Note Model M20KTS9PW1AN FCC ID AZ492FT3808 maximum power is 120 W however the maximum power for use with $1 / 4$ wave antennas while interfaced with DQPMDVR3000P is 57 W as stated in the user manual.

Presented below is a summary of the tested frequencies and associated power outputs for each DUT.

		Mobile VHF Radios				
DVR		M20KSS9PW1AN			M20KTS9PW1AN	
Frequency	Po (W)	Frequency	Po (W)	Frequency	Po (W)	
136	6.01	147.0125	55.6	147.4000	55.8	
155	6.00	155.0125	55.8	155.0000	55.6	
174	6.08	173.9875	55.6	173.9875	55.8	

10.0 Test Set-Up Description

The following are the mobile antenna test configurations used for this product. (for reference, see Illustration of antenna location and test distances in the APPENDIX A)
a) The $1 / 4$ wave 0 dBd gain antennas (HAD4007A, HAD4008A, HAD4009A) were assessed while mounted at the center of the roof of the test vehicle.
b) The $1 / 4$ wave 0 dBd gain antennas (HAD4006A, HAD4008A, HAD4009A) were assessed while mounted at the trunk.

Assessments were made internal and external to the test vehicle at the specified distances and test locations indicated in sections 6.0, 11.0, and the APPENDIX A.

11.0 Test Results Summary

APPENDIX F presents detailed MPE measurement information for each test configuration; person external or internal to the vehicle, TX frequency, antenna (location, model and gain), distance from antenna to probe sensor, E/H field measurements, calibration factor, MPE average over body, initial power, power density calc, power density max calc, IEEE/FCC controlled and uncontrolled limits, and maximum output power.

The Average over Body test methodology is consistent with IEEE/ANSI C95.3-2002 guidelines
MPE results are based on a DVR 100% duty cycle and VHF mobile 50% duty cycle which is in accordance with the User Manual instructions.

Below is an explanation of how the MPE results are calculated.
External to vehicle - 10 measurements are averaged over the body (Body_Avg).
Internal to vehicle - 3 measurements are averaged over the body (Body_Avg).
Narda Survey Meter measures in percent of the controlled limit. Therefore the averages over the body used in the calculations below reflect percentages.

Therefore;

$$
\begin{aligned}
& \text { Average_over_Body }=\text { Body_Avg*Controlled_Limit } \\
& \text { Pwr_Density_Calc }=\text { Average_over_Body*_Duty_Cycle } \\
& \text { Pwr_Density_Max_Calc }=P w r_{-} \text {Density_Calc* } \frac{\text { Max_Output_Power }}{\text { Initial_Output_Power }}
\end{aligned}
$$

Note; For Initial Output Power> Max_Output_Power, Max_Output_Power / Initial Output Power = 1
The tables below summarize the highest MPE results of the E and H test configurations for the VHF mobiles, DVR, and combined assessments. See APPENDICES A and F respectively for the indicated test positions and detailed MPE measurement data.

Table 1 - M20KSS9PW1AN VHF Mobile Assessments - Highest MPE result per test position

Tables	Antenna Model	Antenna Location	Test Frequency $(\mathbf{M H z})$	E/H Field	Passenger/ By-Stander Pos.	Max Calc Pwr Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	\% of Uncontrolled limit
Table 2	HAD4007A	Roof	147.0125	E	Passenger	0.16	80.0%
Table 23	HAD4009A	Roof	173.9875	H	By-Stander Pos. \#1	0.04	20.0%
Table 7	HAD4007A	Roof	147.0125	E	By-Stander Pos. \#2	0.07	35.0%
Table 12	HAD4009A	Roof	173.9875	E	By-Stander Pos. \#3	0.06	30.0%
Table 32	HAD4008A	Roof	155.0125	E	By-Stander Pos. \#4	0.04	20.0%
Table 17	HAD4008A	Roof	155.0125	E	By-Stander Pos. \#5	0.04	20.0%

Table 2 - M20KTS9PW1AN VHF Mobile Assessments - Highest MPE result per test position

Tables	Antenna Model	Antenna Location	Treqt (MHz)	E/H Field	Passenger/ By-Stander Pos.	Max Calc Pwr Density $\left(\mathbf{m W} / \mathbf{m}^{2}\right)$	\% of Uncontrolled limit
Table 2	HAD4007A	Roof	147.4000	E	Passenger	0.16	80.0%
Table 3	HAD4008A	Roof	155.0000	E	By-Stander Pos. \#1	0.04	20.0%
Table 8	HAD4008A	Roof	155.0000	E	By-Stander Pos. \#2	0.07	35.0%
Table 29	HAD4008A	Roof	155.0000	H	By-Stander Pos. \#3	0.06	30.0%
Table 31	HAD4007A	Roof	147.4000	H	By-Stander Pos. \#4	0.06	30.0%
Table 35	HAD4008A	Roof	155.0000	H	By-Stander Pos. \#5	0.06	30.0%

Table 3 - DQPMDVR3000P - DVR VHF Assessments - Highest MPE result per test position

Tables	Antenna Model	Antenna Location	Treqt (MHz)	E/H Field	Passenger/ By-Stander Pos.	Max Calc Pwr Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	\% of Uncontrolled limit
Table 6	HAD4009A	Trunk	174	E	Passenger	0.13	65.0
Table 3	HAD4008A	Trunk	155	E	By-Stander Pos.\#1	0.03	15.0
Table 7	HAD4006A	Trunk	136	E	By-Stander Pos. \#2	0.03	15.0
Table 10	HAD4006A	Trunk	136	E	By-Stander Pos. \#3	0.03	15.0
Table 31	HAD4006A	Trunk	136	H	By-Stander Pos. \#4	0.06	30.0
Table 34	HAD4006A	Trunk	136	H	By-Stander Pos. \#5	0.05	25.0

Table 4 - Combined VHF Mobile M20KSS9PW1AN and DVR DQPMDVR3000P (Calculated \% of limit performance)

	Percentage of Limit		
Test Position	M20KSS9PW1AN $(\mathbf{1 4 7 - 1 7 4 M H z}$	DVR VHF $(\mathbf{1 3 6 - 1 7 4 M H z})$	Combined Percentages
Passenger	80.0%	65.0%	$* 145.0 \%$
By-Stander \#1	20.0%	15.0%	35.0%
By-Stander \#2	35.0%	15.0%	50.0%
By-Stander \#3	30.0%	15.0%	45.0%
By-Stander \#4	20.0%	30.0%	50.0%
By-Stander \#5	20.0%	25.0%	45.0%

* Exceeds MPE General Population/Uncontrolled exposure limit

Table 5-Combined VHF Mobile M20KTS9PW1AN and DVR DQPMDVR3000P (Calculated \% of limit performance)

	Percentage of Limit		
Test Position	M20KTS9PW1AN $(\mathbf{1 4 7 - 1 7 4 M H z})$	DVR VHF $(\mathbf{1 3 6 - 1 7 4 M H z})$	Combined Percentages
Passenger	80.0%	65.0%	$* 145.0 \%$
By-Stander \#1	20.0%	15.0%	35.0%
By-Stander \#2	35.0%	15.0%	50.0%
By-Stander \#3	30.0%	15.0%	45.0%
By-Stander \#4	30.0%	30.0%	60.0%
By-Stander \#5	30.0%	25.0%	55.0%

* Exceeds MPE General Population/Uncontrolled exposure limit

Table 6 - Highest combined passenger (backseat) MPE percent of limit (Reference Appendix E S.A.R. Simulation Results for non-compliant MPE data below)

			XTL5000 VHF 57W Roof Mount			
		$\begin{aligned} & \text { HAD } 4007 \mathrm{~A} \\ & 147.0125 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { HAD } 4008 \mathrm{~A} \\ 155.0125 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { HAD4009A } \\ 173.9875 \mathrm{MHz} \end{gathered}$		
		Measured Results (\%)	80\%	60\%	55\%	
DVR	$\begin{gathered} \mathrm{HAD} 4006 \mathrm{~A} \\ 136 \mathrm{MHz} \\ \hline \end{gathered}$		40\%	*120\%	*100\%	95\%
$\mathbf{6 W}$ Trunk	$\begin{gathered} \mathrm{HAD} 4008 \mathrm{~A} \\ 155 \mathrm{MHz} \\ \hline \end{gathered}$	40\%	*120\%	*100\%	95\%	
Mount	$\begin{gathered} \mathrm{HAD} 4009 \mathrm{~A} \\ 174 \mathrm{MHz} \\ \hline \end{gathered}$	65\%	*145\%	*125\%	*120\%	

* Exceeds MPE General Population/Uncontrolled exposure limit

12.0 Conclusion

Because the signals emitted by each individual transmitter are statistically uncorrelated, the collective compliance of the transmitters is determined by summing the individual ratios between actual (S) and maximum allowed (MPE or SAR) exposure. Compliance is achieved if the total exposure level (T) is less than one:

Formula:

$$
T=\frac{S_{1}}{S A R_{1}}+\frac{S_{2}}{S A R_{2}}+\ldots<1 \quad \text { Or } \quad T=\frac{S_{1}}{M P E_{1}}+\frac{S_{2}}{M P E_{2}}+\ldots<1
$$

Depending on the test frequency, both VHF mobile assessments were performed with an output power range of $55.6 \mathrm{~W}-55.8 \mathrm{~W}$. The DVR output power across the TX band is $6.00 \mathrm{~W}-6.08 \mathrm{~W}$. The highest power density results for the XTL5000 VHF mobile devices scaled to the maximum allowable power output is $0.16 \mathrm{~mW} / \mathrm{cm}^{2}$ internal to the vehicle and $0.07 \mathrm{~mW} / \mathrm{cm}^{2}$ external to the vehicle. The highest power density results for the DVR device scaled to the maximum allowable power output is $0.13 \mathrm{~mW} / \mathrm{cm}^{2}$ internal to the vehicle and $0.06 \mathrm{~mW} / \mathrm{cm}^{2}$ external to the vehicle. The highest combined power density performance is 145.0% of the FCC/IEEE MPE limits using the methodology and formula below.

Therefore:
Passenger

$$
T=\frac{0.16}{0.2}+\frac{0.13}{0.2}=1.45>1 \quad \text { (non-compliant) }
$$

By-stander

$$
T=\frac{0.07}{0.2}+\frac{0.06}{0.2}=0.65<1 \quad \text { (compliant) }
$$

These MPE results demonstrate compliance to the FCC/IEEE Occupational/Controlled Exposure limit.

FCC rules require compliance for passengers and bystanders to the FCC General Population/Uncontrolled limits. Although MPE is a convenient method of demonstrating compliance, SAR is recognized as the "basic restriction". For those configurations exceeding the MPE limit noted in table 6 section 11.0, compliance to the FCC/IEEE SAR General Population/Uncontrolled limit of $1.6 \mathrm{~mW} / \mathrm{g}$ is demonstrated in Appendix E via SAR computational analysis.

The computation results show that this device, when used with the specified antennas, exhibit a maximum combined peak $1-\mathrm{g}$ average S.A.R. of $0.27 \mathrm{~mW} / \mathrm{g}$.

Therefore:

$$
\text { Passenger } \quad T=\frac{0.12}{1.6}+\frac{0.15}{1.6}=0.17<1 \quad \text { (compliant) }
$$

