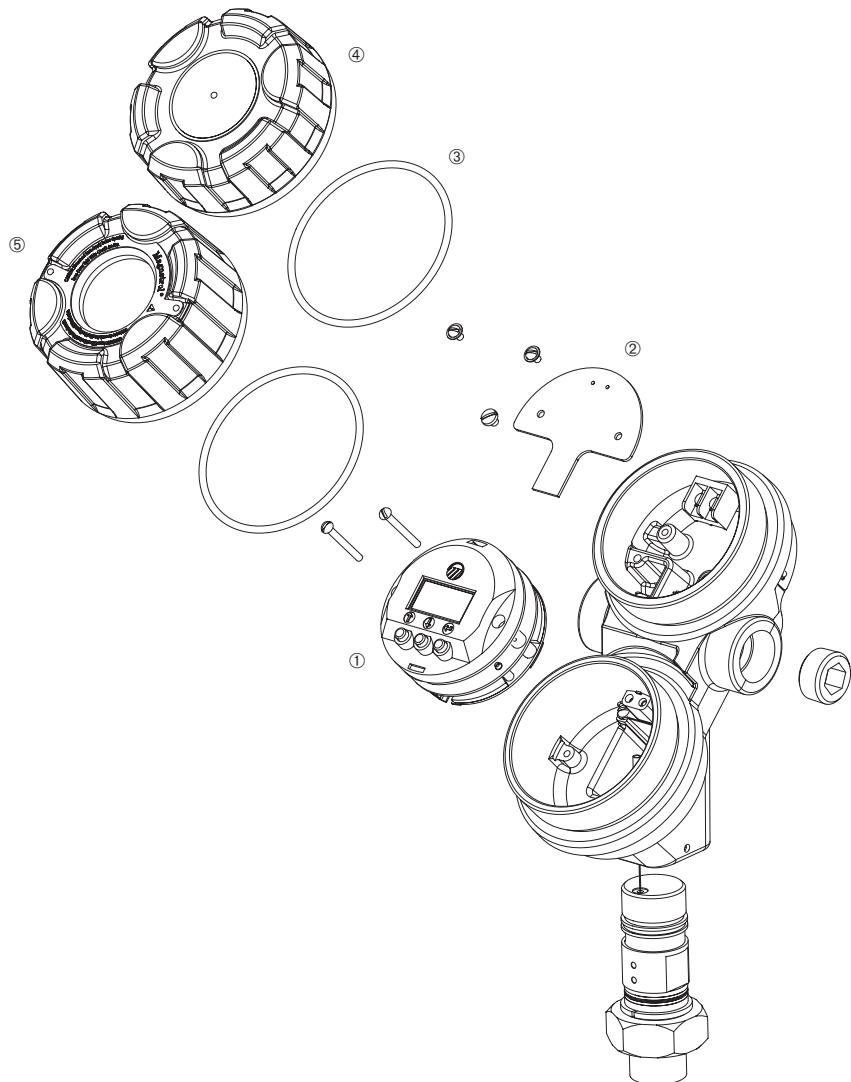


These units have been tested to EN 61000-6-2 and EN 61000-6-4 and are in compliance with the EMC Directive 89/336/EEC.

COMMUNICATIONS APPROVALS

Region	Agency	Frequency
US	FCC	6.3 Ghz
Canada	IC	6.3 Ghz
Europe (Germany)	RTTE	5.8 Ghz

3.4.1 Agency Drawing and Entity Parameters


3.5 Parts

3.5.1 Replacement Parts

Item	Description	Part Number
①	Electronic Module	6.3 GHz
		031-2827-001 -002
②	Terminal Board	5.8 GHz
		031-2828-001 -002
②	Terminal Board	General Purpose Intrinsically Safe Explosion Proof
③	O-ring neoprene	012-2201-237
④	Housing cover without glass	004-9193-002
⑤	Housing cover with glass	GP/IS XP
		036-4410-001 -005

3.5.2 Recommended Spare Parts

Description	Part Number
Electronic Module	6.3 GHz
	031-2827-001 -002
5.8 GHz	031-2828-001
	-002

3.6 Specifications

3.6.1 Functional - Transmitter

System Design

Measurement Principle Pulse burst radar @ 5.8 GHz (Europe), 6.3 GHz (U.S.)

Input

Measured Variable Level, determined by the time-of-flight of a radar pulse from transmitter to product surface and back

Span 0.5 to 65 feet (0.2 m to 20 m)

Output

Type Analog 4 to 20 mA with optional HART digital signal

Range Analog 3.8 to 20.5 mA useable

Digital 0 to 999" (0 to 9999 cm)

Resolution Analog 0.01 mA

Digital 0.1"

Loop Resistance GP/IS/XP - 400 Ω @ 24 VDC/20 mA, 350 Ω @ 24 VDC/22 mA

Diagnostic Alarm Adjustable 3.6 mA, 22 mA, HOLD

Damping Adjustable 0-45

User Interface

Keypad 3-button menu-driven data entry and system security

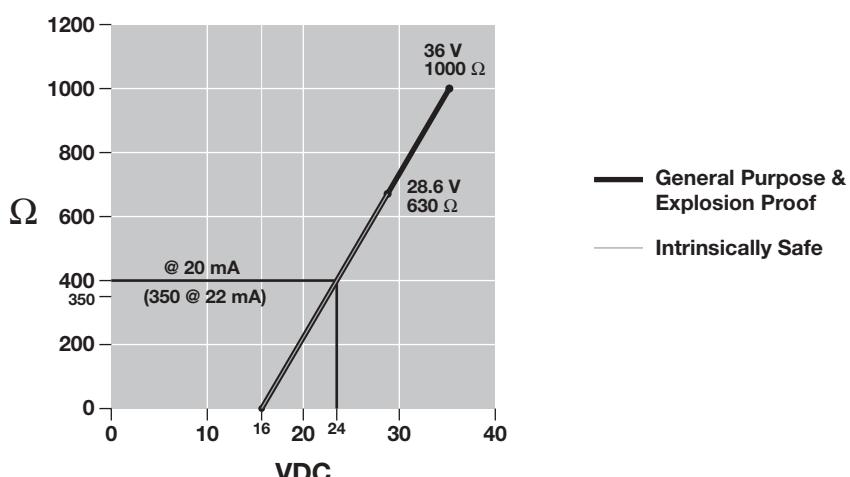
Indication 2-line \times 8-character display

Digital Communication ① HART Version 5 compatible

Power (Measured at instrument terminals)

General Purpose 16 to 36 VDC

Intrinsically Safe 16 to 28.6 VDC


Explosion Proof 16 to 36 VDC

Housing

Material Aluminum A356T6 (<0.25% copper), 316 SS (optional)

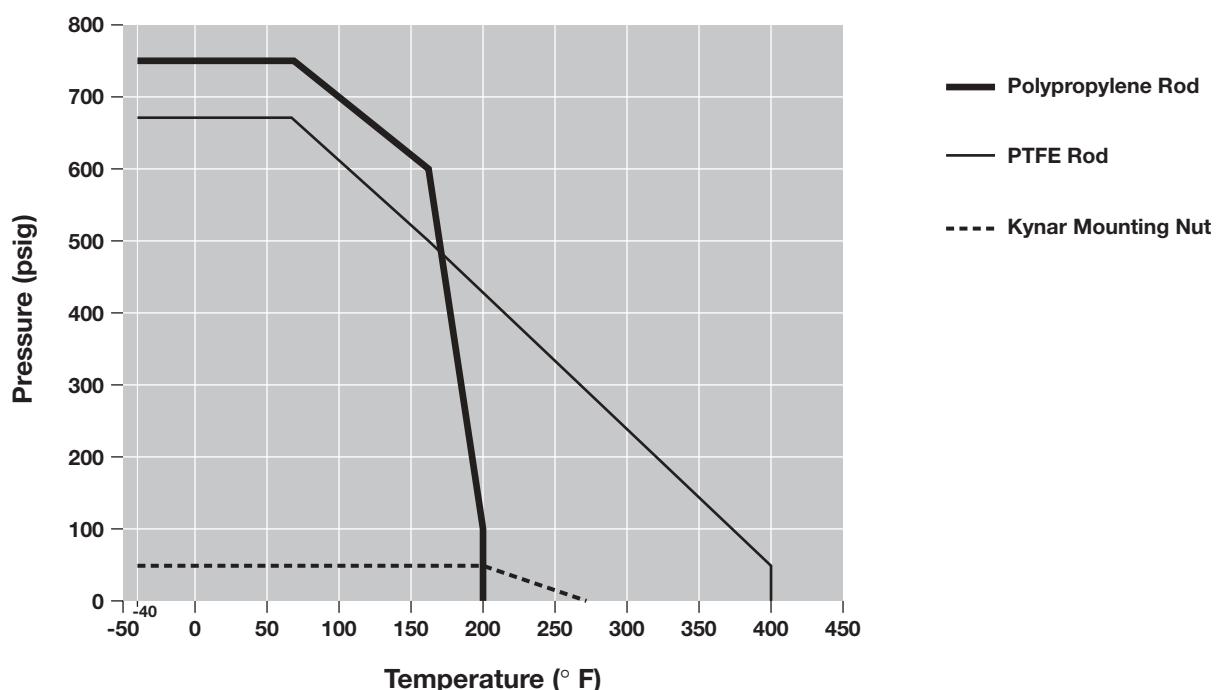
Cable Entry $\frac{3}{4}$ " NPT, M20

① HART communicator Magnetrol P/N 89-5213-XXX sold separately.

Environment

Operating Temperature	-40 to +175° F (-40 to +80° C)
LCD Operating Temperature Range	-5 to +160° F (-20 to +70° C)
Storage Temperature	-50 to +175° F (-46 to +80° C)
Humidity	0-99%, non-condensing
Electromagnetic Compatibility	Meets CE Requirements: EN 50081-2, EN 50082-2
Shock Class	ANSI/ISA-S71.03 Class SA1
Vibration Class	ANSI/ISA-S71.03 Class VC2

3.6.2 Performance


Reference Conditions	Reflection from ideal reflector at +70° F (+20° C)
Linearity	±0.4 inch (10 mm) or 0.1% of tank height (whichever is greater)
Measured Error	±0.4 inch (10 mm) or 0.1% of tank height (whichever is greater)
Resolution	0.1 inch
Repeatability	< 0.2 inch or 0.1% of tank height
Response Time	< 1 second
Warm-up Time	30 seconds
Operating Temp. Range	-40° to +175° F (-40° to +80° C)
LCD Temp. Range	-5° to +160° F (-20° to +70° C)
Ambient Temp. Effect	0.05% per 10° C
Process Dielectric Effect	< 0.3 inch within selected range
Humidity	0-99%, non-condensing
Electromagnetic Compatibility	Meets CE requirements (EN 61000-6-2, EN 61000-6-4)
Maximum Rate of Change	180" (450 cm)/minute

3.6.3 Functional – Dielectric Rod / Horn


Model	Dielectric Rod TFE	Dielectric Rod Polypropylene	4" Horn	6" Horn
Materials	316 SS (Hastelloy C, Monel and Kynar opt.), TFE, Viton O-rings ①	316 SS (Hastelloy C, Monel and Kynar opt.), polypropylene, Viton O-rings ①	316 SS (Hastelloy C and Monel opt.), TFE, Viton O-rings	316 SS (Hastelloy C and Monel opt.), TFE, Viton O-rings
Process Connection	1½" NPT and BSP, ANSI or DIN flanges	1½" NPT and BSP, ANSI or DIN flanges	4" and 6" ANSI or DIN flanges	6" ANSI or DIN flanges
Maximum Process Temperature	+400° F @ 50 psig (+204° C @ 3.5 bar)	+200° F @ 50 psig (+93° C @ 3.5 bar)	+400° F @ 50 psig (+204° C @ 3.5 bar)	+400° F @ 50 psig (+204° C @ 3.5 bar)
Maximum Process Pressure	750 psig @ +70° F (51.7 bar @ +20° C)	750 psig @ +70° F (51.7 bar @ 20° C)	750 psig @ +70° F (51.7 bar @ 20° C)	750 psig @ +70° F (51.7 bar @ 20° C)
Minimum Dielectric (application dependent)	2.0	2.0	1.7	1.7

① Kynar mounting nut has maximum service temperature of +270° F @ 50 psig (+132° C @ 3.5 bar). It should only be used in non-metallic process fittings.

3.6.4 Pulsar Antenna Pressure-Temperature Ratings

3.6.5 Physical - Inches (mm)

Model #	Antenna Extension	DIELECTRIC RODS			HORNS	
		All	All	BSP	4"	6"
		Dim A	Dim B	Dim C	Dim H	Dim H
0	≤ 1" (25 mm) Nozzle	2.3 (5.8)	11.1 (282)	3 (76)		
1	≤ 4" (100 mm) Nozzle	5.1 (130)	14 (356)	5.9 (150)	4.6 (117)	
2	≤ 8" (200 mm) Nozzle	9.1 (231)	18 (457)	9.9 (251)	8.4 (213)	8.3 (211)
3	≤ 12" (300 mm) Nozzle	13.1 (333)	22 (559)	13.9 (353)	12.4 (315)	12.4 (315)

3.7 Model Numbers

3.7.1 Pulsar Radar Transmitter

BASIC MODEL NUMBER AND OPERATING FREQUENCY

R95	Through-Air Radar Level Transmitter- 6.3 GHz Pulse Radar (North America)
R05	Through-Air Radar Level Transmitter- 5.8 GHz Pulse Radar (Europe)

POWER

5	24 VDC, Two-wire
---	------------------

SIGNAL OUTPUT

0	4-20 mA only, without HART
1	4-20 mA with HART (HART communicator 89-5213-xxx available separately)

ACCESSORIES

A	Digital Display and Keypad
---	----------------------------

MOUNTING/CLASSIFICATION

1	Integral, General Purpose & Intrinsically Safe (FM & CSA), Non-incendive (CL1, Div II) ①
3	Integral, Explosion-Proof (FM & CSA Class I Div. 1, Groups B, C & D)
A	Integral, General Purpose & Intrinsically Safe (ATEX II 1/2G EEx ia IIC T6)
C	Integral, Explosion-Proof (ATEX II 1/2G EEx d ia IIB T6)
E	Integral, Non-Incendive (ATEX II 3G EEx n II T6) ①

① Installations with flammable media inside vessel must be installed per CL I, Div 1 (Ex d or ia).

HOUSING/CONDUIT CONNECTION

1	Cast Aluminum, Dual Compartment, 45° / ¾" NPT
2	Cast Aluminum, Dual Compartment, 45° / M20
3	Cast 316 SS, Dual Compartment, 45° / ¾" NPT
4	Cast 316 SS, Dual Compartment, 45° / M20

R 5 — 5 0 A — 0

3.7.2 Radar Antennas - Dielectric Rod

TECHNOLOGY

R	RADAR Antennas
---	----------------

OPERATING FREQUENCY

A	5.8/6.3 GHz
---	-------------

CONFIGURATION/STYLE

A	Dielectric Rod - TFE
B	Dielectric Rod - Polypropylene

MATERIAL OF CONSTRUCTION

A	316 SS/316L SS
B	Hastelloy C
C	Monel
3	Kynar (For use in non-metallic process fittings only; ANTENNA EXTENSION Code 0 only)

PROCESS CONNECTION - SIZE/TYPE*

See next page

O-RINGS

0	Viton GFLT
1	EPDM
2	Kalrez 4079
8	Aegis PF128

ANTENNA EXTENSION

0	For nozzle height \leq 1" (25 mm) (for threaded process connection only)
1	For nozzle height \leq 4" (100 mm)
2	For nozzle height \leq 8" (200 mm)
3	For nozzle height \leq 12" (300 mm)

R A

 0 0

3.7.2 Radar Antennas - Dielectric Rod

PROCESS CONNECTION - SIZE/TYPE ①

31	1½" NPT Thread ②	
32	1½" BSP Thread ②	
43	2" 150# ANSI Raised Face Flange	
44	2" 300# ANSI Raised Face Flange	
45	2" 600# ANSI Raised Face Flange	
53	3" 150# ANSI Raised Face Flange	
54	3" 300# ANSI Raised Face Flange	
55	3" 600# ANSI Raised Face Flange	
63	4" 150# ANSI Raised Face Flange	
64	4" 300# ANSI Raised Face Flange	
65	4" 600# ANSI Raised Face Flange	
73	6" 150# ANSI Raised Face Flange	
74	6" 300# ANSI Raised Face Flange	
75	6" 600# ANSI Raised Face Flange	
DA	DN 50, PN 16	DIN 2527 Form B ②
DB	DN 50, PN 25/40	DIN 2527 Form B ②
DD	DN 50, PN 64	DIN 2527 Form E
EA	DN 80, PN 16	DIN 2527 Form B
EB	DN 80, PN 25/40	DIN 2527 Form B
ED	DN 80, PN 64	DIN 2527 Form E
FA	DN 100, PN 16	DIN 2527 Form B
FB	DN 100, PN 25/40	DIN 2527 Form B
FD	DN 100, PN 64	DIN 2527 Form E
GA	DN 150, PN 16	DIN 2527 Form B
GB	DN 150, PN 25/40	DIN 2527 Form B
GD	DN 150, PN 64	DIN 2527 Form E

① Metal flanges welded to antenna; Plastic flanges and metal flanges with threaded antenna connection ordered separately

② 2" (50 mm) minimum nozzle diameter/Sched 80 pipe classification maximum

R A — — — — — 0 0

3.7.3 Radar Antennas - Horn

TECHNOLOGY

R	RADAR Antennas
---	----------------

OPERATING FREQUENCY

A	5.8/6.3 GHz
---	-------------

CONFIGURATION/STYLE

4	4" Horn
6	6" Horn

MATERIAL OF CONSTRUCTION

A	316 SS/316L SS
B	Hastelloy C
C	Monel

PROCESS CONNECTION - SIZE/TYPE*

63	4" 150# ANSI Raised Face Flange
64	4" 300# ANSI Raised Face Flange
65	4" 600# ANSI Raised Face Flange
73	6" 150# ANSI Raised Face Flange
74	6" 300# ANSI Raised Face Flange
75	6" 600# ANSI Raised Face Flange
FA	DN 100, PN 16 DIN 2527 Form B
FB	DN 100, PN 25/40 DIN 2527 Form B
FD	DN 100, PN 64 DIN 2527 Form E
GA	DN 150, PN 16 DIN 2527 Form B
GB	DN 150, PN 25/40 DIN 2527 Form B
GD	DN 150, PN 64 DIN 2527 Form E

* Metal flanges welded to antenna; Plastic flanges and metal flanges with threaded antenna connection ordered separately

O-RINGS

0	Viton GFLT
1	EPDM
2	Kalrez 4079
8	Aegis PF128

ANTENNA EXTENSION

1	For nozzle height \leq 4" (100 mm) - Configuration Style code 4 only
2	For nozzle height \leq 8" (200 mm)
3	For nozzle height \leq 12" (300 mm)

R A []

[] [] [] []

[] 0 0

Glossary

Accuracy The closeness of agreement between the result of measurement and the true value of the measure (inaccuracy equals the maximum positive and negative % deviation over the total span).

ANSI American National Standards Institute.

Antenna A mechanical component that serves as an impedance match between the transmission of a signal in a cable (or waveguide) and air.

AntnaMnt Antenna Mount The type of process mounting (NPT, BSP or Flange) utilized in the installation. This aids in establishing an exact Sensor Reference Point for Radar propagation and measurement.

AntnaTyp Antenna Type A particular antenna configuration or design. Each antenna design has a set of unique performance characteristics.

ATEX ATmosphere EXplosive European regulations governing the use in hazardous areas.

BlockDist Blocking Distance The area near the antenna where reflections cannot be measured effectively due to antenna ringing and noise.

CE Conformité Européene Standards and performance criteria for the new European Union.

CENELEC Comité Européen de Normalisation Electrotechnique European organization that sets standards for electrical equipment.

CSA Canadian Standards Association Canadian, third party agency that qualifies the safety of electrical equipment.

Damping Factor applied to smooth output variations due to turbulence.

Default Screen The main position of the menu structure that displays the primary measurement values of LEVEL, Quality, % OUTPUT, and LOOP. The transmitter returns to this position after 5 minutes of inactivity (except Screens 2-6).

Diagnostics Three levels of error messages; Fault, Warning and Information.

Dielectric Constant (ϵ) The electrical permittivity of a material. The units are farad/meter.

Dielectric Rod antenna A non-metallic (TFE and polypropylene typical) transition between the microwave waveguide and air.

Distance The present reading measured from the transmitter's Sensor Reference Point to the material in a vessel; compliment of Level.

DVM/DMM Digital Volt Meter/Digital Multimeter.

Electromagnetic Energy The radiation that travels through space as electric and magnetic fields varying with position and time. Examples in increasing frequency: radio waves, microwave, infrared light, visible light, ultraviolet light, x-rays, gamma waves, and cosmic waves.

EM See Electromagnetic Energy.

EMI Electromagnetic Interference Electrical noise caused by electromagnetic fields that may affect electrical circuits, particularly low-power electronic devices.

EN European Normal Committee guidelines in EC countries that take precedence over local, country guidelines.

ENV Preliminary EN guidelines, or pre-standards.

Ergonomic A mechanism that considers human capability in its design or function.

ETS Equivalent Time Sampling Process that captures high speed electromagnetic events in real time (nanoseconds) and reconstructs them into an equivalent time (milliseconds).

Explosion Proof Enclosure An enclosure designed to withstand an explosion of gas or vapor within it and prevent the explosion from spreading outside the enclosure.

Factory Sealed A third-party-approved Explosion Proof seal installed in the unit during manufacturing. This alleviates the end user from installing an external XP seal adjacent (within 18") to the device.

Fault The highest level in the hierarchy of diagnostics announcing a defect or failure in circuitry or software that preclude reliable measurement. The current (mA) value unit defaults to 3.6, 22, or Hold and a message is displayed on the rotating screen. Further information can be obtained by viewing the Status or Diagnostic (Factory Menu) screens.

Feedthrough A small, connecting cavity between the main housing compartments, carrying the cable that supplies the operating energy to the measurement circuitry and returns the output value proportional to level. This cavity is potted to maintain the environmental isolation between the two compartments.

Fiducial A reference signal (baseline) to which all measurements are referenced.

FM Factory Mutual American, third party agency that qualifies the safety of electrical equipment.

Foam The entraining of air in a liquid. The effect of foam on radar measurement is based on four factors; 1.) dielectric of the liquid from which the foam has developed, 2.) density of the foam (bubble size), 3.) amount of foam above the liquid and, to a lesser extent, 4.) wall thickness of the bubbles.

Four Wire An electronic instrument design that uses one set of wires to supply power (120/240 VAC, 24 VDC) and another set to carry the process measurement signal (4-20 mA). Also called Line Powered.

FSK Frequency Shift Keying See HART.

Gain Amplification adjustment to attain optimum performance in various product dielectric ranges. (Factory setting).

Ground An electrical connection to the Earth's potential that is used as a reference for the system and electrical safety.

Grounded A state where no electrical potential exists between the ground (green) connection on the transmitter and the Earth or system ground.

Guided Wave Radar See TDR.

HART Highway Addressable Remote Transducer Protocol that uses the Bell 202 frequency shift keying (FSK) method to superimpose low level frequencies (1200/2000 Hz) on top of the standard 4-20 mA loop to provide digital communication.

HART ID See Poll Address.

Hazardous Area An area where flammable gases or vapors are or may be present in the air in quantities sufficient to produce explosive or ignitable mixtures.

Horn Antenna A metallic, cone transition between the microwave waveguide and air.

IEC International Electrotechnical Commission Organization that sets international standards for electrical devices.

Increased Safety Designs and procedures that minimize sparks, arcs, and excessive temperatures in hazardous areas. Defined by the IEC as Zone 1 environments (Ex e).

Information (message) The lowest level in the hierarchy of diagnostic conditions providing operational factors that are not critical to measurement. Further information can be obtained by viewing the Status or Diagnostic (Factory Menu) screens.

Intrinsically Safe Ground A very low resistance connection to a ground, in accordance with the National Electrical Code (NEC, ANSI/NFPA 70 for FMRC), the Canadian Electrical Code (CEC for CSA), or the local inspector.

Intrinsic Safety A design or installation approach that limits the amount of energy that enters a hazardous area to eliminate the potential of creating an ignition source.

Level The present reading of the height of material in a vessel; compliment of Distance.

LevlOfst Level Offset The distance above the tank bottom where radar level measurement is impossible due to heating coils, baffles, angled or curved tank bottoms, etc. The mA output will never read lower than the Level Offset value.

Linearity The worst case error calculated as a deviation from a perfect straight line drawn between two calibration points.

Line Powered See Four Wire.

LOE Loss of Echo Condition where a level measurement is impossible due to the absence of valid reflections from the liquid surface.

LOE Delay Loss of Echo Delay The amount of time the transmitter spends looking for a valid Level signal before going into Loss of Echo Fault. The last valid Level reading is held during this search.

LOE Fault Loss of Echo Fault The mA value to which the output is driven after the Loss of Echo Delay times out; choices are 3.6mA, 22mA and HOLD.

Loop The present reading of the 4-20 mA current output.

Loop Powered See Two Wire.

Loop Tst Loop Test Built-in system capability to test/calibrate a loop (or separate loop device) by driving the transmitter output to a particular value.

Low Voltage Directive A European Community requirement for electrical safety and related issues of devices using 50-1000 VDC or 75-1500 VAC.

Measured Value The typical level measurement values used to track the level of a process: Level, % Output, and Loop.

Media The liquid material being measured by the level transmitter.

Multidrop The ability to install, wire, or communicate with multiple devices over one cable. Each device is given a unique address and ID.

Non-hazardous Area An area where no volatile mixtures of vapors/gas and oxygen will be found at any time. Also called General Purpose Area.

Non-Incendive A circuit in which any arc or thermal effect produced, under intended operating conditions of the equipment or due to opening, shorting, or grounding of field wiring, is incapable, under specific test conditions, of igniting the flammable gas, vapor, or dust-air mixture.

Password A numerical value between 0 and 255 that protects stored configuration data from unauthorized manipulation.

Percent (%) Output The present reading as a fraction of the 16 mA scale (4-20 mA).

Poll Address (HART ID) A number between 1 and 15 which sets an address or location of a device in a multi-drop loop. Poll address for single device configuration is 0.

Qual Quality A relative value (0-99) that shows the strength and usefulness for a given reflected signal.

QuickStart The essential information needed for the Pulsar radar transmitter and antenna to be installed, wired, and calibrated.

Radar (Radio Detection And Ranging) Uses EM energy and high speed timing circuits to determine distance. Original Radar devices used energy in the radio frequency range (MHz), many current devices use much higher frequencies (GHz).

Range The distance over which the transmitter scans for valid return signals.

RateChng *Rate of Change* The maximum velocity of vertical movement of a liquid's surface.

Relative Dielectric (ϵ_r) A unitless number that indicates the relative permittivity of a material.

Repeatability The maximum error between two or more output readings of the same process condition.

RFI *Radio Frequency Interference* Electrical noise that can have an adverse affect on electrical circuits, particularly low-power devices.

Safety Zone A user-defined area just below the Blocking Distance where level measurement still has a high degree of reliability. Radar can develop ambiguous readings when the level reaches the region of the antenna. An alarm can be annunciated in this area for critical applications where reliable measurement is a necessity for safety reasons.

Safety Zone Height The height of the region below the Blocking Distance where an alarm will be annunciated upon detection of liquid.

Safety Zone Fault An optional condition added, when necessary, to ensure safe, reliable high-level readings in critical applications. Choices are 3.6 mA, 22 mA, Latch 3.6 or Latch 22. If Latch 3.6 or Latch 22 are chosen, the loop current will remain in alarm until it is cleared in SZ Latch menu screen.

Safety Zone Alarm Reset Use screen for clearing a Latched Alarm set in **Safety Zone Fault** (above)

SnsrOfst *Sensor Offset* The distance (+ or -) between the customer's 100% reference point (tank top) and the Sensor reference point (bottom of NPT thread, top of BSP thread or face of flange).

Span The difference between the upper and lower limits of the range.

Specific Gravity (SG) The ratio of the density of a material to the density of water at the same conditions.

Sensitivity The amount of amplification applied to the Level signal; a higher value aids in measuring low dielectric media; a lower number assists in ignoring nearby objects.

Status The current state of the transmitter's diagnostics; screen updates every 10 seconds.

Targets Objects in the vessel that create reflections of the radar signal (microwave energy).

Targ Rej *Target Rejection* The ability to ignore reflections from objects in the vessel that are not the liquid level, i.e., false targets (e.g. pipes, ladders, baffles).

Tank Ht *Tank Height* The tank measurement between the 0% (tank bottom) and 100% (tank top).

Tank Top The 100% point in a vessel. Also considered for the type of tank top; e.g. flat, dome, etc., which affects the development of multiple echoes during high level conditions. Multiple echoes can appear as an invalid Level signal.

TDR (Time Domain Reflectometry) Uses a waveguide to carry EM energy to and from the surface of the media to measure distance; similar to conventional through-air Radar but much more efficient. Also called Guided Wave Radar.

Trim 4/Trim 20 Built-in system capability to fine tune the 4 mA and 20 mA points so the transmitter output corresponds exactly to user's meter, DCS input, etc.

Trim Lvl *Trim Level* An offset parameter used to account for various deviations in measurement. It is an offset value that can force the transmitter to read the exact level reading.

Turbulnc *Turbulence* Agitation, or disturbance, of the liquid level surface; greater the agitation, greater the scattering of the radar signal (microwave energy).

Two Wire An electrical instrument design that uses one set of wires to provide both the supply power and process measurement signal. The process measurement is achieved by varying the current of the loop. Also called Loop Powered.

Units The engineering units used to measure level in the system. The choices are in (inches) and cm (centimeters).

Warning (message) The second level in the hierarchy of Diagnostics annunciating conditions that are not fatal but may affect measurement. A message will occur on the main (rotating) screen when a Warning is detected but will not affect output current. Further information can be obtained by viewing the Status or Diagnostic screens.

RX5 Radar Transmitter

Configuration Data Sheet

Copy blank page and store calibration data for future reference and troubleshooting.

Item	Value	Value	Item (factory defaults)	Value	Value
Vessel Name			Display Factory		
Vessel #			Diagnostics		
Media & Dielectric			Launcher		
Tag #			Factory Cal		
Electronics Serial #			Peaks	#0	
Antenna Serial #				#1	
Level				#2	
Units				#3	
Antenna Type				#4	
Antenna Extension			Algorithm		
Antenna Mounting			Range		
Sensor Offset			TVG Type		
Tank Top			TVG Maximum		
Tank Height			Fiducial Position		
Blocking Distance			Fiducial Gain		
Level Offset			System Gain		
Dielectric			Conversion Factor		
Turbulence			Cef dm/s		
Rate of Change			Scale Offset		
Amount of Foam			Distance Correction		
Targets	#1	Q_____ - _____	Echo Amplitude		
	#2	Q_____ - _____	# Run Average		
	#3	Q_____ - _____	Adaptive Filter		
	#4	Q_____ - _____	#Adap Average		
	#5	Q_____ - _____	Scatter High		
Target Rejection			Rate High		
4 mA point			Scat Rate		
20 mA point			Peak Detect Threshold		
Damping Factor			Peak Detect Reference		
Sys Fault			Minimum Threshold		
LOE Fault			ROC/min		
LOE Delay			Maximum Rate		
SZ Fault			Maximum dD		
SZ Height			Safety Zone Hysteresis		
SZ Alarm Reset			Data Log		
HART Poll Address			Name		
Trim 4 mA			Date		
Trim 20 mA			Time		
Trim Level			NOTES:		
Loop Test					
New Password					
Status					
Language					
Model RX5					
VerX.XXX					

Notes

Service Policy

Owners of Magnetrol/STI controls may request the return of a control or any part of a control for complete rebuilding or replacement. They will be rebuilt or replaced promptly. Controls returned under our service policy must be returned by Prepaid transportation. Magnetrol/STI will repair or replace the control at no cost to the purchaser (or owner) other than transportation if:

1. Returned within the warranty period; and
2. The factory inspection finds the cause of the claim to be covered under the warranty.

If the trouble is the result of conditions beyond our control; or, is NOT covered by the warranty, there will be charges for labor and the parts required to rebuild or replace the equipment.

In some cases it may be expedient to ship replacement parts; or, in extreme cases a complete new control, to replace the original equipment before it is returned. If this is desired, notify the factory of both the model and serial numbers of the control to be replaced. In such cases, credit for the materials returned will be determined on the basis of the applicability of our warranty.

No claims for misapplication, labor, direct or consequential damage will be allowed.

Return Material Procedure

So that we may efficiently process any materials that are returned, it is essential that a "Return Material Authorization" (RMA) number be obtained from the factory, prior to the material's return. This is available through Magnetrol/STI's local representative or by contacting the factory. Please supply the following information:

1. Company Name
2. Description of Material
3. Serial Number
4. Reason for Return
5. Application

Any unit that was used in a process must be properly cleaned in accordance with OSHA standards, before it is returned to the factory.

A Material Safety Data Sheet (MSDS) must accompany material that was used in any media.

All shipments returned to the factory must be by prepaid transportation.

All replacements will be shipped F.O.B. factory.

5300 Belmont Road • Downers Grove, Illinois 60515-4499 • 630-969-4000 • Fax 630-969-9489 • www.magnetrol.com
145 Jardin Drive, Units 1 & 2 • Concord, Ontario Canada L4K 1X7 • 905-738-9600 • Fax 905-738-1306
Heikenstraat 6 • B 9240 Zele, Belgium • 052 45.11.11 • Fax 052 45.09.93
Regent Business Ctr., Jubilee Rd. • Burgess Hill, Sussex RH15 9TL U.K. • 01444-871313 • Fax 01444-871317

5300 Belmont Road • Downers Grove, Illinois 60515-4499 • 630-969-4028 • Fax 630-969-9489 • www.sticontrols.com

Copyright © 2003 Magnetrol International, Incorporated. All rights reserved. Printed in the USA.
Magnetrol and Magnetrol logo type are registered trademarks of Magnetrol International.
STI and STI logo type are registered trademarks of Magnetrol International.

Performance specifications are effective with date of issue and are subject to change without notice.
The brand and product names contained within this document are trademarks or registered trademarks of their respective holders.

BULLETIN: 58-601.0
EFFECTIVE: April 2003