

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc. EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-159 April 2006 The results and statements contained in this report pertain only to the device(s) evaluated herein.

Dearrah Jakharia

Deanna Zakharia EME Lab Senior Resource Manager and Laboratory Director

Approval Date: 12/14/2012

Document Revision History

Date	Revision	Comments
12/14/2012	0	Initial release

Part 2 of 2

1.0	Introduction	4
2.0	Abbreviations / Definitions	4
3.0	Referenced Standards and Guidelines	4
4.0	Power Density Limits	5
5.0	N _c Test Channels	6
6.0	Measurement Equipment	6
7.0	Measurement System Uncertainty Levels	6
8.0	Product and System Description	7
9.0	Options and Accessories	
10.0	Test Set-Up Description	8
11.0	Method of Measurement for DVR with trunk mounted antenna(s)	
	11.1. External/Bystander vehicle MPE measurements11.2. Internal/Passenger vehicle MPE measurements	
12.0	Method of Measurement for Companion Mobile with roof mounted antenna(s)	10
13.0	 12.1. External/Bystander vehicle MPE measurements 12.2. Internal/Passenger vehicle MPE measurements MPE Calculations 	10
14.0	Antenna Summary	12
15.0	Test Results Summary	12
16.0	 15.1. MPE Test Results 15.2. Combined MPE Results Conclusion 	12 21
	Appendix A - Antenna Locations and Test Distances Appendix B - Probe Calibration Certificates Appendix C - Photos of Assessed Antennas Appendix D – MPE Measurement Results Appendix E - SAR Simulation Report	29 39 41

1.0 Introduction

This report details the test setup, test equipment and test results of Maximum Permissible Exposure (MPE) performed at Motorola Solutions' outside test site and Specific Absorption Rate (SAR) simulations for DVR product FCC ID: LO6-DVRSVHF (Model # DQPMDVR3000P) when used with Companion Mobile FCC ID: AZ492FT4904 (Model # M30TSS9PW1AN(MHUE1002A)) while operating at the FCC part 90 frequency range.

2.0 Abbreviations / Definitions

APCO: Association of Public-Safety Communications Officials **BS:** Bystander C4FM: Compatible 4-Level Frequency Modulation CNR: Calibration Not Required **CQPSK:** Compatible Quadrature Phase Shift Keying CW: Continuous Wave **DUT:** Device Under Test **DVR:** Digital Vehicular Repeater **EME:** Electromagnetic Energy F2: 2 slot Time Division Multiple Access FM: Frequency Modulation MPE: Maximum Permissible Exposure NA: Not Applicable PB: Passenger Backseat PF: Passenger Front seat PTT: Push to Talk SAR: Specific Absorption Rate **TDMA:** Time Division Multiple Access

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 1.1310, § 2.1091 (d) and § 2.1093 for RF Exposure, where applicable.
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1999
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992. Specific to FCC rules and regulations.
- Institute of Electrical and Electronics Engineers (IEEE) C95.3-2002
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz

4.0 **Power Density Limits**

Frequency	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005	RSS 102 issue 4 - 2010
Range (MHz)	mW/cm^2	W/m^2	mW/cm^2	W/m^2	W/m^2
30 - 300	1.0				*10.0
10 - 400		10.0			
100 - 300			1.0	10.0	
300 - 1,500	f/300				f/30
300 - 3,000			f/300	f/30	
400 - 2,000		f/40			
1,500 - 15,000					50.0
1,500 - 100,000	5.0				
2,000 - 300,000		50.0			
3,000 - 300,000			10.0	100.0	

Table 1 – Occupational / Controlled Exposure Limits

*Power density limit is applicable at frequencies greater than 100MHz

Frequency	FCC OET Bulletin 65 Supplement C	ICNIRP	IEEE C95.1 1992/1999	IEEE C95.1 2005	RSS 102 issue 4 – 2010
Range (MHz)	mW/cm^2	W/m^2	mW/cm^2	W/m^2	W/m^2
30 - 300	0.2				*2.0
10 - 400		2.0			
100 - 300			0.2		
100 - 400				2.0	
300 - 1,500	f/1,500				f/150
400 - 2,000		f/200		f/200	
300 - 15,000			f/1,500		
1,500 - 15,000					10.0
1,500 - 100,000	1.0				
2,000 - 100,000				10.0	
2,000 - 300,000		10.0			

*Power density limit is applicable at frequencies greater than 100MHz

5.0 N_c Test Channels

The number of test channels are determined by using Equation 1 below. This equation is available in FCC's KDB 447498. The test channels are appropriately spaced across the antenna's frequency range.

$$\begin{split} & \text{Equation } 1-\text{Number of test channels} \\ & \text{N}_{c} = \text{Round } \{ [100(f_{high} - f_{low})/f_{c}]^{0.5} \; x \; (f_{c} \; / \; 100)^{0.2} \} \end{split}$$

where N_c is the number of test channels, f_{high} and f_{low} are the highest and lowest frequencies within the transmission band, f_c is the mid-band frequency, and frequencies are in MHz.

6.0 Measurement Equipment

Equipment Type	Model #	SN	Calibration Date	Calibration Due Date
Automobile	2003 Ford Crown Victoria, 4-Door	NA	NA	NA
Survey Meter	ETS Model HI-2200	00086887	6/11/2012	6/11/2013
Probe – E-Field	ETS Model E100	00126277	6/11/2012	0/11/2013
Survey Meter	ETS Model HI-2200	00086887	C/11/2012	C/11/2012
Probe – H-Field	ETS Model H200	00084225	6/11/2012 6/11/2012	6/11/2013
Survey Meter	ETS Model HI-2200	00086316	8/15/2012	9/15/2012
Probe – E-Field	ETS Model E100	00109011	8/15/2012	8/15/2013
C C 11	XX/ AO			•

Table 3 - Equipment

E-field measurements are in mW/cm^2 .

H-field measurements are in A/m.

7.0 Measurement System Uncertainty Levels

Table 4 - Uncertainty Budget for Near Field Probe Measurements

	Tol.	Prob.		\boldsymbol{u}_i	
	(± %)	Dist.	Divisor	(±%)	<i>v</i> _i
Measurement System					
Probe Calibration	6.0	Ν	1.00	6.0	∞
Survey Meter Calibration	3.0	Ν	1.00	3.0	∞
Hemispherical Isotropy	8.0	R	1.73	4.6	8
Linearity	5.0	R	1.73	2.9	8
Pulse Response	1.0	R	1.73	0.6	∞
RF Ambient Noise	3.0	R	1.73	1.7	8
RF Reflections	8.0	R	1.73	4.6	8
Probe Positioning	10.0	R	1.73	5.8	∞
Test sample Related					
Antenna Positioning	3.0	Ν	1.00	3.0	8
Power drift	5.0	R	1.73	2.9	8
Combined Standard					
Uncertainty		RSS		12.2	∞
Expanded Uncertainty					
(95% CONFIDENCE					
LEVEL)		<i>k</i> =2		24	

8.0 Product and System Description

This device (FCC ID: LO6-DVRSVHF, Model # DQPMDVR3000P) is a MOBEXCOM Digital Vehicular Repeater (DVR) manufactured by FUTURECOM Systems Group. The DVR, in addition to standalone operation, is capable of interfacing to a companion mobile radio using serial data protocol for audio and control. The full duplex DVR provides local area coverage for portable to portable communication in the DVR's operating band while the Companion Mobile radio provides wide-area coverage extension.

The system can operate in the following modes: Mobile mode - where the vehicular repeat function is off but receives emergency and mode change commands from portable devices; Local mode - with portable to portable repeat and network monitoring capabilities; and System mode - with portable to portable repeat functions with full network interconnect. Furthermore, the DVRS offers a busy lockout feature where a simulcast prevention algorithm is used for seamless multi-vehicle operation on the same channel. Moreover, the system supports emergency calls in the MDC1200 signaling format. Other system features include field programmability, seamless interface to a mobile radio through the control head bus, controllability via a mobile radio control head, as well as remotely by a dispatcher or portable user. The DVR supports up to 64 channels and 255 talk groups, MDC1200, DTMF, EIA, CCIR signaling as well as PL and DPL. The DVR supports programmability of leading and/or trailing tones, and audio and TX priorities per mode as well as talk group steering.

This test report covers the RF Exposure performance of the DVR FCC ID: LO6-DVRSVHF (VHF 6 watts) interfaced with, and transmitting simultaneously with a Companion Mobile radio FCC ID: AZ492FT4904 (UHF R2 45 watts), and with both units installed in a typical vehicle.

The DVR transmit frequency ranges are 136-174MHz at transmit duty cycle up to 100%. The Companion Mobile transmit frequency range is 450-520MHz at transmit duty cycle up to 50% (PTT). The DVR antenna is limited to ¼ wave (0dBd gain) mounted at the center of the trunk, and the Companion Mobile (UHF R2) antennas are limited to ¼ wave (0dBd gain) and ½ wave (2dBd and 3.5dBd gain) mounted at the side of the roof (45cm from the center of the roof). The maximum conducted power delivered to the DVR antenna is 6 watts, due to the filter losses, while the maximum conducted power delivered to the Companion Mobile is 54 watts.

This device will be marketed to and used by employees solely for work-related operations, such as public safety agencies, e.g. police, fire and emergency medical. User training is the responsibility of these agencies which can be expected to employ the usage instructions, safety information and operational cautions set forth in the user's manual, instructional sessions or other means.

Accordingly this product is classified as Occupational/Controlled Exposure. However, in accordance with FCC requirements, the passengers inside the vehicle and the bystanders external to the vehicle are evaluated to the General Population/Uncontrolled Exposure Limits.

(Note that "Bystanders" as used herein are people other than operator)

9.0 **Options and Accessories**

The offered antennas for the DVR and the Companion Mobile are listed on the table 5.

	Table 5										
FCC ID	Model/Description	Antennas									
LO6-DVRSVHF	DQPMDVR3000P	HAD4007A (144-150.8MHz, 1/4 wave Trunk mount, 0dBd gain)									
	136-174 MHz, 25 KHz, 1-20 watt,	HAD4008A (150.8-162MHz, 1/4 wave Trunk mount, 0dBd gain)									
		HAD4009A (162-174MHz, 1/4 wave Trunk mount, 0dBd gain)									
	M30TSS9PW1AN(MHUE1002A)	HAE4003A (450-470 MHz, 1/4 wave Roof mount, 0dBd gain)									
AZ492FT4904	Companion APX7500 Dual Band UHF R1 40W – UHF R2 45W	HAE4004A (470-512 MHz, 1/4 wave Roof mount, 0dBd gain)									
AZ492F14904		HAE4011A (445-470 MHz, 1/2 wave Roof mount, 3.5dBd gain)									
	(380-470MHz & 450-520MHz)	HAE6015A (450-520 MHz, 1/2 Wave Roof mount, 2dBd gain)									

10.0 Test Set-Up Description

Assessments were performed with DVR and the companion mobile radio installed in the test vehicle while engine was at idle, at the specified distances and test locations indicated in sections 11.0, 12.0 and Appendix A.

- DVR: the ¹/₄ wave 0dBd gain antennas (HAD4007A, HAD4008A, HAD4009A) were assessed while mounted at the trunk.
- Companion mobile: the ¼ wave 0dBd gain antennas (HAE4003A, HAE4004A), and ½ wave 2dBd and 3.5dBd gain (HAE6015A, HAE4011A) were assessed while mounted at the side of the roof (driver side) of the test vehicle.

All antennas described in Table 5 were considered in order to develop the test plan for this product. Antennas were installed and tested per their appropriate mount locations (Roof / Trunk) and defined test channels.

11.0 Method of Measurement for DVR with trunk mounted antenna(s)

(Referenced Appendix A for illustration of antenna location and test distances).

11.1. External/Bystander vehicle MPE measurements

The DVR antenna is located at the center of the trunk. Refer to Appendix A for antenna location and distance.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2m vertical line for each of the (5) bystander test locations indicated in Appendix A with 20cm height increments at the test distance of 90cm from the test vehicle's body, as stated in the user manual. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

11.2. Internal/Passenger vehicle MPE measurements

The DVR antenna is located toward the center of the trunk at a minimum 85cm from backseat passenger. Refer to Appendix A for antenna location and distance.

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest & Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the max-hold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical (relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna for trunk mount position, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be closer to the door.

12.0 Method of Measurement for Companion Mobile with roof mounted antenna(s)

(Referenced Appendix A for illustration of antenna location and test distances).

12.1. External/Bystander vehicle MPE measurements

The Companion Mobile antennas are located at the side of the roof (45cm from the center of the roof, along the width of the vehicle, driver side). Refer to Appendix A for antenna location and distance.

MPE measurements for bystander (BS) conditions are determined by taking the average of (10) measurements in a 2m vertical line for each of the (5) bystander test locations indicated in Appendix A with 20cm height increments at the test distance of 90cm from the test vehicle's body, as stated in the user manual. The measurement probe is positioned orthogonal to antenna (typically parallel to ground with a vertically mounted antenna) and aimed directly at the antenna's axis. These measurements are representative of persons other than the operator standing next to the vehicle.

12.2. Internal/Passenger vehicle MPE measurements

The Companion Mobile antennas are located at the side of the roof (45cm from the center of the roof, along the width of the vehicle, driver side). Refer to Appendix A for antenna location and distance.

MPE measurements for passenger front seat (PF) and backseat (PB) conditions are determined by taking the average of the (3) measurements (Head, Chest, and Lower Trunk) inside the vehicle for both the front and back seats.

The backseat is a bench seat and therefore each position (Head, Chest & Lower Trunk) were scanned across (horizontally) the seat starting from the middle of the seat to the edge of the seat stopping 20cm from the vehicle door. Similar process was used in the front bucket seat.

The probe handle is oriented parallel (horizontal) to the ground and pointed towards the back of the vehicle. The probe handle is not oriented normal to the seat surface. The probe head (incorporating the field sensors) is scanned continuously (using the max-hold function available in the meter) along three test axes which are parallel to the seat angle (intended as the line determined by the intersection of the plane of the seat and the plane of the backrest) and are 20cm from the seat surface. One test axis is at the Head height, another is at the Chest height, and another is at the Lower Trunk height. The maximum field level value recorded for each test axis is logged. The MPE is determined by averaging these three maximum values regardless of the geometrical location where they were observed. For instance, the locations of the three maxima may lie on different vertical (relative to ground) lines.

This approach leads to results that are representative of the exposure of vehicle occupants since it is based on an average across the body portions closest to the antenna for roof mount position, and is conservatively biased because the highest results for each test axis are combined, e.g. the highest head exposure could be in the middle of the seat while the highest lower trunk exposure could be closer to the door.

13.0 MPE Calculations

The final MPE results for this mobile radio are presented in section 15.1 Tables 7 - 10. The results for the DVR are based on the 100% duty cycle while the results for the Companion Mobile are based on 50% duty cycle for PTT.

Below is an explanation of how the MPE results are calculated. Refer to Appendix D for MPE measurement results and calculations.

External to vehicle (Bystander) - 10 measurements are averaged over the body (*Avg_over_body*). Internal to vehicle (Passengers) - 3 measurements are averaged over the body (*Avg_over_body*).

The Average over Body test methodology is consistent with IEEE/ANSI C95.3-2002 guidelines.

Therefore;

Equation 2 – Power Density Calculation (*Calc._P.D.*)

Calc._*P*.*D*. = (*Avg*_*over*_*body*)*(*probe*_*frequency*_*cal*_*factor*)*(*duty*_*cycle*)

Note1: The highest "average" cal factors from the calibration certificates were selected for the applicable frequency range. Linear interpretation was used to determine "probe_frequency_cal_factor" for the specific test frequencies.

Note 2: The E-field probe calibration certificate's frequency cal factors were determined by measuring V/m. The survey meter's results were measured in power density (mW/cm^2) and therefore the "probe_frequency_cal_factor" was squared in equation 2 to account for these results.

Note 3: The H-field probe calibration certificate's frequency cal factors were determined by measuring A/m. The survey meter's results were measured in A/m and therefore the "Avg_over_body" A/m results were converted to power density (mW/cm^2) using the equation 3. H-field measurements are only applicable to frequencies below 300MHz.

Equation 3 - Converting A/m to mW/cm^2

 $mW/cm^2 = (A/m)^2 * 37.699$

Equation 4 – Power Density Maximum Calculation

Max_Calc._P.D. = *P.D._calc* * $\frac{max_output_power}{initial_output_power}$

Note 4: For initial output power> max_output_power; max_output_power / initial output power = 1

14.0 Antenna Summary

Table 6 below summarizes the tested antennas and their descriptions, mount location (roof/trunk), overlap of FCC bands and number of test channels per FCC KDB 447498 (FCC N_c). This information was used to determine the test configurations presented in this report.

	Table 6										
#	DUT FCC ID (Model #)	Antenna Model	Frequency Range (MHz)	Physical Length (cm)	Gain (dBi)	Remarks	Mount Location (Roof/Trunk)	Overlap FCC Bands (MHz)	FCC Nc		
1		HAD4007A	144-150.8	49.0	2.15	1/4 wave, wire		150.8	1		
	LO6-DVRSVHF	HAD400/A	144-130.8	49.0	2.13	1/4 wave,	Trunk	130.8	1		
2	(DQPMDVR3000P)	HAD4008A	150.8-162	45.5	2.15	wire	(Center)	150.8-162	3		
						1/4 wave,					
3		HAD4009A	162-174	43.0	2.15	wire		162-173.4	3		
						1/4 wave,					
4		HAE4003A	450-470	16.0	2.15	wire	Roof	450 - 470	3		
	AZ492FT4904					1/4 wave,					
5	M30TSS9PW1AN	HAE4004A	470-512	15.0	2.15	wire	(45cm from center of the	470-512	4		
	(MHUE1002A)					1/2 wave	roof,				
6		HAE4011A	445-470	73.2	5.65	trap-loaded	Driver side)	445 - 470	3		
						1/2 wave	Driver slue)				
7		HAE6015A	450-520	26.2	4.15	trap-loaded		450-512	5		

15.0 Test Results Summary

The following tables below summarize the MPE results for each test configuration: antenna location, test positions (BS1: Bystander test location # 1, BS2: Bystander test location # 2, BS3: Bystander test location # 3, BS4: Bystander test location # 4, BS5: Bystander test location # 5, PB-Passenger Backseat, PF-Passenger Front seat), E/H field measurements, antenna model & freq. range, maximum output power, initial power, TX frequency, max calculated power density results, applicable FCC specification limits and % of the applicable specification limits.

15.1. MPE Test Results

		Dystan	der - MPE asses						0/ T
Trunk/ Roof	Test Location	E/H Field	Ant. Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Max Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit
	200000	1010		('')	(,,,)	(11222)	(2	
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.01	0.20	3.3
				-		150 800	0.01	0.20	2.6
			HAD4008A	6.0	6.0	156.400		0.20	2.0
	BS1	Е	(150.8-162MHz)		0.0	162.000	0.00	0.20	1.2
						1.62.000	0.00	0.00	1.6
			HAD4009A		6.0			0.20	1.6
			(162-174MHz)	6.0	6.0			0.20	1.3
			``´´			173.400	0.00	0.20	1.3
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.01	0.20	4.4
					6.0	150 800	0.01	0.20	3.5
			HAD4008A	6.0					4.1
E	BS2	Е	(150.8-162MHz)	0.0	0.0				4.4
						102.000	0.01	0.20	7.7
			HAD4009A			162.000	0.01	0.20	3.7
			(162-174MHz)	6.0	6.0	167.700	0.01	0.20	5.1
			(102 - 1/4 WHZ)			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.8		
Trunk			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.02	0.20	7.6
						150 800	0.01	0.20	6.6
			HAD4008A	6.0	6.0		Freq MHz) P.D. (mW/ cm^2) 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.01 56.400 0.00 52.000 0.00 52.000 0.00 52.000 0.00 52.000 0.00 57.700 0.00 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.01 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02 50.800 0.02		7.3
	BS3	E	(150.8-162MHz)	0.0	0.0				10.0
			HAD4009A			162.000		0.20	8.0
			(162-174MHz)	6.0	6.0	167.700		0.20	8.6
						173.400	0.02	0.20	7.9
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.02	0.20	10.3
						150.800	0.02	0.20	8.5
		_	HAD4008A	6.0	6.0	156.400		0.20	8.5
	BS4	E	(150.8-162MHz)			162.000		0.20	11.4
			HAD4009A (162-174MHz)	<i>c</i> 0				0.20	9.1
				6.0	6.0			0.20	10.6
						1/3.400	0.02	0.20	8.3

Table 7 – DVR (VHF 6W) Bystander - MPE assessment for trunk mounted antenna

					Initial	Тх	Max Calc.		% To
Trunk/	Test	E/H			Pwr	Freq	P.D.	FCC	Spec
Roof	Location	Field	Ant Model		(W)	(MHz)	(mW/cm^2)		Limit
KUUI	Location	Titlu	Ant. Mouch	(••)	(**)	(191112)			
			HAD4007A	6.0	6.0	150 800	0.02	0.20	8.0
			(144-150.8MHz)	0.0	6.0	150.800	0.02	0.20	8.0
						1 7 0 0 0 0	0.01		
			HAD4008A			150.800	0.01		7.0
	BS5	Е	(150.8-162MHz)	144-150.8MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4009A (162-174MHz) 6.0 HAD4007A 144-150.8MHz) 6.0 HAD4007A 144-150.8MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4009A (162-174MHz) 6.0 HAD4009A (162-174MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4009A (162-174MHz) 6.0 HAD4008A 150.8-162MHz) 6.0 HAD4007A 144-150.8MHz) 6.0 HAD4007A 144-150.8MHz) 6.0 HAD4007A 144-150.8MHz) 6.0 HAD4008A 150.8-162MHz) 6.0	6.0	156.400	0.01		6.4
			、			162.000	0.01	FCC Imit 2 0.20 0.20 0.20	5.1
						162.000	0.01	0.20	4.8
				60	6.0	167.700	0.02		8.3
			(162-174MHz)	0.0	0.0	173.400	0.02		8.8
						175.400	0.02	0.20	0.0
		HAD4007A	()	60	150 900	0.01	0.20	2.0	
			(144-150.8MHz)	6.0	6.0	150.800	0.01	0.20	3.8
			HAD4008A			150.800		FCC Limit 0.20 0.20 0.20 <td>3.2</td>	3.2
	BS1	Н		6.0	6.0	156.400			2.8
	201		(,			162.000	0.01	Limit 0.20 0	3.2
				6.0		162.000	0.01	0.20	2.8
					6.0	167.700			2.8
			(162-174MHz)	0.0	0.0	173.400	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.4
Trunk						175.400	0.00	0.20	2.5
			HAD4007A	6.0	6.0	150,000	0.01	0.00	5 7
			(144-150.8MHz)	6.0	6.0	150.800	0.01	0.20	5.7
						1 50 000	0.01	0.00	1.0
			HAD4008A			150.800			4.9
	BS2	Н		6.0	6.0	156.400			5.1
			、			162.000	0.01	0.20	5.7
						162.000	0.01	0.20	4.8
				60	6.0	167.700	0.01		6.2
			(162-174MHz)	0.0	0.0	173.400	0.01		5.8
						175.400	0.01	0.20	5.0
			HAD4007A	6.0	6.0	150.800	0.02	0.20	11.0
			(144-150.8MHz)	0.0	0.0	130.000	0.02	0.20	11.0
						150.000	0.02	0.00	0.2
			HAD4008A	<u> </u>	6.0	150.800	0.02		9.3
	BS3	Н	(150.8-162MHz)	6.0	6.0	156.400	0.02		10.1
						162.000	0.03	0.20	12.5
		HAD4009A (162-174MHz)				162.000	0.02	0.20	10.3
				60	6.0	167.700	0.02		11.6
			(162-174MHz)	0.0	0.0	173.400	0.02		10.6
	 					175.100	0.02	0.20	10.0

Table 7 – DVR (VHF 6W) (cont'd) Bystander - MPE assessment for trunk mounted antenna

		Dystan							0/ TT
				Max	Initial	Тх	Max Calc.		% To
Trunk/	Test	E/H		Pwr	Pwr	Freq	P.D.	FCC	Spec
Roof	Location	Field	Ant. Model	(W)	(W)	(MHz)	(mW/ cm^2)	Limit	Limit
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.02	0.20	11.4
			HAD4008A			150.800	0.02	0.20	9.8
H	DC4	тт	(150.8-162MHz)	6.0	6.0	156.400	0.02	0.20	9.9
	BS4	Н	(130.8-10210172)			162.000	0.02	0.20	12.0
			HAD4009A (162-174MHz) 6.0 HAD4007A 6.0	6.0	6.0	162.000	0.02	0.20	9.7
						167.700	0.02	0.20	10.9
					173.400	0.02	0.20	9.2	
Trunk									
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.02	0.20	8.5
			HAD4008A			150.800	0.01	0.20	6.8
	BS5	Н	(150.8-162MHz)	6.0	6.0	156.400	0.01	0.20	7.1
	D 55	11	(150.8-10210112)			162.000	0.01	0.20	7.4
						1 62 000	0.01	0.00	6.0
			HAD4009A			162.000	0.01	0.20	6.0
			(162-174MHz)	6.0	6.0	167.700	0.02	0.20	9.4
			(102-17 + 101112)			173.400	0.02	0.20	10.6

Table 7 – DVR (VHF 6W) (cont'd) Bystander - MPE assessment for trunk mounted antenna

Passenger - MPE assessment for trunk mounte											
Trunk/ Roof	Test Location	E/H Field	Ant. Model	Max Pwr (W)	Initial Pwr (W)	Tx Freq (MHz)	Max Calc. P.D. (mW/ cm^2)	FCC Limit	% To Spec Limit		
1001	Locution	Tielu		('')	(")	(11112)		2			
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.18	0.20	91.0		
						150.800	0.15	0.20	76.2		
			HAD4008A	6.0	6.0	156.400	0.23	0.20	113.2		
	PB	E	(150.8-162MHz)	0.0	0.0	162.000	0.18	0.20	92.3		
			HAD4009A	6.0		162.000	0.15	0.20	77.4		
			(162-174MHz)		6.0	167.700	0.17	0.20	86.8		
			(,			173.400	0.13	0.20	65.8		
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.05	0.20	24.2		
					150.800	0.04	0.20	20.0			
		Е	HAD4008A	6.0	6.0	156.400	0.04	0.20	19.2		
PF	PF		(150.8-162MHz)	0.0	0.0	162.000	0.04	0.20	9.4		
						102.000	0.02	0.20	9.4		
						162.000	0.02	0.20	8.2		
			HAD4009A	6.0	6.0	167.700	0.02	0.20	11.5		
			(162-174MHz)			173.400	0.06	0.20	30.5		
Trunk			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.07	0.20	34.9		
		в н				150 800	0.07	0.20	226		
			HAD4008A	6.0	6.0	150.800 156.400		0.20	32.6 48.5		
	PB		(150.8-162MHz)			162.000	0.10	0.20			
						162.000	0.11	0.20	52.5		
						162.000	0.12	0.20	58.9		
			HAD4009A	6.0	6.0	167.700	0.13	0.20	65.5		
			(162-174MHz)			173.400	0.09	0.20	47.1		
			HAD4007A (144-150.8MHz)	6.0	6.0	150.800	0.05	0.20	26.2		
						150.800	0.04	0.20	21.9		
	_	_	HAD4008A	6.0	6.0	156.400	0.03	0.20	13.1		
	PF	Н	(150.8-162MHz)	0.0	0.0	162.000	0.01	0.20	3.5		
			HAD4009A			162.000	0.01	0.20	3.8		
			HAD4009A (162-174MHz)	6.0	6.0	167.700	0.01	0.20	4.9		
						173.400	0.04	0.20	20.0		

Table 8 – DVR (VHF 6W) Passenger - MPE assessment for trunk mounted antenna

Bystander - MPE assessment for roof mounted antennas								0/	
				Max	Initial		Max Calc.		
Trunk/	Test	E/H		Pwr	Pwr	Tx Freq	P.D.	FCC	-
Roof	Location	Field	Ant. Model	(W)	(W)	(MHz)	(mW/ cm^2)	Limit	Limit
					73 0				
			HAE4003A	54.0	53.8	450.0125	0.05	0.30	
			(450-470MHz)	54.0	53.8	460.0000	0.06	0.31	
		(100 1701111)	54.0	53.7	469.9875	0.05	0.31	16.2	
							-		
			HAE4011A	54.0	53.8	450.0125	0.06	0.30	19.4
			(445-470MHz)	54.0	53.8	460.0000	0.05	0.31	
			(++3-+7014112)	54.0	53.7	469.9875	0.04	0.31	12.0
	BS1	Е		54.0	53.8	450.0125	0.05	0.30	16.8
	DSI	E		54.0	53.7	465.5000	0.06	0.31	18.6
			HAE6015A	54.0	53.7	482.5000	0.06	0.32	18.0
			(450 - 520MHz)	48.0	46.9	496.5000	0.05	0.33	15.7
				48.0	47.3	511.9875	0.05	0.34	15.9
				54.0	53.7	470.0125	0.05	0.31	17.0
			HAE4004A	54.0	53.7	482.5000	0.05	0.32	
			(470-512MHz)	48.0	46.9	498.0000	0.05	0.33	
			(1,001211112)	48.0	47.3	511.9875	0.05	0.34	
Roof					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110070	0100	0.01	1.110
			HAE4003A (450-470MHz)	54.0	53.8	450.0125	0.04	0.30	14.3
				54.0	53.8	460.0000	0.04	0.31	
				54.0	53.7	469.9875	0.04	0.31	
				0.110		10313070	0101	0.01	
				54.0	53.8	450.0125	0.05	0.30	15.2
			HAE4011A	54.0	53.8	460.0000	0.04	0.31	
			(445-470MHz)	54.0	53.7	469.9875	0.03	0.31	
				0 1.0	0011	107.7075	0.02	0.01	15.6 12.0 16.8 18.6 18.0 15.7
				54.0	53.8	450.0125	0.04	0.30	13.4
	BS2	E		54.0	53.7	465.5000	0.04	0.30	
			HAE6015A	54.0	53.7	482.5000	0.04	0.31	
			(450 - 520MHz)	48.0	46.9	496.5000	0.04	0.32	
				48.0	40.9	511.9875	0.04	0.33	
				40.0	47.3	511.90/5	0.04	0.34	10.0
				54.0	527	470.0125	0.04	0.21	12.0
				54.0	53.7	470.0125		0.31	
			HAE4004A	54.0	53.7	482.5000	0.04	0.32	
			(470-512MHz)	48.0	46.9	498.0000	0.04	0.33	
				48.0	47.3	511.9875	0.03	0.34	9.2

Table 9 – Companion Mobile (UHF R2 45W) Bystander - MPE assessment for roofmounted antennas

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Max	Initial		Max Calc.		%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ınk/	Test	E/H				Tx Freq		FCC	To Spec
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Ant. Model						Limit
$ BS3 = E = \begin{bmatrix} HAE4003A \\ (450-470MHz) \\ HAE4011A \\ (445-470MHz) \\ HAE4011A \\ (445-470MHz) \\ HAE6015A \\ (450 - 520MHz) \\ HAE4004A \\ (470-512MHz) \\ HAE4004A \\ (470-512MHz) \\ HAE4003A \\ (450 - 470MHz) \\ HAE4003A \\ (450 - 53.8 \\ 450.0125 \\ 0.03 \\ 0.30 \\ 0.3$			- 1010				(112222)	(
$\mathbb{R} \text{of} \\ \mathbb{R} \text{of} \mathbb{R} \text$					54.0	53.8	450.0125	0.04	0.30	12.9
$\operatorname{BS3} \operatorname{E} \left(\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.04		14.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(450-470MHz)			469.9875	0.04		12.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					54.0	53.8	450.0125	0.04	0.30	12.0
$\operatorname{Roof} \overset{\left(\begin{array}{ccccccccccccccccccccccccccccccccccc$					54.0	53.8	460.0000	0.03	0.31	10.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(445-470MHZ)	54.0	53.7	469.9875	0.03	0.31	8.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DS2	Б		54.0	53.8	450.0125	0.04	0.30	12.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		BS3 E	E		54.0	53.7	465.5000	0.04	0.31	13.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					54.0	53.7	482.5000	0.04	0.32	11.4
Roof 54.0 53.7 470.0125 0.04 0.31 HAE4004A (470-512MHz) 54.0 53.7 482.5000 0.04 0.32 48.0 46.9 498.0000 0.03 0.33 48.0 47.3 511.9875 0.03 0.34 HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 0.31 HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A 54.0 53.7 469.9875 0.01 0.31 HAE4011A 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.01 0.31<				(430 - 32010112)						10.2
Roof HAE4004A (470-512MHz) 54.0 53.7 482.5000 0.04 0.32 48.0 46.9 498.0000 0.03 0.33 0.33 0.33 0.33 0.34 48.0 47.3 511.9875 0.03 0.34 0.32 0.34 0.35 0.33 0.34 HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 0.30 HAE4003A (450-470MHz) 54.0 53.7 469.9875 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 0.30 0.30 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.7 469.9875 0.01 0.31 0.31					48.0	47.3	511.9875	0.03	0.34	9.8
Roof HAE4004A (470-512MHz) 54.0 53.7 482.5000 0.04 0.32 48.0 46.9 498.0000 0.03 0.33 0.33 0.33 0.33 0.34 48.0 47.3 511.9875 0.03 0.34 0.32 0.34 0.35 0.33 0.34 HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 0.30 HAE4001A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0000 0.02 0.31 0.31 HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 54.0 53.7 469.9875 0.01 0.31 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 460.0000 0.02 0.31										
Roof (470-512MHz) 48.0 46.9 498.0000 0.03 0.33 Roof 48.0 47.3 511.9875 0.03 0.34 HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 450.0125 0.03 0.30 54.0 53.7 469.9875 0.01 0.31 6 6 6 6 6 6 6 6 6 6 6 6 6								0.04		13.9
Roof 48.0 47.3 511.9875 0.03 0.34 HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4011A 54.0 53.8 450.0125 0.03 0.30 HAE4011A 54.0 53.8 450.0125 0.01 0.31										11.7
Roof HAE4003A (450-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4003A (450-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.7 469.9875 0.01 0.31 54.0 53.8 450.0125 0.03 0.30				(470-512MHz)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					48.0	47.3	511.9875	0.03	0.34	9.5
HAE4003A (450-470MHz) 54.0 53.8 460.0000 0.02 0.31 54.0 53.7 469.9875 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 HAE4011A 54.0 53.8 460.0000 0.02 0.31 54.0 53.8 460.0000 0.02 0.31 54.0 53.8 460.0000 0.02 0.31	of									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-		
HAE4011A (445-470MHz) 54.0 53.7 469.9875 0.02 0.31 HAE4011A (445-470MHz) 54.0 53.8 450.0125 0.03 0.30 54.0 53.8 460.0000 0.02 0.31 54.0 53.7 469.9875 0.01 0.31 54.0 53.8 450.0125 0.03 0.30 54.0 53.7 469.9875 0.01 0.31					-					
HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 54.0 53.7 469.9875 0.01 0.31 54.0 53.8 450.0125 0.03 0.30				(,	54.0	53.7	469.9875	0.02	0.31	6.3
HAE4011A (445-470MHz) 54.0 53.8 460.0000 0.02 0.31 54.0 53.7 469.9875 0.01 0.31 54.0 53.8 450.0125 0.03 0.30								0.00		- -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				HAE4011A						
								-		
				, , , , , , , , , , , , , , , , , , ,	54.0	53.7	469.9875	0.01	0.31	10.9 8.9 12.0 13.1 11.4 10.2 9.8 13.9
					54.0	52.0	450.0105	0.02	0.20	0.4
		BS4	Е		54.0		450.0125	0.03	0.30	
HAE6015A 54.0 53.7 465.5000 0.02 0.31				HAE6015A				1		1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				(450 - 520MHz)						
$(430 - 3201 \text{ miz}) 48.0 46.9 496.5000 0.02 0.33 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 47.2 511.0875 0.02 0.24 \\ 48.0 $					-			-		
48.0 47.3 511.9875 0.02 0.34					48.0	47.5	511.98/5	0.02	0.34	5.8
54.0 53.7 470.0125 0.02 0.31					54.0	527	470.0125	0.02	0.21	6.6
								-		
								-		
(470-512MHz) 48.0 46.9 498.0000 0.02 0.33 48.0 47.3 511.9875 0.02 0.34				(470-512MHz)						
40.0 47.3 511.9875 0.02 0.34	<u> </u>				40.0	47.3	511.90/5	0.02	0.34	5.4

Table 9 – Companion Mobile (UHF R2 45W) (cont'd)
Bystander - MPE assessment for roofmounted antennas

		Dystan		Max	Initial		Max Calc.		%
Trunk/	Test	E/H		Pwr	Pwr	Tx Freq	P.D.	FCC	To Spec
Roof	Location	Field	Ant. Model	(W)	(W)	(MHz)	(mW/ cm^2)	Limit	Limit
				54.0	53.8	450.0125	0.01	0.30	3.1
			HAE4003A (450-470MHz)	54.0	53.8	460.0000	0.01	0.31	2.6
			(430-470101712)	54.0	53.7	469.9875	0.01	0.31	3.0
Roof BS5									To Spec Limit 3.1 2.6 3.0 4.9 3.7 3.1 3.7 3.1 2.6 2.7 3.4 2.7 2.3
				54.0	53.8	450.0125	0.01	0.30	4.9
		HAE4011A (445-470MHz)	54.0	53.8	460.0000	0.01	0.31	3.7	
			54.0	53.7	469.9875	0.01	0.31	3.1	
	BS5	Е	HAE6015A (450 - 520MHz)	54.0	53.8	450.0125	0.01	0.30	3.7
KUUI	D 35			54.0	53.7	465.5000	0.01	0.31	3.1
				54.0	53.7	482.5000	0.01	0.32	3.0
				48.0	46.9	496.5000	0.01	0.33	2.6
				48.0	47.3	511.9875	0.01	0.34	2.7
				54.0	53.7	470.0125	0.01	0.31	3.4
			HAE4004A	54.0	53.7	482.5000	0.01	0.32	2.7
			(470-512MHz)	48.0	46.9	498.0000	0.01	0.33	2.3
				48.0	47.3	511.9875	0.01	0.34	2.5

Table 9 – Companion Mobile (UHF R2 45W) (cont'd) Bystander - MPE assessment for roofmounted antennas

			iger - Mi E asses	Max	Initial		Max Calc.		%
Trunk/	Test	E/H		Pwr	Pwr	Tx Freq	P.D.	FCC	To Spec
Roof	Location	Field	Ant. Model	(W)	(W)	(MHz)	(mW/cm^2)	Limit	Limit
11001	2000000			(,,,)		(112222)			
				54.0	53.8	450.0125	0.09	0.30	29.8
			HAE4003A	54.0	53.8	460.0000	0.07	0.31	23.0
			(450-470MHz)	54.0	53.7	469.9875	0.08	0.31	25.9
			HAE4011A	54.0	53.8	450.0125	0.07	0.30	24.5
			(445-470MHz)	54.0	53.8	460.0000	0.05	0.31	17.2
			(443-470MIIZ)	54.0	53.7	469.9875	0.04	0.31	11.8
	PB	Б		54.0	53.8	450.0125	0.07	0.30	24.0
	PD	E	HAE6015A	54.0	53.7	465.5000	0.06	0.31	18.5
			(450 - 520MHz)	54.0	53.7	482.5000	0.06	0.32	18.0
			(450 - 52010112)	48.0	46.9	496.5000	0.03	0.33	7.6
				48.0	47.3	511.9875	0.03	0.34	7.7
				54.0	53.7	470.0125	0.08	0.31	24.2
			HAE4004A	54.0	53.7	482.5000	0.08	0.32	24.7
			(470-512MHz)	48.0	46.9	498.0000	0.04	0.33	11.5
				48.0	47.3	511.9875	0.03	0.34	9.4
Roof									
			HAE4003A (450-470MHz)	54.0	53.8	450.0125	0.04	0.30	14.7
				54.0	53.8	460.0000	0.06	0.31	19.1
				54.0	53.7	469.9875	0.08	0.31	25.9
			HAE4011A	54.0	53.8	450.0125	0.02	0.30	7.9
			(445-470MHz)	54.0	53.8	460.0000	0.03	0.31	10.1
			(443-47010112)	54.0	53.7	469.9875	0.03	0.31	8.0
	PF	Е		54.0	53.8	450.0125	0.03	0.30	11.4
	L L.	Е	HAE6015A	54.0	53.7	465.5000	0.06	0.31	20.7
			(450 - 520MHz)	54.0	53.7	482.5000	0.04	0.32	13.0
			(+50 - 520WIIIZ)	48.0	46.9	496.5000	0.03	0.33	9.0
				48.0	47.3	511.9875	0.02	0.34	6.1
				54.0	53.7	470.0125	0.09	0.31	27.7
			HAE4004A	54.0	53.7	482.5000	0.06	0.32	17.2
			(470-512MHz)	48.0	46.9	498.0000	0.04	0.33	11.0
				48.0	47.3	511.9875	0.03	0.34	7.7

Table 10 – Companion Mobile (UHF R2 45W) Passenger - MPE assessment for roof mounted antennas

15.2. Combined MPE Results

The combined MPE results for DVR and it's Companion Mobile were calculated base on the percent of MPE limit for each of the applicable test channels according to the formula below. This is due to the signals emitted by each individual transmitter are statistically uncorrelated, the collective compliance of the transmitters is determined by summing the individual ratios between actual (S) and maximum allowed MPE exposure. Compliance is achieved if the total exposure level (T) is less than one.

Formula:

$$T = \frac{S_1}{MPE_1} + \frac{S_2}{MPE_2} + \ldots < 1$$

The highest combined power density percentage of the FCC MPE limits using the methodology and formula are indicated in the table 11 (referenced data from tables 7 thru 10 for highest calculated MPE % of limit for DVR and the Companion Mobile).

	Table 11						
	I	Percentage of Limit (%)					
	DVR VHF	DVR VHF Companion Mobile Combined					
Test Position	(FCC ID: LO6-DVRSVHF)	(FCC ID: AZ492FT4904)	Percentages				
Passenger, Front seat (PF)	30.5	27.7	58.2				
Passenger, Back seat (PB)	113.2	29.8	143.0				
By-Stander #1 (BS-1)	3.8	19.4	23.2				
By-Stander #2 (BS-2)	6.2	15.2	21.4				
By-Stander #3 (BS-3)	12.5	14.0	26.5				
By-Stander #4 (BS-4)	12.0	8.8	20.8				
By-Stander #5 (BS-5)	10.6	4.9	15.5				

	(Reference tables 8 and 10)											
					DVR (FCC ID: LO6-DVRSVHF) Trunk mount (%)							
					HAD4007A		HAD4008A			HAD4009A		
					150.8	150.8	156.4	162.0	162.0	167.7	173.4	
				Highest Results (%)	91.0	76.2	113.2	92.3	77.4	86.8	65.8	
			450.0125	29.8	120.8	106.0	143.0	122.1	107.2	116.6	95.6	
		HAE4003A (450-470MHz)	460.0000	23.0	114.0	99.2	136.2	115.3	100.4	109.8	88.8	
Companion Mobile (FCC ID: AZ492FT4904) Roof Mount (%)		(100 1701/2222)	469.9875	25.9	116.9	102.1	139.1	118.2	103.3	112.7	91.7	
			450.0125	24.5	115.5	100.7	137.7	116.8	101.9	111.3	90.3	
		HAE4011A (445-470MHz)	460.0000	17.2	108.2	93.4	130.4	109.5	94.6	104.0	83.0	
			469.9875	11.8	102.8	88.0	125.0	104.1	89.2	98.6	77.6	
	F		450.0125	24.0	115.0	100.2	137.2	116.3	101.4	110.8	89.8	
	Ľ		465.5000	18.5	109.5	94.7	131.7	110.8	95.9	105.3	84.3	
		HAE6015A (450-520MHz)	482.5000	18.0	109.0	94.2	131.2	110.3	95.4	104.8	83.8	
		``````````````````````````````````````	496.5000	7.6	98.6	83.8	120.8	99.9	85.0	94.4	73.4	
			511.9875	7.7	98.7	83.9	120.9	100.0	85.1	94.5	73.5	
			470.0125	24.2	115.2	100.4	137.4	116.5	101.6	111.0	90.0	
		HAE4004A	482.5000	24.7	115.7	100.9	137.9	117.0	102.1	111.5	90.5	
		(470-512MHz)	498.0000	11.5	102.5	87.7	124.7	103.8	88.9	98.3	77.3	
			511.9875	9.4	100.4	85.6	122.6	101.7	86.8	96.2	75.2	

# Table 12 – Highest Combined Calculated MPE % of limit for Passenger summary (Back seat)

## 16.0 Conclusion

The DVR assessments were performed with an output power of 6 watts across the DVR transmit band. As for the Companion Mobile, Depending on the test frequency, the Companion Mobile assessments were performed with an output power range as indicated in section 15.1, Tables 9-10. The highest power density results for DVR and the Companion Mobile devices scaled to the applicable maximum allowable power outputs are indicated in the Tables 13 and 14 for internal /passenger to the vehicle, and external/bystander for to the vehicle.

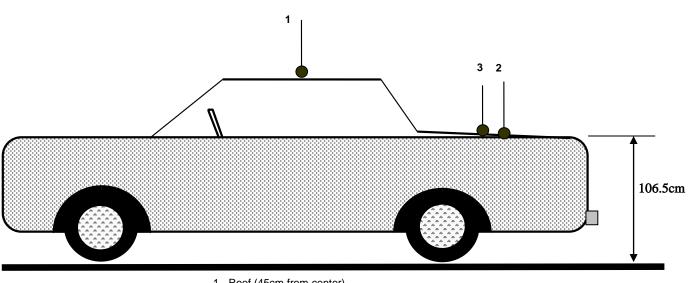
DVR (FCC ID: LO6-DVRSVHF)						
		Passenger	Bystander			
Designator	Frequency (MHz)	(mW/cm ² )	(mW/cm ² )			
FCC	150.8 - 173.4	0.23	0.03			

#### Table 13: Maximum MPE RF Exposure Summary for DVR (FCC ID: LO6-DVRSVHF)

## Table 14: Maximum MPE RF Exposure Summary for Companion Mobile (FCC ID: AZ492FT4904)

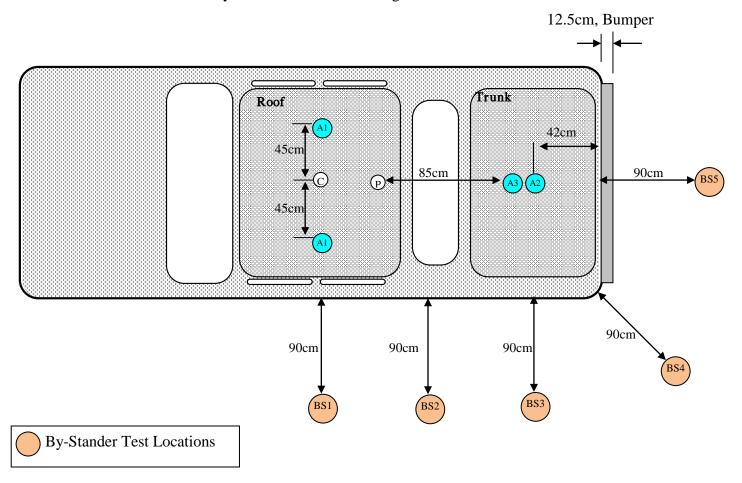
Designator	Frequency (MHz)	Passenger (mW/cm ² )	Bystander (mW/cm ² )
FCC	450-512	0.09	0.06

## Table 15: Maximum Combined Calculated MPE % of limit


	Frequenc	y (MHz)	Percentage of	f Limit (%)
Dertereter	DVR	D	Denteralen	
Designator	(FCC ID: LO6-DVRSVHF)	(FCC ID: AZ492F 14904)	Passenger	Bystander
FCC	150.8 - 173.4	450-512	143.0	26.5
	0	DVR Designator (FCC ID: LO6-DVRSVHF)	Designator (FCC ID: LO6-DVRSVHF) (FCC ID: AZ492FT4904)	DVR         Companion Mobile           Designator         (FCC ID: LO6-DVRSVHF)         (FCC ID: AZ492FT4904)         Passenger

The MPE results presented herein demonstrate compliance to the applicable FCC Occupational/ Controlled exposure limit. FCC rules require compliance for passengers and bystanders to the FCC General Population/ Uncontrolled limits. Although MPE is a convenient method of demonstrating compliance, SAR is recognized as the "basic restriction". For those configurations exceeding the MPE limit noted in section 15 tables 7 thru 12, compliance to the FCC/IEEE SAR General Population/Uncontrolled limit of 1.6mW/g is demonstrated in appendix E Computational EME Compliance Assessment via SAR computational analysis.

The computation results show that this m FCC ID: LO6-DVRSVHF (Model # DQPMDVR3000P) device, when used with the Companion Mobile FCC ID: AZ492FT4904 (Model # M30STSS9PW1AN(MHUE1002A)) and specified antennas, exhibit a maximum combined peak 1-g average SAR are indicated in the Table 16.

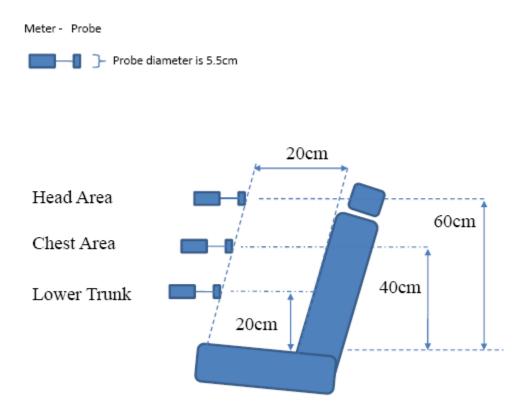

	Frequenc	Frequency (MHz)				
Designation	DVR (ECC ID: LOC DVDSVIJE)	Companion Mobile	1g-SAR			
Designator	(FCC ID: LO6-DVRSVHF)	(FCC ID: AZ492FT4904)	( <b>mW</b> / <b>g</b> )			
FCC	150.8 - 173.4	450-512	0.540			

## Table 16: Maximum Combined SAR results (Passenger)

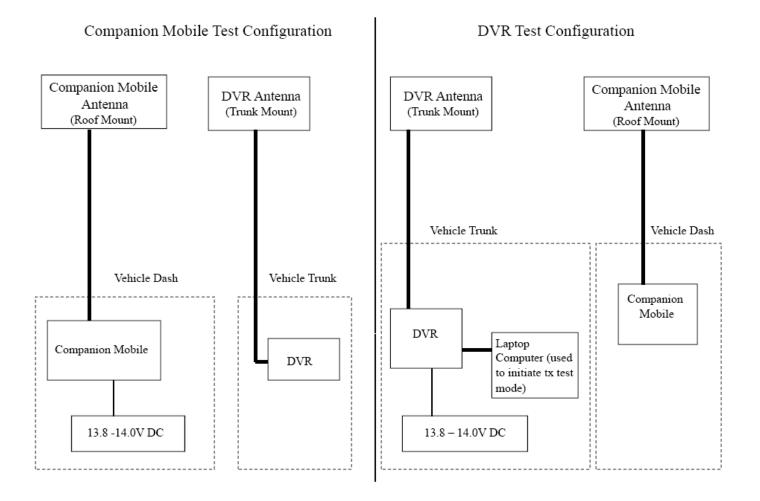


Appendix A - Antenna Locations and Test Distances

1 - Roof (45cm from center)
 2 - Trunk (center)
 3 - Trunk (85cm from back of the back seat)




#### Bystander Antenna mounting and test locations


#### Notes:

- 1) Antenna location A1: APX7500 antenna mounting location(s) for Bystander and Passenger testing
- 2) Antenna location A2: DVR antenna mounting location for Bystander testing
- 3) Antenna location A3: DVR antenna mounting location for Passenger testing
- 4) Bystander test location #2 (BS2): Center point of the By-stander test location #1 and test location #3, which is by 88cm.
- 5) Bystander test location #3 (BS3): 90 degree angle from the trunk mount antenna
- 6) Bystander test location #4 (BS4): 45 degree angle from the trunk mount antenna
- 7) Assessments were performed at each test position for each of the offered antennas
- 8) Bystander positions (1-5) are 90cm from the vehicle body.
- 9) Total distance between bystander position 1 and roof mount antenna is 141cm
- 10) Total distance between bystander position 5 and trunk mount antenna is 131cm
- 11) Total distance between trunk mount antenna and rear passenger is 85cm

# Seat scan areas (Applicable to both front and back seats)







**Appendix B - Probe Calibration Certificates** 

#### SR10952



Cert I.D.: 91609



1301 Arrow Point Drive Cedar Park, Texas 78613 (512) 531-6498



Tracket S000025288 Ltd Cal 
By GC Date 11-Jun-12
Next Cal Due
www.ste-Endgen.com

Certificate of Calibration Conformance

The instrument identified below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEMI 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren		Operating Range:	100kHz - 5GHz
Model Number:	E100		Instrument Type:	Isotropic Probe > 1 GHz
Serial Number/ ID:	00126277		Date Code:	
Tracking Number:	S 000025288		Alternate ID:	
Date Completed:	11-Jun-12		Customer:	AGILENT/MOTOROLA (FL)
Test Type:	Standard Field, Field Stre	ingth		
Calibration Uncertainty:	Std Field Method	10kHz - 18000 MHz, +/-0.	.7 dB, 26.5GHz - 40GH	z,+/- 0.95 dB

Test Remarks: Probe tested with HI-2200 s/n 00086887. Special Calibration - Additional frequency points added per customer request.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the SI units through the National Institute for Standards and Technology (NIST) or other recognized National Metrology Institute. Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994.

Standards and Ed Make / Model / Na					Condition of Instrument Upon Receipt:
Agilent/HP	8648C	Signal Generator	3623A03573	01-Feb-13	a set of the set of the set of the
Agilent	E4419B	Power Meter	MY45104171	29-Sep-12	In Tolerance to Internal Quality Standards
Agilent/HP	8648C	Signal Generator	3847A04406	01-Feb-13	On Release:
Agilent	E4419B	Power Meter	MY45103242	01-Feb-13	In Tolerance to Internal Quality Standards
Rohde & Schwarz	857.8008.02	Power Meter NRVD	100451	28-Mar-13	
Hewlett Packard	83620B	Signal Generator	3722A00541	01-Feb-13	
Fluke	6060B	RF Signal Generator	5690204	28-Jun-12	

Calibration Completed By

George Cisneros, Calibration Technian

Attested and Issued on 11-Jun-12

Terry D. O'Neill, Calibration Manager

This document provides traceability of measurements to recognized national standards using centrolled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005 and ANSINCSL Z540-1-1994. QAF 1127 (03/11)

# CALIBRATION REPORT

Electric Field Sensor

Model	S/N
E100	00126277
HI-2200	86887

Date: 11 June 2012

#### New Instrument Other

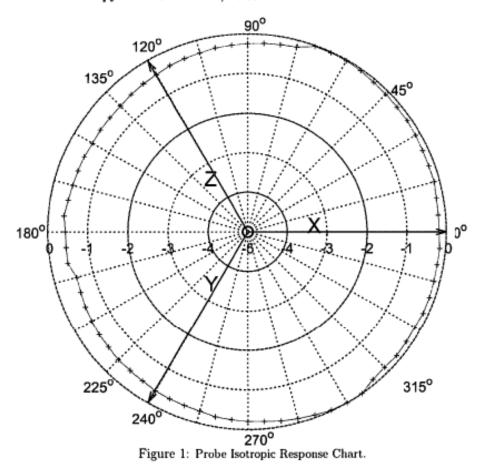
			-0	Other
_			-	Out of Tolerance
requency Respo	nse		<u>X</u> V	Vithin Tolerance
Frequency		Nominal		
Response		Field	Cal Factor*	Deviation
	MHz	V/m	(Eappled/Eindicated)	dB
1	1	20	1.40	-2.93
2	15	20	1.10	-0.80
3	30	20	1.02	-0.21
4	75	20	0.98	0.14
5	100	20	0.99	0.05
6	150	20	1.00	0.00
7	200	20	1.00	0.00
8	250	20	0.98	0.15
9	300	20	0.99	0.05
10	400	20	1.00	0.00
11	500	20	1.00	-0.04
12	600	20	1.01	-0.06
13	700	20	1.01	-0.10
14	800	20	1.02	-0.15
15	900	20	1.02	-0.15
16	1000	20	0.98	0.21
17	2000	20	0.95	0.48
18	2450	20	1.01	-0.09
19	3000	20	1.02	-0.17
20	3500	20	0.97	0.30
21	4000	20	1.01	-0.11
22	5000	20	1.37	-2.76
23	5500	20	1.41	-2.95
24	6000	20	1.43	-3.10

 Corrected electric field values (V/m) can be obtained by multiplying the Cal Factor with the indicated E field readings.

#### Linearity

maximum linearity deviation is 0.1 dB (measurements taken from 0.3 V/m to 800 V/m at 27.12 MHz)

#### **Test Conditions**


Calibration performed at ambient room temperature: 23 ±3°C

Page 2 of 3



#### PROBE ROTATIONAL RESPONSE

Model	E100
S/N	00126277
Date	Date of Calibration 11 June 2012
Time	12:55:30 PM
Isotropy *	+ 0.304 dB/ -0.304 dB



Isotropic response is measured in a 20 V/m field at 400 MHz *Isotropy is the maximum deviation from the geometric mean as defined by IEEE 1309-2005.

Page 3 of 3

#### SR10952







By GC Date 11-Jun-12 Next Cal Due ______

Cert I.D.: 91613

#### Certificate of Calibration Conformance Page 1 of 2

The instrument identified below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEM! 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren	Operating Range:	5-300MHz / 30mA/m-10A/m
Model Number:	H200	Instrument Type:	Isotropic Magnetic Field Probe (2)
Serial Number/ ID:	00084225	Date Code:	
Tracking Number:	S 000025288	Alternate ID:	
Date Completed:	11-Jun-12	Customer:	AGILENT/MOTOROLA (FL)
Test Type:	Standard Field, Field Strength		
Calibration Uncertainty: k=2, (95% Confidence Level)	Direct Field Method 1.15dB		

Test Remarks: Probe tested with HI-2200 s/n 00086887.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the SI units through the National Institute for Standards and Technology (NIST) or other recognized National Metrology Institute. Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994.

#### Standards and Equipment Used: Make / Model / Name / S/N / Recall Date

HP	8648C	Sig Gen
Hewlett Packard	E4419B	Power Meter

3836A04299 01-Feb-13 In US39250717 01-Feb-13 In

Condition of Instrument Upon Receipt:

In Tolerance to Internal Quality Standards

On Release: In Tolerance to Internal Quality Standards

Calibration Completed By George Cisneros, Calibration Technian

Attested and Issued on 11-Jun-12 Terry D. O'Neill, Calibration Manager

This document provides traceability of measurements to recognized national standards using controlled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994. QAF 1127 (03/11)

# CALIBRATION REPORT

Magnetic F	ield Sensor	
Model	S/N	Date: 11 Jun 2012
H200	00084225	
HI-2200	86887	
	As received, the in	strument was found: X Within Tolerance

Out of Tolerance (New Instrument)

#### Frequency Response

Frequency		Nominal		
Response		Field	Cal Factor*	Deviation
	MHz	A/m	(Happlied/Hindicated)	dB
1	10	0.08	1.04	-0.32
2	15	0.08	1.00	0.00
3	30	0.08	1.00	0.00
4	50	0.08	0.98	0.18
5	75	0.08	0.96	0.34
6	100	0.08	0.93	0.61
7	150	0.08	0.86	1.28
8	175	0.08	0.84	1.53
9	200	0.08	0.82	1.97
10	250	0.08	0.72	3.28
11	300	0.08	0.60	4.56

* Corrected magnetic field values (A/m) can be obtained by multiplying the Cal Factor with the indicated H field readings.

#### Linearity

Maximum linearity deviation is 0.03 dB

(measurements taken from 30 mA/m to 9 A/m at 27.12 MHz)

#### Test Conditions

Calibration performed at ambient room temperature: 23 ±3°C

Page 2 of 2

## Certificate of Calibration

Page 1 of 1

L O C	<b>KHEED</b> Stennis Integrate Certificate	d Metrolog	gy Center		
Certificate No.	AGIL700472/2571209				
Manufacturer	ETS-LINDGREN	Description	ELECTRICAL FIELD PROBE		
Model	E100	LMTO No.	AGIL700472		
Serial No	00109011	Asset No	1-4081386628A		
		Cycle	12 Months		
Customer	AGILENT TECHNOLOGIES INC.	PO No.			
	MOTOROLA-PLANTATION				
	8000 WEST SUNRISE BLVD				
	PLANTATION, FL 33322				
As Found	IN TOLERANCE	Performed E	3y SP9597		
As Shipped	IN TOLERANCE				
Date Calibrated	15-AUG-2012	Temperatur	e 23 ± 3° C		
Date Cal due	15-AUG-2013	Humidity			
Dana a dama	VENDOD ON IDDATED DVVC				
Procedure	VENDOR - CALIBRATED BY VEN REFER TO ETS LINDGREN CERT				
Comments	92745 DATED 8/15/12.	IFICATE OF	CALIBRATION CONFORMANCE #		
	STANDA	RDS USED			
TRACEABILITY All measurements were performed using standards traceable to the National Institute of Standards and Technology, an internationally recognized standard, an intrinsic standard or ratio method. Calibration was performed in compliance with our Laboratory Quality System that is based upon conformance to ISO/IEC 17025/2005. Unless otherwise noted, the accuracy ratios are equal or greater than 4:1 in accordance with ANSI/NCSL 2540-1-1994, paragraph 10.2.b. This certificate may not be reproduced, except in full, without written permission from this laboratory.					
MAIL: Stonnis In	tegrated Metrology Center	SHIP:	Stonnis Integrated Metrology Center		
Building 5			Building 6100		
	pace Conter, MS 39529		Stennis Space Center, MS 39529		
•	228) 813-2069		FAX: (228) 813-2073		
EMAIL: Jo	hn.a.boyea@imco.com				

#### FCC ID: LO6-DVRSVHF





1301 Arrow Point Drive Cedar Park, Texas 78613 (512) 531-6498



By GC Date 15-Aug-12 Next Cal Due www.sts-lindgres.com

Cert I.D.: 92745

# Certificate of Calibration Conformance

Page 1 of 3

#### The instrument identified below has been individually calibrated in compliance with the following standard(s):

IEEE 1309 - 2005, Institute of Electrical and Electronics Engineers, Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas from 9 kHz to 40 GHz

Environment: Laboratory MTE is maintained in a temperature controlled environment with ambient conditions from 18 to 28 C, relative humidity less than 90%. The instrument under test has been calibrated in a suitable environment using an EMCO TEM Cell 5101C, GTEM! 5305 and an RF Shielded EMC Chamber which is conducive to maintaining accurate and reliable measurement quality.

Manufacturer:	ETS-Lindgren	Operating Rang	je: 100kHz - 5GHz		
Model Number:	E100	Instrument Type	e: Isotropic Probe > 1 GHz		
Serial Number/ ID:	00109011	Date Code:	Date Code:		
Tracking Number:	S 000025310	Alternate ID:			
Date Completed:	15-Aug-12	Customer:	LOCKHEED MARTIN (MS)		
Test Type:	Standard Field, Field Stre	ength			
Calibration Uncertainty: k=2, (95% Confidence Level)	Std Field Method	10kHz - 18000 MHz, +/-0.7 dB, 26.5GHz - 4	0GHz,+/- 0.95 dB		

Test Remarks: Special Calibration - Additional frequency points provided per customer request. Probe calibrated with HI-2200 s/n 00086316.

Calibration Traceability: All Measuring and Test Equipment (M/TE) identified below are traceable to the SI units through the National Institute for Standards and Technology (NIST) or other recognized National Metrology Institute. Calibration Laboratory and Quality System controls are compliant with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994.

Standards and Eq Make / Model / Na					Condition of Instrument Upon Receipt:
Agilent/HP	8648C	Signal Generator	3623A03573	01-Feb-13	In Tolerance to Internal Quality Standards
Agilent	E4419B	Power Meter	MY45104171	29-Sep-12	In Tolerance to Internal Quality Standards
Agilent/HP	8648C	Signal Generator	3847A04406	01-Feb-13	On Release:
Agilent	E4419B	Power Meter	MY45103242	01-Feb-13	In Tolerance to Internal Quality Standards
Rohde & Schwarz	857.8008.02	Power Meter NRVD	100451	28-Mar-13	
Hewlett Packard	83620B	Signal Generator	3722A00541	01-Feb-13	
Rohde & Schwarz	SMB 100A	Signal Generator	101558	14-Mar-13	

Calibration Completed By

George Cisneros, Calibration Technian

Attested and Issued on 15-Aug-12 Terry D. O'Neill, Calibration Manager

This document provides traceability of measurements to recognized hational standards using controlled processes at the ETS-Lindgren Calibration Laboratory. Uncertainties listed are derived from the methods described by NIST Tech Note 1297. This certificate and report may not be reproduced, except in full, without the written approval of ETS-Lindgren Calibration Laboratory in accordance with ISO/IEC 17025-2005 and ANSI/NCSL Z540-1-1994. QAF 1127 (03/11)

## CALIBRATION REPORT

Electric Field S	Sensor
Model	S/N
E100	00109011
HI-2200	00086316

Date: 15 Aug 2012

#### New Instrument

Other

			_ (	Diher
			_ (	Dut of Tolerance
Frequency Res	ponse		X	Within Tolerance
Frequency		Nominal		
Response		Field	Cal Factor*	Deviation
	MHz	V/m	(Eapplied/Eindicated)	dB
1	1	20	1.04	-0.33
2	15	20	1.00	0.03
3	30	20	1.00	0.03
4	75	20	1.00	0.04
5	100	20	0.99	0.07
6	150	20	0.98	0.14
7	200	20	0.96	0.38
8	250	20	0.97	0.25
9	300	20	0.97	0.28
10	400	20	0.97	0.26
11	500	20	1.00	-0.02
12	600	20	1.05	-0.44
13	700	20	1.07	-0.55
14	800	20	1.04	-0.37
15	900	20	1.03	-0.28
16	1000	20	0.96	0.36
17	2000	20	0.99	0.07
18	2450	20	1.01	-0.06
19	3000	20	1.03	-0.22
20	3500	20	0.99	0.10
21	4000	20	1.00	-0.01
22	5000	20	1.28	-2.14
23	5500	20	1.31	-2.35
24	6000	20	1.32	-2.43

* Corrected electric field values (V/m) can be obtained by multiplying the Cal Factor with the indicated E field readings.

#### Linearity

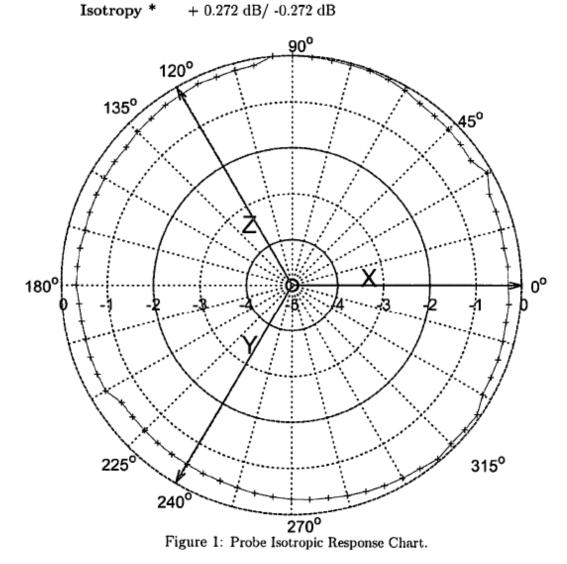
maximum linearity deviation is 0.1 dB

(measurements taken from 0.3 V/m to 800 V/m at 27.12 MHz)

#### **Test Conditions**

Calibration performed at ambient room temperature: 23 ±3°C




E100

00109011

## PROBE ROTATIONAL RESPONSE

Model S/N Date Time

Date of Calibration 15 August 2012 03:54:44 PM



Isotropic response is measured in a 20 V/m field at 400 MHz *Isotropy is the maximum deviation from the geometric mean as defined by IEEE 1309-2005.

Page 3 of 3

Appendix C - Photos of Assessed Antennas



DVR antennas (left to right): HAD4007A, HAD4008A, HAD4009A



Companion Mobile antennas (left to right): HAE4003A, HAE4011A, HAE6015A, HAE4004A Appendix D – MPE Measurement Results

		D.U.T.	Info.				Prob	e Info.					Μ	PE Mea	suremer	nts					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
	11.1 5 4007.1																						'
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS1	0.005	0.007	0.008	0.008	0.008	0.007	0.006	0.006	0.005	0.005	1	0.007	0.007	0.01
	HAD4008A																						<u> </u>
Trunk	(150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS1	0.004	0.005	0.006	0.007	0.006	0.006	0.005	0.004	0.004	0.004	1	0.005	0.005	0.01
	HAD4008A								- ~ -														
Trunk	(150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	BS1	0.003	0.004	0.005	0.005	0.005	0.004	0.004	0.003	0.003	0.003	1	0.004	0.004	0.00
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS1	0.002	0.003	0.003	0.002	0.003	0.003	0.002	0.002	0.002	0.002	1	0.002	0.002	0.00
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS1	0.002	0.003	0.004	0.004	0.004	0.003	0.003	0.003	0.002	0.003	1	0.003	0.003	0.00
	HAD4009A																						
Trunk	(162-174MHz)	2.15	167.700	6.0	6.0	CW	Е	1	BS1	0.002	0.002	0.003	0.003	0.003	0.002	0.002	0.002	0.004	0.003	1	0.003	0.003	0.00
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	BS1	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	1	0.003	0.003	0.00
	· /																						

DVR (VHF 6W) - MPE measurement data for Bystander

		<b>D.U.T.</b> 1	Info.				Prob	e Info.					Μ	IPE Mea	suremei	nts				DUT	Avg.	Cala	Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS2	0.005	0.007	0.009	0.009	0.009	0.009	0.010	0.010	0.010	0.010	1	0.009	0.009	0.01
Trunk	HAD4008A (150.8-162MHz) HAD4008A	2.15	150.800	6.0	6.0	CW	Е	1	BS2	0.004	0.006	0.007	0.008	0.007	0.007	0.007	0.008	0.008	0.007	1	0.007	0.007	0.01
	(150.8-162MHz) HAD4008A (150.8-162MHz)	2.15 2.15	156.400 162.000	6.0 6.0	6.0 6.0	CW CW	E	1	BS2 BS2	0.004	0.006	0.008	0.009	0.009	0.009	0.009	0.009	0.010	0.009	1	0.008	0.008	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS2	0.004	0.007	0.008	0.008	0.007	0.008	0.008	0.008	0.008	0.008	1	0.007	0.007	0.01
Trunk	HAD4009A (162-174MHz) HAD4009A	2.15	167.700	6.0	6.0	CW	E	1	BS2	0.007	0.009	0.000	0.000	0.010	0.010			0.000	0.000	1	0.010	0.010	
Trunk	(162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	BS2	0.006	0.009	0.011	0.011	0.010	0.009	0.009	0.010	0.010	0.010	1	0.010	0.010	0.01

# DVR (VHF 6W) - MPE measurement data for Bystander

		D.U.T. I	Info.				Prob	e Info.					Μ	PE Mea	suremer	nts					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS3	0.010	0.014	0.016	0.016	0.015	0.016	0.016	0.017	0.016	0.016	1	0.015	0.015	0.02
Trunk	HAD4008A (150.8-162MHz) HAD4008A	2.15	150.800	6.0	6.0	CW	Е	1	BS3	0.009	0.012	0.014	0.014	0.014	0.013	0.014	0.014	0.014	0.013	1	0.013	0.013	0.01
Trunk	(150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	BS3	0.009	0.013	0.015	0.015	0.016	0.014	0.016	0.016	0.017	0.015	1	0.015	0.015	0.01
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS3	0.014	0.019	0.021	0.022	0.020	0.021	0.022	0.022	0.020	0.018	1	0.020	0.020	0.02
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS3	0.011	0.016	0.018	0.017	0.016	0.016	0.017	0.017	0.017	0.015	1	0.016	0.016	0.02
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Е	1	BS3	0.014	0.018	0.018	0.017	0.018	0.018	0.018	0.018	0.017	0.016	1	0.017	0.017	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	BS3	0.012	0.015	0.016	0.015	0.016	0.017	0.017	0.018	0.016	0.015	1	0.016	0.016	0.02

DVR (VHF 6W) - MPE measurement da	ata for Bystander
-----------------------------------	-------------------

		D.U.T.	Info.				Prob	e Info.					Μ	PE Mea	suremen	nts					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS4	0.016	0.020	0.023	0.022	0.020	0.020	0.021	0.021	0.022	0.020	1	0.021	0.021	0.02
Trunk	HAD4008A (150.8-162MHz) HAD4008A	2.15	150.800	6.0	6.0	CW	Е	1	BS4	0.012	0.017	0.019	0.018	0.018	0.017	0.018	0.018	0.017	0.016	1	0.017	0.017	0.02
Trunk	(150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	BS4	0.012	0.017	0.019	0.018	0.017	0.017	0.018	0.018	0.017	0.016	1	0.017	0.017	0.02
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS4	0.017	0.025	0.025	0.024	0.024	0.023	0.024	0.023	0.022	0.020	1	0.023	0.023	0.02
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS4	0.014	0.018	0.020	0.019	0.019	0.019	0.019	0.020	0.018	0.016	1	0.018	0.018	0.02
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Е	1	BS4	0.018	0.024	0.025	0.024	0.022	0.022	0.021	0.021	0.018	0.016	1	0.021	0.021	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	BS4	0.015	0.019	0.019	0.017	0.015	0.016	0.017	0.017	0.016	0.014	1	0.017	0.017	0.02

DVR (VHF 6W) - MPE measurement data for l	Bystander
-------------------------------------------	-----------

		D.U.T. I	Info.				Prob	e Info.					Μ	IPE Mea	suremei	ıts					Avg.		Max
					Initial	T	E/H	Probe	The	20	40	(0)	00	100	120	140	1(0	100	200	DUT Max.	over Body	Calc. P.D.	Calc. P.D.
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	(MHz)	Pwr (W)	Pwr (W)	Test Mode	E/H Field	Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	TX Factor	(mW/ cm^2)	(mW/ cm^2)	(mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS5	0.012	0.015	0.016	0.013	0.014	0.012	0.021	0.019	0.020	0.017	1	0.016	0.016	0.02
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Е	1	BS5	0.011	0.015	0.013	0.010	0.011	0.013	0.016	0.018	0.018	0.015	1	0.014	0.014	0.01
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	BS5	0.008	0.012	0.009	0.011	0.012	0.016	0.018	0.013	0.014	0.014	1	0.013	0.013	0.01
TTUIK	HAD4008A	2.15	150.400	0.0	0.0	Cii	Ľ	1	000	0.000	0.012	0.007	0.011	0.012	0.010	0.010	0.015	0.014	0.014	1	0.015	0.015	0.01
Trunk	(150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS5	0.005	0.007	0.007	0.008	0.010	0.011	0.013	0.014	0.014	0.012	1	0.010	0.010	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	BS5	0.005	0.007	0.007	0.007	0.009	0.011	0.013	0.014	0.013	0.010	1	0.010	0.010	0.01
TT 1	HAD4009A	0.15	1 (7 700	6.0	6.0	CIV	Б	1	DOG	0.000	0.011	0.015	0.016	0.017	0.020	0.024	0.022	0.010	0.014	1	0.017	0.017	0.02
Trunk	(162-174MHz)	2.15	167.700	6.0	6.0	CW	E	1	BS5	0.008	0.011	0.015	0.016	0.017	0.020	0.024	0.023	0.018	0.014	1	0.017	0.017	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	BS5	0.008	0.013	0.014	0.015	0.019	0.023	0.023	0.023	0.021	0.016	1	0.018	0.018	0.02

### DVR (VHF 6W) - MPE measurement data for Bystander

						( · -		/															
		<b>D.U.</b> 1	F. Info.			-	Probe	e Info.					Μ	PE Mea	suremer	nts	-				Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
	114040074																						
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS1	0.015	0.015	0.015	0.015	0.017	0.017	0.018	0.018	0.018	0.017	1	0.017	0.008	0.01
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS1	0.014	0.014	0.014	0.014	0.016	0.015	0.016	0.017	0.016	0.016	1	0.015	0.006	0.01
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Н	0.85	BS1	0.013	0.013	0.013	0.014	0.014	0.015	0.015	0.015	0.016	0.015	1	0.014	0.006	0.01
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS1	0.014	0.014	0.014	0.015	0.014	0.016	0.016	0.017	0.016	0.016	1	0.015	0.006	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS1	0.013	0.013	0.013	0.014	0.014	0.014	0.015	0.015	0.016	0.016	1	0.014	0.006	0.01
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	BS1	0.012	0.012	0.011	0.012	0.012	0.013	0.015	0.015	0.016	0.015	1	0.013	0.005	0.00
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	BS1	0.011	0.012	0.012	0.012	0.013	0.014	0.015	0.015	0.016	0.016	1	0.014	0.005	0.00

		DU	T. Info.				Probe	Info					м	DF Moo	suremen	te					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
			/																			- /	/
Trunk	HAD4007A (144- 150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS2	0.016	0.018	0.018	0.020	0.021	0.022	0.022	0.022	0.022	0.021	1	0.020	0.011	0.01
Trunk	HAD4008A (150.8- 162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS2	0.016	0.016	0.017	0.018	0.019	0.020	0.020	0.021	0.020	0.020	1	0.019	0.010	0.01
Trunk	HAD4008A (150.8- 162MHz)	2.15	156.400	6.0	6.0	CW	Н	0.85	BS2	0.015	0.016	0.018	0.018	0.020	0.021	0.022	0.021	0.021	0.021	1	0.019	0.010	0.01
Trunk	HAD4008A (150.8- 162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS2	0.017	0.018	0.018	0.020	0.021	0.022	0.023	0.022	0.022	0.022	1	0.021	0.011	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS2	0.015	0.015	0.017	0.018	0.019	0.020	0.021	0.021	0.021	0.020	1	0.019	0.010	0.01
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	BS2	0.017	0.017	0.019	0.020	0.022	0.023	0.024	0.025	0.024	0.023	1	0.021	0.012	0.01
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	BS2	0.016	0.017	0.018	0.020	0.022	0.022	0.024	0.024	0.023	0.023	1	0.021	0.012	0.01

### DVR (VHF 6W) - MPE measurement data for Bystander

		<b>D.U.</b>	T. Info.				Probe	e Info.					Μ	PE Mea	suremer	its					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144- 150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS3	0.024	0.024	0.026	0.027	0.030	0.031	0.031	0.031	0.030	0.027	1	0.028	0.022	0.02
Trunk	HAD4008A (150.8- 162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS3	0.021	0.022	0.024	0.026	0.028	0.029	0.029	0.028	0.026	0.025	1	0.026	0.019	0.02
Trunk	HAD4008A (150.8- 162MHz) HAD4008A	2.15	156.400	6.0	6.0	CW	Н	0.85	BS3	0.021	0.023	0.024	0.028	0.029	0.030	0.031	0.030	0.029	0.027	1	0.027	0.020	0.02
Trunk	(150.8- 162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS3	0.025	0.025	0.028	0.031	0.033	0.034	0.034	0.033	0.032	0.028	1	0.030	0.025	0.025
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS3	0.023	0.023	0.025	0.028	0.030	0.031	0.030	0.030	0.028	0.026	1	0.027	0.020	0.02
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	BS3	0.024	0.026	0.028	0.031	0.032	0.033	0.032	0.031	0.029	0.026	1	0.029	0.023	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	BS3	0.024	0.025	0.028	0.030	0.031	0.031	0.030	0.029	0.028	0.026	1	0.028	0.021	0.02

### DVR (VHF 6W) - MPE measurement data for Bystander

						11 ( )									2								
		D.U.	T. Info.				Probe	e Info.				-	M	IPE Mea	suremen	nts					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144- 150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS4	0.023	0.022	0.023	0.027	0.031	0.033	0.034	0.033	0.031	0.029	1	0.029	0.023	0.02
Trunk	HAD4008A (150.8- 162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS4	0.024	0.019	0.023	0.025	0.028	0.030	0.031	0.030	0.028	0.027	1	0.027	0.020	0.02
Trunk	HAD4008A (150.8- 162MHz) HAD4008A	2.15	156.400	6.0	6.0	CW	Н	0.85	BS4	0.022	0.021	0.022	0.026	0.029	0.031	0.031	0.031	0.029	0.027	1	0.027	0.020	0.02
Trunk	(150.8- 162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS4	0.024	0.022	0.025	0.028	0.032	0.034	0.035	0.034	0.032	0.030	1	0.030	0.024	0.02
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS4	0.022	0.019	0.022	0.026	0.029	0.031	0.031	0.031	0.029	0.027	1	0.027	0.019	0.02
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	BS4	0.025	0.022	0.024	0.028	0.031	0.033	0.033	0.031	0.029	0.027	1	0.028	0.022	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	BS4	0.022	0.019	0.021	0.025	0.028	0.030	0.031	0.030	0.029	0.027	1	0.026	0.018	0.02

DVR (VHF 6W) - MPE measurement data for Bystand
-------------------------------------------------

						11()									2								
		D.U.	T. Info.				Probe	e Info.					Μ	IPE Mea	suremen	ıts					Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)		Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144- 150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS5	0.021	0.017	0.018	0.022	0.026	0.029	0.030	0.030	0.028	0.026	1	0.025	0.017	0.02
Trunk	HAD4008A (150.8- 162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	BS5	0.017	0.016	0.017	0.019	0.023	0.026	0.028	0.027	0.025	0.023	1	0.022	0.014	0.01
Trunk	HAD4008A (150.8- 162MHz)	2.15	156.400	6.0	6.0	CW	Н	0.85	BS5	0.016	0.014	0.017	0.022	0.025	0.028	0.028	0.028	0.026	0.025	1	0.023	0.014	0.01
Trunk	HAD4008A (150.8- 162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS5	0.013	0.014	0.018	0.023	0.026	0.030	0.030	0.028	0.026	0.025	1	0.023	0.015	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	BS5	0.013	0.012	0.016	0.022	0.024	0.026	0.028	0.025	0.023	0.021	1	0.021	0.012	0.01
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	BS5	0.017	0.018	0.023	0.029	0.033	0.035	0.032	0.029	0.025	0.022	1	0.026	0.019	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	BS5	0.021	0.021	0.025	0.031	0.034	0.035	0.035	0.030	0.028	0.022	1	0.028	0.021	0.02

	_	D.U.T.	Info.				Prol	oe Info.		MPI	E Measurem	ents				
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initia l Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	Head	Chest	Lower Trunk	DUT Max. TX Factor	Avg. over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Max Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	PB	0.208	0.184	0.154	1	0.182	0.182	0.18
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Е	1	PB	0.171	0.155	0.131	1	0.152	0.152	0.15
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	PB	0.250	0.257	0.172	1	0.226	0.226	0.23
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	PB	0.165	0.212	0.175	1	0.184	0.184	0.18
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	PB	0.141	0.172	0.150	1	0.154	0.154	0.15
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Е	1	PB	0.134	0.173	0.214	1	0.174	0.174	0.17
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	PB	0.136	0.109	0.147	1	0.131	0.131	0.13

## DVR (VHF 6W) - MPE measurement data for Passenger

		D.U.T.		×		,		be Info.		MPI	E Measurem					
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initia l Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	Head	Chest	Lower Trunk	DUT Max. TX Factor	Avg. over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Max Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Е	1	PF	0.068	0.031	0.046	1	0.048	0.048	0.05
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Е	1	PF	0.056	0.026	0.038	1	0.040	0.040	0.04
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Е	1	PF	0.048	0.032	0.035	1	0.038	0.038	0.04
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Е	1	PF	0.028	0.016	0.012	1	0.019	0.019	0.02
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Е	1	PF	0.023	0.015	0.011	1	0.016	0.016	0.02
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Е	1	PF	0.028	0.023	0.018	1	0.023	0.023	0.02
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Е	1	PF	0.055	0.086	0.041	1	0.061	0.061	0.06

DVR (VHF 6W) - MPE measurement data for Passenger

	_	D.U.T.	Info.		-		Prot	oe Info.		MPI	E Measurem	ents				
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initia l Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	Head	Chest	Lower Trunk	DUT Max. TX Factor	Avg. over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Max Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	PB	0.058	0.050	0.042	1	0.050	0.070	0.07
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	PB	0.055	0.046	0.044	1	0.048	0.065	0.07
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Н	0.85	PB	0.070	0.061	0.048	1	0.060	0.097	0.10
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	PB	0.075	0.065	0.046	1	0.062	0.105	0.11
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	PB	0.069	0.059	0.069	1	0.066	0.117	0.12
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	PB	0.086	0.072	0.050	1	0.069	0.131	0.13
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	PB	0.071	0.064	0.043	1	0.059	0.094	0.09

## DVR (VHF 6W) - MPE measurement data for Passenger

DVR (VHF 6W) - MPE measurement data for Passenge
--------------------------------------------------

		D.U.T	. Info.					e Info.		MPH	E Measurem	0				
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Facto r	Test Pos.	Head	Chest	Lower Trunk	DUT Max. TX Factor	Avg. over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Max Calc. P.D. (mW/ cm^2)
Trunk	HAD4007A (144-150.8MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	PF	0.053	0.045	0.032	1	0.043	0.052	0.05
Trunk	HAD4008A (150.8-162MHz)	2.15	150.800	6.0	6.0	CW	Н	0.86	PF	0.050	0.040	0.029	1	0.040	0.044	0.04
Trunk	HAD4008A (150.8-162MHz)	2.15	156.400	6.0	6.0	CW	Н	0.85	PF	0.037	0.031	0.025	1	0.031	0.026	0.03
Trunk	HAD4008A (150.8-162MHz)	2.15	162.000	6.0	6.0	CW	Н	0.85	PF	0.015	0.015	0.018	1	0.016	0.007	0.01
Trunk	HAD4009A (162-174MHz)	2.15	162.000	6.0	6.0	CW	н	0.85	PF	0.015	0.017	0.018	1	0.017	0.008	0.01
Trunk	HAD4009A (162-174MHz)	2.15	167.700	6.0	6.0	CW	Н	0.85	PF	0.016	0.019	0.022	1	0.019	0.010	0.01
Trunk	HAD4009A (162-174MHz)	2.15	173.400	6.0	6.0	CW	Н	0.84	PF	0.037	0.039	0.040	1	0.039	0.040	0.04

# Companion Mobile (UHF R2 45W) - MPE measurement data for Bystander

		D.U.T.	Info.				Prob	e Info.					N	IPE Mea	suremen	ıts				DUT	Avg. over	Calc.	Max Calc.
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)		Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX	Body (mW/ cm^2)	P.D. (mW/ cm^2)	Carc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz)	2.15	450.0125	54.0	53.8	CW	Е	1.00	BS1	0.032	0.033	0.081	0.090	0.108	0.136	0.136	0.147	0.126	0.121	0.5	0.101	0.051	0.05
Roof	HAE4003A (450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	BS1	0.036	0.040	0.077	0.104	0.138	0.183	0.144	0.149	0.120	0.119	0.5	0.111	0.056	0.06
Roof	HAE4003A (450-470MHz)	2.15	469.9875	54.0	53.7	CW	Е	1.00	BS1	0.049	0.055	0.111	0.087	0.113	0.157	0.107	0.117	0.107	0.108	0.5	0.101	0.051	0.05
Roof	HAE4011A (445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	BS1	0.002	0.001	0.016	0.045	0.049	0.160	0.237	0.295	0.233	0.120	0.5	0.116	0.058	0.06
Roof	HAE4011A (445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	BS1	0.006	0.005	0.018	0.037	0.081	0.112	0.220	0.205	0.177	0.093	0.5	0.095	0.048	0.05
Roof	HAE4011A (445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	BS1	0.010	0.014	0.014	0.052	0.063	0.113	0.122	0.165	0.119	0.076	0.5	0.075	0.037	0.04
Roof	HAE6015A (450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	1.00	BS1	0.027	0.038	0.058	0.087	0.106	0.127	0.152	0.149	0.134	0.125	0.5	0.100	0.050	0.05
Roof	HAE6015A (450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	BS1	0.035	0.050	0.093	0.101	0.146	0.146	0.169	0.137	0.134	0.138	0.5	0.115	0.057	0.06
Roof	HAE6015A (450 - 520MHz) HAE6015A	4.15	482.5000	54.0	53.7	CW	Е	1.00	BS1	0.056	0.057	0.111	0.116	0.136	0.133	0.129	0.144	0.142	0.127	0.5	0.115	0.058	0.06
Roof	(450 - 520MHz) HAE6015A	4.15	496.5000	48.0	46.9	CW	Е	1.00	BS1	0.059	0.054	0.088	0.110	0.101	0.105	0.100	0.127	0.126	0.148	0.5	0.102	0.051	0.05
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	Е	1.00	BS1	0.071	0.062	0.109	0.092	0.101	0.113	0.104	0.128	0.156	0.133	0.5	0.107	0.053	0.05
Roof	HAE4004A (470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	BS1	0.054	0.049	0.092	0.118	0.143	0.117	0.123	0.135	0.113	0.113	0.5	0.106	0.053	0.05
Roof	HAE4004A (470-512MHz)	2.15	482.5000	54.0	53.7	CW	Е	1.00	BS1	0.063	0.062	0.112	0.138	0.140	0.112	0.117	0.100	0.119	0.122	0.5	0.109	0.054	0.05
Roof	HAE4004A (470-512MHz) HAE4004A	2.15	498.0000	48.0	46.9	CW	Е	1.00	BS1	0.071	0.059	0.110	0.113	0.092	0.104	0.095	0.092	0.116	0.144	0.5	0.100	0.050	0.05
Roof	HAE4004A (470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	BS1	0.069	0.069	0.101	0.097	0.091	0.071	0.097	0.099	0.120	0.125	0.5	0.094	0.047	0.05

		D.U.T.	Info.				Prob	oe Info.					N	IPE Mea	suremen	ıts				DUT	Avg.	Calc.	Max Calc.
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)			Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX	over Body (mW/ cm^2)	Carc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
																							<b> </b>
Roof	HAE4003A (450-470MHz)	2.15	450.0125	54.0	53.8	CW	Е	1.00	BS2	0.032	0.031	0.045	0.074	0.076	0.108	0.123	0.128	0.122	0.115	0.5	0.085	0.043	0.04
Roor	HAE4003A	2.15	150.0125	5 1.0	55.0	0.11	Ľ	1.00	0.02	0.052	0.051	0.015	0.071	0.070	0.100	0.125	0.120	0.122	0.115	0.5	0.005	0.015	0.01
Roof	(450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	BS2	0.041	0.033	0.048	0.069	0.072	0.086	0.089	0.093	0.106	0.095	0.5	0.073	0.037	0.04
	HAE4003A						_																
Roof	(450-470MHz)	2.15	469.9875	54.0	53.7	CW	E	1.00	BS2	0.027	0.018	0.046	0.062	0.060	0.090	0.103	0.123	0.109	0.089	0.5	0.073	0.036	0.04
Deef	HAE4011A (445-470MHz)	5 65	450.0125	54.0	53.8	CW	Е	1.00	BS2	0.004	0.005	0.013	0.035	0.070	0.130	0.176	0.200	0.174	0.103	0.5	0.091	0.046	0.05
Roof	(443-470MHZ) HAE4011A	5.05	430.0125	54.0	33.0	CW	E	1.00	<b>D</b> 32	0.004	0.003	0.015	0.055	0.070	0.150	0.170	0.200	0.174	0.105	0.5	0.091	0.040	0.03
Roof	(445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	BS2	0.008	0.006	0.020	0.048	0.082	0.150	0.148	0.148	0.151	0.088	0.5	0.085	0.042	0.04
	HAE4011A																						
Roof	(445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	BS2	0.005	0.005	0.016	0.031	0.036	0.068	0.100	0.137	0.117	0.073	0.5	0.059	0.029	0.03
	HAE6015A																						
Roof	(450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	E	1.00	BS2	0.032	0.023	0.040	0.065	0.094	0.093	0.118	0.115	0.125	0.098	0.5	0.080	0.040	0.04
Roof	HAE6015A (450 - 520MHz)	4 15	465.5000	54.0	53.7	CW	Е	1.00	BS2	0.033	0.023	0.045	0.049	0.057	0.071	0.098	0.116	0.124	0.112	0.5	0.073	0.036	0.04
Roor	HAE6015A	4.15	405.5000	54.0	55.1	0.11	L	1.00	0.02	0.055	0.025	0.045	0.047	0.057	0.071	0.070	0.110	0.124	0.112	0.5	0.075	0.050	0.04
Roof	(450 - 520MHz)	4.15	482.5000	54.0	53.7	CW	Е	1.00	BS2	0.033	0.031	0.063	0.058	0.082	0.105	0.082	0.112	0.112	0.107	0.5	0.079	0.039	0.04
	HAE6015A																						
Roof	(450 - 520MHz) HAE6015A	4.15	496.5000	48.0	46.9	CW	E	1.00	BS2	0.024	0.027	0.052	0.054	0.083	0.093	0.086	0.110	0.096	0.095	0.5	0.072	0.036	0.04
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	Е	1.00	BS2	0.025	0.029	0.046	0.062	0.093	0.094	0.103	0.097	0.087	0.077	0.5	0.071	0.036	0.04
11001	(100 0201111)		0110070	.0.0		011		1100	202	01020	0.022	01010	01002	0.070	0.071	01100	01027	0.007	0.077	0.0	0.071	0.020	0.01
	HAE4004A																						<u> </u>
Roof	(470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	BS2	0.032	0.060	0.052	0.062	0.067	0.113	0.132	0.120	0.114	0.112	0.5	0.086	0.043	0.04
	HAE4004A																						
Roof	(470-512MHz)	2.15	482.5000	54.0	53.7	CW	E	1.00	BS2	0.036	0.038	0.069	0.065	0.082	0.084	0.116	0.111	0.096	0.096	0.5	0.079	0.040	0.04
Roof	HAE4004A (470-512MHz)	2.15	498.0000	18.0	46.9	CW	Е	1.00	BS2	0.029	0.022	0.050	0.061	0.101	0.108	0.092	0.076	0.094	0.088	0.5	0.072	0.036	0.04
1001	(470-312MHZ) HAE4004A	2.13	+20.0000	40.0	40.9	CW	Ľ	1.00	0.52	0.029	0.022	0.050	0.001	0.101	0.108	0.092	0.070	0.094	0.000	0.5	0.072	0.050	0.04
Roof	(470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	BS2	0.027	0.027	0.045	0.051	0.081	0.079	0.090	0.086	0.066	0.064	0.5	0.062	0.031	0.03

		D.U.T.	Info.				Prot	e Info.		MPE Measurements										DUT	Avg.	Calc.	Max Calc.
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX	over Body (mW/ cm^2)	Carc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz)	2.15	450.0125	54.0	53.8	CW	Е	1.00	BS3	0.025	0.046	0.050	0.071	0.068	0.075	0.104	0.107	0.109	0.114	0.5	0.077	0.038	0.04
Roof	HAE4003A (450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	BS3	0.033	0.058	0.070	0.088	0.096	0.098	0.101	0.110	0.105	0.098	0.5	0.086	0.043	0.04
Roof	HAE4003A (450-470MHz)	2.15	469.9875	54.0	53.7	CW	Е	1.00	BS3	0.034	0.039	0.060	0.081	0.085	0.089	0.101	0.102	0.100	0.095	0.5	0.079	0.039	0.04
Roof	HAE4011A (445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	BS3	0.005	0.013	0.023	0.049	0.059	0.087	0.122	0.139	0.127	0.092	0.5	0.072	0.036	0.04
Roof	HAE4011A (445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	BS3	0.006	0.017	0.029	0.046	0.069	0.094	0.117	0.113	0.099	0.074	0.5	0.066	0.033	0.03
Roof	HAE4011A (445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	BS3	0.008	0.016	0.023	0.036	0.050	0.072	0.096	0.102	0.085	0.065	0.5	0.055	0.028	0.03
Roof	HAE6015A (450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	1.00	BS3	0.025	0.029	0.049	0.077	0.065	0.072	0.083	0.103	0.105	0.110	0.5	0.072	0.036	0.04
Roof	HAE6015A (450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	BS3	0.034	0.058	0.070	0.079	0.084	0.084	0.094	0.100	0.105	0.099	0.5	0.081	0.040	0.04
Roof	HAE6015A (450 - 520MHz) HAE6015A	4.15	482.5000	54.0	53.7	CW	Е	1.00	BS3	0.038	0.047	0.063	0.075	0.071	0.084	0.085	0.088	0.093	0.086	0.5	0.073	0.037	0.04
	(450 - 520MHz) HAE6015A		496.5000		46.9	CW	Е	1.00	BS3	0.042	0.045	0.058	0.064	0.067	0.077	0.073	0.078	0.073	0.083	0.5	0.066	0.033	0.03
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	E	1.00	BS3	0.040	0.040	0.053	0.074	0.079	0.079	0.076	0.077	0.075	0.069	0.5	0.066	0.033	0.03
Roof	HAE4004A (470-512MHz) HAE4004A	2.15	470.0125	54.0	53.7	CW	Е	1.00	BS3	0.041	0.048	0.063	0.098	0.088	0.090	0.107	0.114	0.114	0.101	0.5	0.086	0.043	0.04
Roof	(470-512MHz) HAE4004A	2.15	482.5000	54.0	53.7	CW	Е	1.00	BS3	0.043	0.048	0.064	0.079	0.068	0.089	0.094	0.091	0.088	0.082	0.5	0.075	0.037	0.04
Roof Roof	(470-512MHz) HAE4004A (470-512MHz)	2.15	498.0000 511.9875		46.9	CW CW	E E	1.00	BS3 BS3	0.046	0.045	0.050	0.061	0.061	0.075	0.072	0.076	0.090	0.081	0.5	0.066	0.033	0.03
	(470-512MHZ)					CW	E	1.00	000	0.038	0.055	0.033	0.072	0.077	0.081	0.071	0.070	0.073	0.070	0.5	0.004	0.032	0.05

	D.U.T. Info.							e Info.		MPE Measurements										DUT	Avg.	Calc.	Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)			Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX	over Body (mW/ cm^2)	Carc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz)	2 15	450.0125	54.0	53.8	CW	Е	1.00	BS4	0.036	0.054	0.039	0.051	0.067	0.074	0.070	0.057	0.041	0.039	0.5	0.053	0.026	0.03
10001	HAE4003A	2.10	10010120	0	0010	0.11		1100	201	0.020	0.001	0.027	0.001	0.007	0.071	0.070	01007	0.0.11	0.000	0.0	0.000	0.020	0.00
Roof	(450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	BS4	0.028	0.045	0.033	0.044	0.061	0.074	0.062	0.048	0.028	0.032	0.5	0.046	0.023	0.02
	HAE4003A		4.00 00000			~~~	-	1.00	D.G.I	0.004	0.000		0.005	0.050	0.050	0.055	0.046	0.001	0.004	o -	0.000	0.000	0.00
Roof	(450-470MHz)	2.15	469.9875	54.0	53.7	CW	Е	1.00	BS4	0.024	0.038	0.028	0.037	0.050	0.058	0.057	0.046	0.031	0.024	0.5	0.039	0.020	0.02
	HAE4011A																						
Roof	(445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	BS4	0.019	0.029	0.036	0.045	0.064	0.078	0.078	0.066	0.054	0.053	0.5	0.052	0.026	0.03
	HAE4011A																						
Roof	(445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	BS4	0.015	0.026	0.025	0.032	0.052	0.062	0.056	0.057	0.050	0.051	0.5	0.043	0.021	0.02
Doof	HAE4011A (445-470MHz)	5.65	460 0975	54.0	53.7	CW	Е	1.00	BS4	0.010	0.018	0.019	0.025	0.036	0.045	0.042	0.032	0.030	0.034	0.5	0.029	0.015	0.01
Roof	(445-470MHZ)	5.05	469.9875	54.0	55.7	Cw	E	1.00	B54	0.010	0.018	0.019	0.025	0.036	0.045	0.042	0.032	0.030	0.034	0.5	0.029	0.015	0.01
	HAE6015A															-						-	
Roof	(450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	1.00	BS4	0.032	0.049	0.036	0.046	0.067	0.069	0.073	0.064	0.036	0.033	0.5	0.051	0.025	0.03
	HAE6015A																						
Roof	(450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	BS4	0.028	0.043	0.036	0.044	0.065	0.067	0.069	0.052	0.031	0.032	0.5	0.047	0.023	0.02
Roof	HAE6015A (450 - 520MHz)	4.15	482.5000	54.0	53.7	CW	Е	1.00	BS4	0.029	0.039	0.031	0.042	0.054	0.056	0.057	0.050	0.042	0.054	0.5	0.045	0.023	0.02
KOOI	HAE6015A	4.13	482.3000	54.0	35.7	Cw	E	1.00	D34	0.029	0.039	0.051	0.042	0.034	0.030	0.037	0.030	0.042	0.034	0.5	0.043	0.023	0.02
Roof	(450 - 520MHz)	4.15	496.5000	48.0	46.9	CW	Е	1.00	BS4	0.029	0.035	0.019	0.037	0.055	0.065	0.067	0.042	0.027	0.040	0.5	0.042	0.021	0.02
	HAE6015A																						
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	E	1.00	BS4	0.023	0.029	0.017	0.043	0.059	0.060	0.054	0.037	0.028	0.037	0.5	0.039	0.019	0.02
Roof	HAE4004A (470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	BS4	0.025	0.042	0.030	0.037	0.054	0.062	0.059	0.049	0.031	0.025	0.5	0.041	0.021	0.02
Rooi	HAE4004A	2.15	470.0125	54.0	55.1	C W	Б	1.00	D34	0.025	0.042	0.030	0.037	0.054	0.002	0.039	0.049	0.031	0.025	0.5	0.041	0.021	0.02
Roof	(470-512MHz)	2.15	482.5000	54.0	53.7	CW	Е	1.00	BS4	0.031	0.039	0.025	0.033	0.052	0.050	0.054	0.046	0.044	0.050	0.5	0.042	0.021	0.02
	HAE4004A																			_			_
Roof	(470-512MHz)	2.15	498.0000	48.0	46.9	CW	E	1.00	BS4	0.026	0.034	0.017	0.035	0.050	0.062	0.075	0.056	0.029	0.032	0.5	0.042	0.021	0.02
Roof	HAE4004A (470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	BS4	0.022	0.029	0.015	0.038	0.058	0.052	0.051	0.039	0.025	0.032	0.5	0.036	0.018	0.02
10001	(	2.10	211.9075	10.0	17.5	0		1.00	557	5.622	0.02)	5.015	5.050	0.000	5.052	5.051	0.007	5.625	5.052	0.5	5.050	5.010	0.02

	D.U.T. Info.							e Info.		MPE Measurements										DUT	Avg. over	Calc.	Max Calc.
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	20 cm	40 cm	60 cm	80 cm	100 cm	120 cm	140 cm	160 cm	180 cm	200 cm	Max. TX	Body (mW/ cm^2)	Carc. P.D. (mW/ cm^2)	Carc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz)	2.15	450.0125	54.0	53.8	CW	Е	1.00	BS5	0.008	0.005	0.008	0.015	0.019	0.030	0.033	0.030	0.018	0.021	0.5	0.019	0.009	0.01
Roof	HAE4003A (450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	BS5	0.006	0.003	0.007	0.012	0.015	0.022	0.026	0.024	0.019	0.025	0.5	0.016	0.008	0.01
Roof	HAE4003A (450-470MHz)	2.15	469.9875	54.0	53.7	CW	Е	1.00	BS5	0.007	0.004	0.009	0.016	0.021	0.025	0.032	0.028	0.021	0.027	0.5	0.019	0.010	0.01
Roof	HAE4011A (445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	BS5	0.010	0.007	0.012	0.018	0.028	0.041	0.046	0.038	0.042	0.052	0.5	0.029	0.015	0.01
Roof	HAE4011A (445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	BS5	0.007	0.005	0.008	0.016	0.029	0.030	0.032	0.031	0.028	0.041	0.5	0.023	0.011	0.01
Roof	HAE4011A (445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	BS5	0.005	0.003	0.006	0.011	0.016	0.026	0.031	0.029	0.028	0.040	0.5	0.020	0.010	0.01
Roof	HAE6015A (450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	1.00	BS5	0.010	0.006	0.010	0.020	0.024	0.030	0.040	0.032	0.025	0.024	0.5	0.022	0.011	0.01
Roof	HAE6015A (450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	BS5	0.008	0.005	0.010	0.019	0.017	0.023	0.034	0.017	0.023	0.033	0.5	0.019	0.009	0.01
Roof	HAE6015A (450 - 520MHz) HAE6015A	4.15	482.5000	54.0	53.7	CW	Е	1.00	BS5	0.009	0.006	0.009	0.012	0.017	0.027	0.037	0.028	0.017	0.028	0.5	0.019	0.010	0.01
Roof	(450 - 520MHz) HAE6015A	4.15	496.5000	48.0	46.9	CW	Е	1.00	BS5	0.006	0.004	0.007	0.008	0.012	0.022	0.029	0.017	0.024	0.037	0.5	0.017	0.008	0.01
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	Е	1.00	BS5	0.006	0.003	0.007	0.010	0.019	0.025	0.027	0.021	0.027	0.039	0.5	0.018	0.009	0.01
Roof	HAE4004A (470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	BS5	0.008	0.004	0.010	0.015	0.023	0.029	0.040	0.034	0.021	0.029	0.5	0.021	0.011	0.01
Roof	HAE4004A (470-512MHz)	2.15	482.5000	54.0	53.7	CW	Е	1.00	BS5	0.009	0.003	0.009	0.011	0.010	0.019	0.034	0.028	0.021	0.029	0.5	0.017	0.009	0.01
Roof	HAE4004A (470-512MHz) HAE4004A	2.15	498.0000	48.0	46.9	CW	Е	1.00	BS5	0.007	0.003	0.006	0.007	0.013	0.020	0.019	0.017	0.017	0.038	0.5	0.015	0.007	0.01
Roof	(470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	BS5	0.005	0.002	0.005	0.009	0.015	0.026	0.026	0.021	0.026	0.035	0.5	0.017	0.009	0.01

	D.U.T. Info.							e Info.		]	MPE Measurements			Avg.		Max
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	Passenger	Chest	Lower Trunk	DUT Max. TX Factor	over Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Calc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz)	2.15	450.0125	54.0	53.8	CW	Е	1.00	PB	0.145	0.208	0.181	0.5	0.178	0.089	0.09
Roor	HAE4003A	2.15	430.0123	54.0	55.0	011	L	1.00	10	0.145	0.200	0.101	0.5	0.170	0.007	0.07
Roof	(450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	PB	0.136	0.113	0.172	0.5	0.140	0.070	0.07
	HAE4003A															
Roof	(450-470MHz)	2.15	469.9875	54.0	53.7	CW	E	1.00	PB	0.179	0.151	0.155	0.5	0.162	0.081	0.08
Roof	HAE4011A (445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	PB	0.111	0.134	0.194	0.5	0.146	0.073	0.07
Rooi	HAE4011A	5.05	450.0125	54.0	55.0	CW	L	1.00	TD	0.111	0.134	0.174	0.5	0.140	0.075	0.07
Roof	(445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	PB	0.124	0.066	0.126	0.5	0.105	0.053	0.05
	HAE4011A															
Roof	(445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	PB	0.093	0.063	0.065	0.5	0.074	0.037	0.04
Roof	HAE6015A (450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	1.00	PB	0.103	0.156	0.171	0.5	0.143	0.072	0.07
KUUI	(430 - 320MHZ) HAE6015A	4.15	430.0123	54.0	55.0	CW	Е	1.00	FD	0.105	0.150	0.171	0.5	0.143	0.072	0.07
Roof	(450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	PB	0.109	0.095	0.139	0.5	0.114	0.057	0.06
	HAE6015A															
Roof	(450 - 520MHz)	4.15	482.5000	54.0	53.7	CW	Е	1.00	PB	0.149	0.107	0.089	0.5	0.115	0.058	0.06
D C	HAE6015A	4.15	10 6 5000	40.0	16.0	CIV	F	1.00	DD	0.021	0.071	0.056	0.5	0.040	0.025	0.02
Roof	(450 - 520MHz) HAE6015A	4.15	496.5000	48.0	46.9	CW	E	1.00	PB	0.021	0.071	0.056	0.5	0.049	0.025	0.03
Roof	(450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	Е	1.00	PB	0.053	0.037	0.066	0.5	0.052	0.026	0.03
Roor	(150 5200002)	1.15	511.9075	10.0	17.5	011	1	1.00	10	0.055	0.037	0.000	0.5	0.052	0.020	0.05
	HAE4004A															
Roof	(470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	PB	0.179	0.122	0.151	0.5	0.151	0.075	0.08
_	HAE4004A															
Roof	(470-512MHz)	2.15	482.5000	54.0	53.7	CW	E	1.00	PB	0.212	0.163	0.099	0.5	0.158	0.079	0.08
Roof	HAE4004A (470-512MHz)	2.15	498.0000	48.0	46.9	CW	Е	1.00	PB	0.048	0.096	0.080	0.5	0.075	0.037	0.04
KUUI	(470-312MHZ) HAE4004A	2.15	70.0000	40.0	40.7	CW	Б	1.00	ID	0.040	0.070	0.000	0.5	0.075	0.057	0.04
Roof	(470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	PB	0.073	0.048	0.068	0.5	0.063	0.032	0.03
	1.4															

		Г. Info.				Prob	e Info.		MPE Measurements				Avg. over	Calc.	Max Calc.	
Ant Loc.	Ant. Model/ Desc.	Ant. Gain (dBi)	Tx Freq (MHz)	Max Pwr (W)	Initial Pwr (W)	Test Mode	E/H Field	Probe Cal. Factor	Test Pos.	Passenger	Chest	Lower Trunk	DUT Max. TX Factor	Body (mW/ cm^2)	Calc. P.D. (mW/ cm^2)	Carc. P.D. (mW/ cm^2)
Roof	HAE4003A (450-470MHz) HAE4003A	2.15	450.0125	54.0	53.8	CW	Е	1.00	PF	0.074	0.063	0.126	0.5	0.088	0.044	0.04
Roof	(450-470MHz)	2.15	460.0000	54.0	53.8	CW	Е	1.00	PF	0.199	0.096	0.056	0.5	0.117	0.059	0.06
Roof	HAE4003A (450-470MHz)	2.15	469.9875	54.0	53.7	CW	Е	1.00	PF	0.241	0.065	0.178	0.5	0.161	0.081	0.08
Roof	HAE4011A (445-470MHz)	5.65	450.0125	54.0	53.8	CW	Е	1.00	PF	0.046	0.020	0.076	0.5	0.047	0.024	0.02
Roof	HAE4011A (445-470MHz)	5.65	460.0000	54.0	53.8	CW	Е	1.00	PF	0.122	0.035	0.029	0.5	0.062	0.031	0.03
Roof	HAE4011A (445-470MHz)	5.65	469.9875	54.0	53.7	CW	Е	1.00	PF	0.101	0.021	0.028	0.5	0.050	0.025	0.03
Roof	HAE6015A (450 - 520MHz)	4.15	450.0125	54.0	53.8	CW	Е	0.97	PF	0.102	0.059	0.050	0.5	0.070	0.034	0.03
Roof	HAE6015A (450 - 520MHz)	4.15	465.5000	54.0	53.7	CW	Е	1.00	PF	0.144	0.074	0.166	0.5	0.128	0.064	0.06
Roof	HAE6015A (450 - 520MHz)	4.15	482.5000	54.0	53.7	CW	Е	1.00	PF	0.090	0.072	0.087	0.5	0.083	0.042	0.04
Roof	HAE6015A (450 - 520MHz)	4.15	496.5000	48.0	46.9	CW	Е	1.00	PF	0.069	0.044	0.062	0.5	0.058	0.029	0.03
Roof	HAE6015A (450 - 520MHz)	4.15	511.9875	48.0	47.3	CW	Е	1.00	PF	0.050	0.041	0.032	0.5	0.041	0.021	0.02
Roof	HAE4004A (470-512MHz)	2.15	470.0125	54.0	53.7	CW	Е	1.00	PF	0.267	0.075	0.175	0.5	0.172	0.086	0.09
Roof	HAE4004A (470-512MHz)	2.15	482.5000	54.0	53.7	CW	Е	1.00	PF	0.145	0.085	0.100	0.5	0.110	0.055	0.06
Roof	HAE4004A (470-512MHz)	2.15	498.0000	48.0	46.9	CW	Е	1.00	PF	0.094	0.053	0.068	0.5	0.072	0.036	0.04
Roof	HAE4004A (470-512MHz)	2.15	511.9875	48.0	47.3	CW	Е	1.00	PF	0.061	0.060	0.034	0.5	0.052	0.026	0.03

Appendix E - SAR Simulation Report

# MOTOROLA SOLUTIONS

# COMPUTATIONAL EME COMPLIANCE ASSESSMENT OF THE DIGITAL VEHICULAR REPEATER (DVR VHF), MODEL # DQPMDVR3000P, AND COMPANION MOBILE RADIO MODEL # M30TSS9PW1AN (MHUE1002A).

#### December 13, 2012

William Elliott, Giorgi Bit-Babik, Ph.D., and Antonio Faraone, Ph.D. Motorola Solutions EME Research Lab, Plantation, Florida

#### Introduction

This report summarizes the computational [numerical modeling] analysis performed to document compliance of the DVR VHF, 6 watt model # DQPMDVR3000P interfaced with, and transmitting simultaneously with companion Mobile Radio model M30TSS9PW1AN (MHUE1002A) – (UHF 2) with maximum transmit power up to 54 watts and vehicle-mounted antennas with the Federal Communications Commission (FCC) guidelines for human exposure to radio frequency (RF) emissions. The DVR radio operates in the 136-174 MHz frequency band and the companion UHF mobile radio operate in the 450 - 520 MHz band.

This computational analysis supplements the measurements conducted to evaluate the compliance of the exposure from this mobile radio with respect to applicable *maximum permissible exposure* (MPE) limits. All test conditions (22 in total) that produced the results that did not conform with applicable MPE limits were analyzed to determine whether those conditions complied with the *specific absorption rate* (SAR) limits for general public exposure (1.6 W/kg averaged over 1 gram of tissue and 0.08 W/kg averaged over the whole body) set forth in FCC guidelines, which are based on the IEEE C95.1-1999 standard [1]. In total 44 independent simulations have been performed to analyze all nonconforming test conditions. Fourteen simulations are addressing the back seat passenger exposure to the DVR VHF radio with trunk mounted antennas. Thirty simulations are addressing the back seat passenger exposure to the UHF Mobile Radio with roof mounted antennas.

FCC ID: LO6-DVRSVHF

For all simulations a commercial code based on Finite-Difference-Time-Domain (FDTD) methodology was employed to carry out the computational analysis. It is well established and recognized within the scientific community that SAR is the primary dosimetric quantity used to evaluate the human body's absorption of RF energy and that MPEs are in fact derived from SAR. Accordingly, the SAR computations provide a scientifically valid and more relevant estimate of human exposure to RF energy.

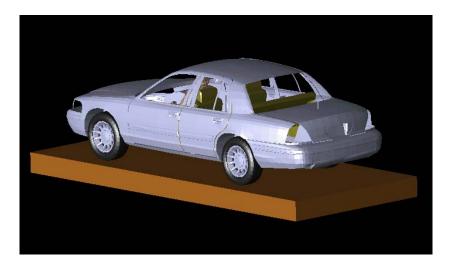
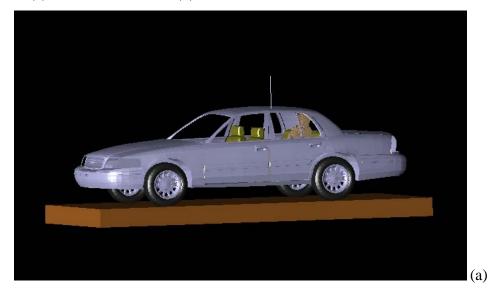
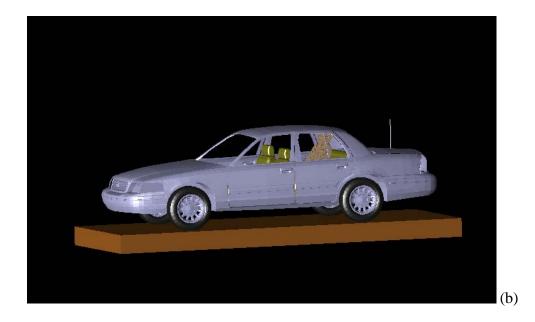
#### Method

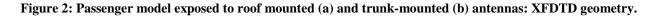
The simulation code employed is XFDTDTM v7.2, by Remcom Inc., State College, PA. This computational suite features a heterogeneous full body standing model (High Fidelity Body Mesh), derived from the so-called Visible Human [2], discretized in 3 mm voxels. The dielectric properties of 23 body tissues are automatically assigned by XFDTDTM at any specific frequency. The "seated" man model was obtained from the standing model by modifying the articulation angles at the hips and the knees. Details of the computational method and model are provided in the Appendix to this report.

The car model has been imported into XFDTDTM from the CAD file of a sedan car having dimensions 4.98 m (L) x 1.85 m (W) x 1.18 m (H), and discretized with maximum resolution of 5 mm. The Figure 1 below show both the CAD model and the photo of the actual car This CAD model has been incorporated into the IEC/IEEE 62704-2 draft standard.



2



Figure 1: The photo picture of the car used in field measurements and the corresponding CAD model used in simulations

For driver exposure, the antenna position is on the trunk and on the roof that replicate the experimental conditions used in MPE measurements. According to the IEC/IEEE 62704-2 draft standard (October, 2012) for exposure simulations from vehicle mount antennas the lossy dielectric slab with 30 cm thickness, dielectric constant of 8 and conductivity of 0.01 S/m has been introduced in the computational model to properly account for the effect of the ground (pavement) on exposure.

Figure 2 shows some of the XFDTDTM computational models used for passenger exposure to roof mounted (a) and trunk mounted (b) antennas







The computational code employs a time-harmonic excitation to produce a steady state electromagnetic field in the exposed body. Subsequently, the corresponding SAR distribution is automatically processed in order to determine the whole-body and 1-g average SAR. The maximum average output power from the UHF mobile radio antenna is 54Watts (450 - 485MHz), 48Watts (485 - 512MHz) and 30Watts (512 - 520MHz), depending on channel. Since the ohmic losses in the cable and in the car materials, as well as the mismatch losses at the antenna feed-point, are neglected, and source-based time averaging (50% talk time) is employed, all computational results are normalized to half of it, i.e., 24 or 27 W average net output power. The maximum average output power from DVR VHF radio is 6 W. The DVR VHF radio operates in a repeater mode and therefore all simulations are normalized to 100% average output power, i.e., 6 W.

Two independent sets of simulations, one for DVR VHF trunk mount antennas and one for UHF radio roof-mount antennas were performed. Since UHF mobile radio and DVR VHF radio can transmit simultaneously, the maximum peak and whole body average SAR results from each set of data were combined to compute the peak SAR value for the simultaneous exposure from both radios. The obtained combined peak SAR value is an overestimation of the actual exposure

4

because the peak SAR values from the roof- and trunk-mount antennas that contribute to the combined value are not found at the same location in the body.

#### Results of SAR computations with the trunk mounted antenna

#### **Passenger Test Conditions**

The passenger test conditions for DVR VHF radio requiring SAR computations are summarized in Table I, together with the antenna data, the SAR results, and power density (P.D.) as obtained from the measurements in the corresponding test conditions. The conditions are for antennas mounted on the trunk. The antenna length in Table I includes the 1.8 cm magnetic mount base used in measurements to position the antenna on the vehicle. The same length was used in simulation model. The seated human body model is located in the center of the back seat (Back Center location) and on the side of the back seat (Back Side location). The model is surrounded by air, as the seat, which is made out of poorly conductive fabrics, is not included in the computational model. All the transmit frequencies and antenna lengths combinations reported in Table I have been simulated individually.

		Antenn	_		_	÷	SAR [W/kg	]
Mount location	Antenna Kit #	a length (cm)	Freq [MHz]	P.D. (mw/cm^2)	Exposure location	1-g	10-g	WB
Trunk	HAD4007A	50.8	150.8	0.18	Back Center	0.152	0.083	0.0053
TTUTK	HAD4007A	50.8	150.0	0.18	Back Side	0.131	0.065	0.0054
			150.8	0.15	Back Center	0.151	0.082	0.0052
			150.0	0.15	Back Side	0.151	0.082	0.0052
Trunk	HAD4008A	47.3	156.4	0.23	Back Center	0.121	0.069	0.0056
TTUTIK		47.5	130.4	0.23	Back Side	0.121	0.069	0.0056
			162.0	0.18	Back Center	0.106	0.063	0.0051
			102.0	0.16	Back Side	0.106	0.063	0.0051
			162.0	0.15	Back Center	0.107	0.064	0.0051
			102.0	0.15	Back Side	0.159	0.137	0.0060
Taurala		44.0	167.7	0.47	Back Center	0.082	0.053	0.0043
Trunk	HAD4009A	44.8	Fig 3 & 4	0.17	Back Side	0.175	0.142	0.0048
			470.4	0.40	Back Center	0.144	0.097	0.0057
			173.4	0.13	Back Side	0.170	0.127	0.0055

# Table I: Results of the SAR computations for passenger exposure from DVR VHF trunk-mount antennas (100% talk-time)

The SAR distribution in the model in the exposure condition that gave highest 1-g SAR is reported in Figure 3 (167.7 MHz, HAD4009A antenna).

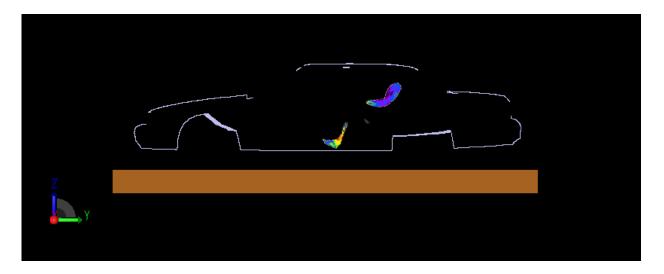
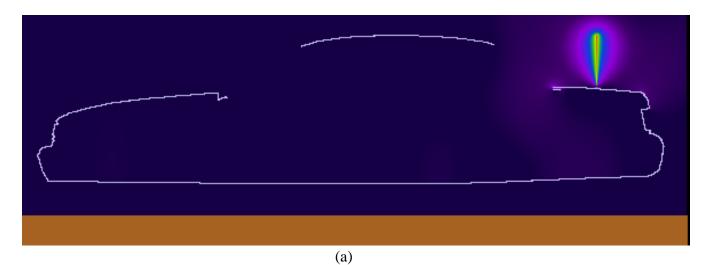




Figure 3. SAR distribution at 167.7 MHz in the passenger back side model produced by the trunk mount HAD4009A antenna. The contour plot is relative to the plane where the peak 1-g average SAR for this exposure condition occurs.

The two pictures below in Figure 4 show the E and H field distributions in the plane of the antenna corresponding to the location in Figure 3.



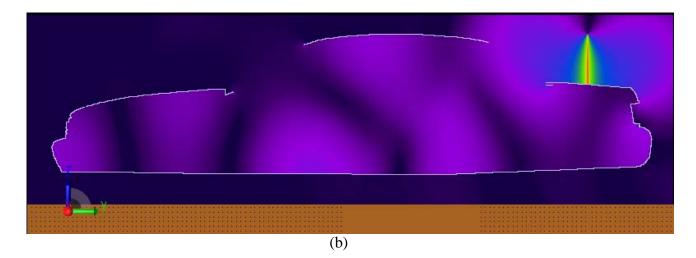



Figure 4. (a) E-field distribution corresponding to exposure condition of Figure 4, and (b) H-field distribution corresponding to exposure condition of Figure 3.

The highest 1-g SAR in the passenger exposure condition with the HAD4009A trunk mounted antenna was produced at 167.7 MHz.

#### Results of SAR computations with the roof mounted antenna

#### **Passenger Test Conditions**

The passenger test conditions for UHF mobile radio requiring SAR computations are summarized in Table II, together with the antenna data, the SAR results, and power density (P.D.) as obtained from the measurements in the corresponding test conditions. The conditions are for antennas mounted on the side of the roof. The antenna length in Table II includes the 1.8 cm magnetic mount base used in measurements to position the antenna on the vehicle. The same length was used in simulation model. The seated human body model is located in the center of the back seat (Back Center location) and on the side of the back seat (Back Side location). The model is surrounded by air, as the seat, which is made out of poorly conductive fabrics, is not included in the computational model. All the transmit frequencies and antenna lengths combinations reported in Table II have been simulated individually

# Table II: Results of the SAR computations for passenger exposure from UHF mobile radio roof-mounted antennas (50% talk time)

Mount location	Antenna Kit #	Antenna length (cm)	Freq [MHz]	P.D. (mw/cm^2)	Exposure location		SAR [W/kg	]
		(CIII)				1-g	10-g	WB
			450.0105	0.00	Back Center	0.267	0.129	0.0067
			450.0125	0.09	Back Side	0.301	0.214	0.0081
Deef	HAE4003A	17.0	400.0000	0.07	Back Center	0.185	0.087	0.0059
Roof		17.8	460.0000	0.07	Back Side	0.291	0.212	0.0064
			400 0075	0.00	Back Center	0.182	0.111	0.0059
			469.9875	0.08	Back Side	0.357	0.275	0.0085
			450.0405	0.07	Back Center	0,129	0.078	0.0027
			450.0125	0.07	Back Side	0.178	0.112	0.0023
Deef		745	460.0000	0.05	Back Center	0.079	0.045	0.0020
Roof	HAE4011A	74.5	460.0000	0.05	Back Side	0.109	0.068	0.0020
			460.0975	0.04	Back Center	0.071	0.044	0.0023
			469.9875	0.04	Back Side	0.130	0.059	0.0021
			450.0105	0.07	Back Center	0.152	0.126	0.0051
			450.0125	0.07	Back Side	0.253	0.151	0.0061
			465.5000	0.06	Back Center	0.101	0.072	0.0043
			405.5000	0.00	Back Side	0.238	0.176	0.0057
Roof	HAE6015A	28.0	482.5000	0.06	Back Center	0.091	0.065	0.0037
1,001	TALOUTOA	20.0	402.0000	0.00	Back Side	0.128	0.084	0.0049
			496.5000	0.03	Back Center	0.079	0.061	0.0035
					Back Side	0.131	0.078	0.0038
			511.9875	0.03	Back Center	0.085	0.051	0.0035
					Back Side	0.221	0.132	0.0045
			470.0125	0.08	Back Center	0.187	0.113	0.0060
			Fig 5 &6		Back Side	0.365	0.280	0.0087
			482.5000	0.08	Back Center	0.152	0.115	0.0051
Roof	HAE4004A	16.8			Back Side	0.250	0.161	0.0075
			498.0000	0.04	Back Center	0.116	0.077	0.0049
		F			Back Side	0.197	0.116	0.0062
			511.9875	0.03	Back Center	0.120	0.080	0.0047
					Back Side	0.318	0.179	0.0065

The SAR distribution in the passenger model in the exposure condition that gave highest 1-g SAR is reported in Figure 5 (470.0125 MHz, HAE4004A antenna).

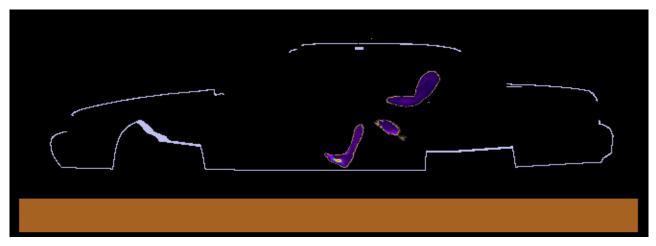
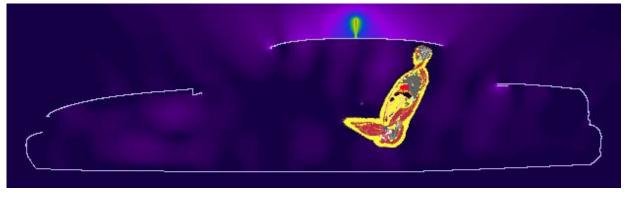
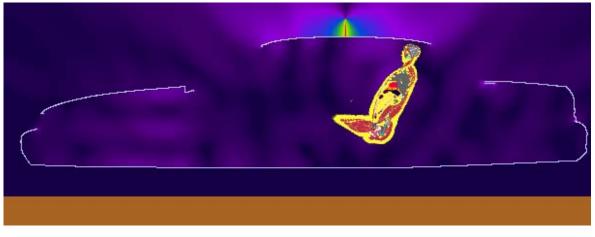





Figure 5. SAR distribution at 470.0125 MHz in the passenger model produced by the roof-mount HAE4004A antenna. The contour plot is relative to the plane where the peak 1-g average SAR for this exposure condition occurs.

The two pictures below in Figure 6 show the E and H field distributions in the plane of the antenna corresponding to the condition in Figure 5.



a)



b)

Figure 6. (a) E-field distribution and (b) H-field distribution corresponding to exposure condition of Figure 5

The highest 1-g SAR was produced with the HAE4004A roof mounted antenna at 470.0125 MHz.

### **Results of SAR computations for combined exposure**

From all simulated results the worst case peak SAR values were identified for both DVR VHF and UHF mobile radio exposure and then combined to produce the composite peak SAR value in corresponding locations of the human body model. Table III and Table IV present the worst case composite peak SAR value.

Table III: Worst case peak 1-g average SAR for passenger exposure conditions and composite 1-g average SAR from simultaneous exposure.

Passenger location	DVR VHF [W/kg]	UHF mobile radio [W/kg]	Total [W/kg]	
Back Center	0.152	0.267	0.419	
Back Side	0.175	0.365	0.540	

Passenger location	DVR VHF [W/kg]	UHF mobile radio [W/kg]	Total [W/kg]	
Back Center	0.0057	0.0067	0.0124	
Back Side	0.0060	0.0087	0.0147	

Table IV: Worst case peak whole body average SAR for passenger exposure conditions and composite whole body average SAR from simultaneous exposure.

From Table III and Table IV the maximum combined peak 1-g SAR is 0.540 W/kg, less than the 1.6 W/kg limit, while the maximum combined whole-body average SAR is 0.0147 W/kg, less than the 0.08 W/kg limit.

#### Conclusions

Under the test conditions described for evaluating exposure to the RF electromagnetic fields emitted by vehicle-mounted antennas used in conjunction with these mobile radio products, the present analysis shows that the computed maximum SAR values are compliant with the FCC general public SAR limits.

# References

- [1] IEEE Standard C95.1-1999. *IEEE Standard for Safety Levels with Respect to Human Exposure to RF Electromagnetic Fields*, 3 kHz to 300 GHz.
- [2] <u>http://www.nlm.nih.gov/research/visible/visible_human.html</u>

# **APPENDIX: SPECIFIC INFORMATION FOR SAR COMPUTATIONS**

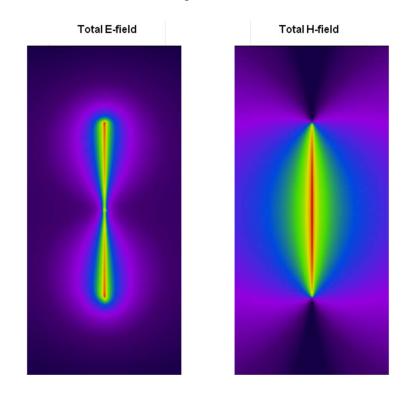
This appendix follows the structure outlined in Appendix B.III of the Supplement C to the FCC OET Bulletin 65. Most of the information regarding the code employed to perform the numerical computations has been adapted from the draft IEC/IEEE 62704-1 and 62704-2 standards, and from the XFDTDTM User Manuals. Remcom Inc., owner of XFDTDTM, is kindly acknowledged for the help provided.

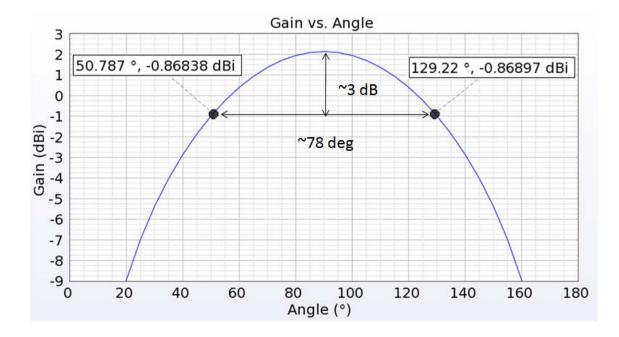
# 1) Computational resources

a) A multiprocessor system equipped with two Intel Xeon X5570 quad-core CPUs and four Tesla C1060 GPUs was employed for all simulations.

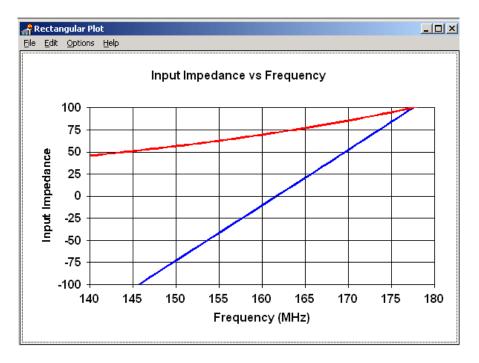
b) The memory requirement was from 7 GB to 12 GB. Using the above-mentioned system with 8-cores operating concurrently, the typical simulation would run for 6-10 hours and with all four GPUs activated by the XFDTD version 7.2 this time would be from 60-180 min.

### 2) FDTD algorithm implementation and validation


a) We employed a commercial code (XFDTDTM v7.2, by Remcom Inc.) that implements the Yee's FDTD formulation [1]. The solution domain was discretized according to a rectangular grid with an adaptive 3-10 mm step in all directions. Sub-gridding was not used. Seven-layer PML absorbing boundary conditions are set at the domain boundary to simulate free space radiation processes. The excitation is a lumped voltage generator with 50-ohm source impedance. The code allows selecting *wire objects* without specifying their radius. We used a wire to represent the antenna. The car body is modeled by solid metal. We did not employ the "thin wire" algorithm since within the adaptive grid the minimum resolution of 3 mm was specified and used to model the antenna and the antenna wire radius was never smaller than onefifth of the voxel dimension. In fact, the XFDTD[™] manual specifies that "In most cases, standard PEC material will serve well as a wire. However, in cases where the wire radius is important to the calculation and is less than 1/4 the length of the average cell edge, the thin wire material may be used to accurately simulate the correct wire diameter." The maximum voxel dimension in the plane normal to the antenna in all our simulations was 3 mm, and the antenna radius is always at least 1 mm (1 mm for the short quarter-wave antennas and 1.5 mm for the long gain antennas), so there was no need to specify a "thin wire" material.


Because the field impinges on the bystander or passenger model at a distance of several tens of voxels from the antenna, the details of antenna wire modeling are not expected to have significant impact on the exposure level.

b) XFDTD[™] is one of the most widely employed commercial codes for electromagnetic simulations. It has gone through extensive validation and has proven its accuracy over time in many different applications. One example is provided in [3].


We carried out a validation of the code algorithm by running the canonical test case involving a half-wave wire dipole. The dipole is 0.475 times the free space wavelength at 160 MHz, i.e.,

88.5 cm long. The discretization used to model the dipole was 5 mm. Also in this case, the "thin wire" model was not needed. The following picture shows XFDTDTM outputs regarding the antenna feed-point impedance (70.5 – j 6.0 ohm), as well as qualitative distributions of the total E and H fields near the dipole. The radiation pattern is shown as well (one lobe in elevation). As expected, the 3 dB beamwidth is about 78 degrees.





We also compared the XFDTDTM result with the results derived from NEC [4], which is a code based on the method of moments. In this case, we used a dipole with radius 1 mm, length 88.5 cm, and the discretization is 5 mm. The corresponding input impedance at 160 MHz is 69.5-j10.5 ohm. Its frequency dependence is reported in the following figure.



This validation ensures that the input impedance calculation is carried out correctly in XFDTDTM, thereby enabling accurate estimates of the radiated power. It further ensures that the wire model employed in XFDTDTM, which we used to model the antennas, produces physically meaningful current and fields distributions. Both these aspects ensure that the field quantities are correctly computed both in terms of absolute amplitude and relative distribution.

# 3) Computational parameters

a) The following table reports the main parameters of the FDTD model employed to perform our computational analysis:

PARAMETER	Х	Y	Z
Voxel size	3-10 mm	3-10 mm	1-10 mm
Maximum domain dimensions employed for passenger computations with the trunk-mount antennas	397	910	559
Maximum domain dimensions employed for bystander computations with the trunk-mount antennas	449	791	709
Time step	About 0.7 of the Courant limit (typically 5 <i>ps</i> )		
Objects separation from FDTD boundary (mm)	>200	>200	>200
Number of time steps	Enough to reach at least -60 dB convergence		
Excitation	Sinusoidal (not less than 10 periods)		

### 4) Phantom model implementation and validation

a) The human body models (bystander and/or passenger) employed in our simulations are those defined in the draft IEEE 62704-2 standard. They are originally based on data from the *visible human project* sponsored by the National Library of Medicine (NLM)

(http://www.nlm.nih.gov/research/visible/visible_human.html). The original male data set consists of MRI, CT and anatomical images. Axial MRI images of the head and neck and longitudinal sections of the rest of the body are available at 4 mm intervals. The MRI images have 256 pixel by 256 pixel resolution. Each pixel has 12 bits of gray tone resolution. The CT data consists of axial CT scans of the entire body taken at 1 mm intervals at a resolution of 512 pixels by 512 pixels where each pixel is made up of 12 bits of gray tone. The axial anatomical images are 2048 pixels by 1216 pixels where each pixel is defined by 24 bits of color. The anatomical cross sections are also at 1 mm intervals and coincide with the CT axial images. There are 1871 cross sections. Dr. Michael Smith and Dr. Chris Collins of the Milton S. Hershey Medical Center, Hershey, Pa, created the High Fidelity Body mesh. Details of body model creation are given in the *methods* section in [5].

The final bystander and passenger model was generated for the IEEE 62704-2 standard from the above dataset using the Varipose softwar, Remocm Inc., The body mesh contains 39 tissues materials. Measured values for the tissue parameters for a broad frequency range are included with the mesh data. The correct values are interpolated from the table of measured data and entered into the appropriate mesh variables. The tissue conductivity and permittivity variation *vs*. frequency is included in the XFDTDTM calculation by a multiple-pole approximation to the Cole-Cole approximated tissue parameters reported in [11].

a) The XFDTDTM High Fidelity Body Mesh model correctly represents the anatomical structure and the dielectric properties of body tissues, so it is appropriate for determining the highest exposure expected for normal device operation.

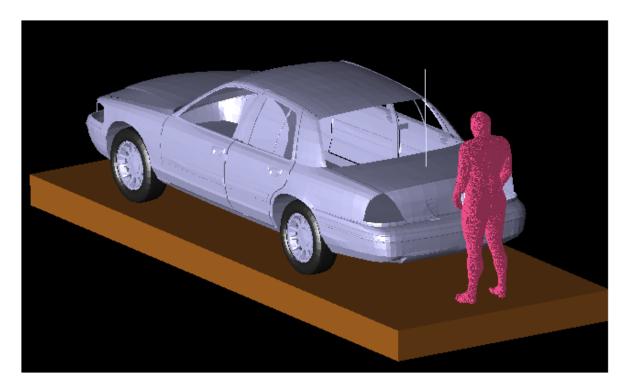
b) One example of the accuracy of XFDTD[™] for computing SAR has been provided in [6]. The study reported in [6] is relative to a large-scale benchmark of measurement and computational tools carried out within the IEEE Standards Coordinating Committee 34, Sub-Committee 2.

# 5) Tissue dielectric parameters

a) The following table reports the dielectric properties computed for the 39 body tissue materials in the employed human body models at 150 MHz.

#	Tissue	٤ _r	σ (S/m)	Density (kg/m ³ )
1	bile	85.3	1.60	928
2	body fluid	71.3	1.26	1050
3	eye cornea	69.0	1.07	1051
4	fat	12.2	0.07	911
5	lymph	65.7	0.81	1035
6	mucous membrane	59.2	0.56	1102
7	toe, finger, and nails	14.4	0.07	1908
8	nerve spine	42.3	0.36	1075
9	muscle	62.2	0.73	1090
10	heart	80.7	0.79	1081
11	white matter	50.3	0.35	1041
12	stomach	73.3	0.92	1088
13	glands	65.7	0.81	1028
14	blood vessel	54.0	0.49	1102
15	liver	61.7	0.53	1079
16	gall bladder	71.3	1.06	1071
17	spleen	78.8	0.86	1089
18	cerebellum	74.6	0.85	1045
19	cortical bone	14.4	0.07	1908
20	cartilage	51.4	0.50	1100
21	ligaments	50.8	0.50	1142
22	skin	61.5	0.54	1109
23	large intestine	73.8	0.72	1088
24	tooth	14.4	0.07	2180
25	grey_matter	70.1	0.60	1045
26	eye lens	41.7	0.32	1076
27	outer lung	61.9	0.59	1050
28	small intestine	83.4	1.72	1030
29	eye sclera	63.5	0.93	1032
30	inner lung	28.3	0.32	394
31	pancreas	65.7	0.81	1087
32	blood	71.3	1.26	1050
33	cerebro_spinal_fluid	81.2	2.16	1007
34	eye vitreoushumor	69.1	1.51	1005
35	kidneys	85.0	0.88	1066
36	bone marrow	13.2	0.16	1029
37	bladder	21.4	0.30	1086
38	testicles	70.3	0.94	1082
39	cancellous bone	25.5	0.19	1178

b) The tissue types and dielectric parameters used in the SAR computation are appropriate for determining the highest exposure expected for normal device operation, because they are derived from measurements performed on real biological tissues (XFDTD, Reference Manual Version 6.4, Remcom, Inc.).


c) The tabulated list of the dielectric parameters used in phantom models is provided at point 5(a). As regards the device (car plus antenna), we used perfect electric conductors.

## 6) Transmitter model implementation and validation

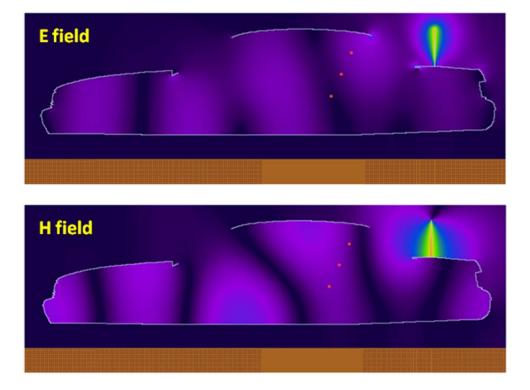
a) The essential features that must be modeled correctly for the particular test device model to be valid are:

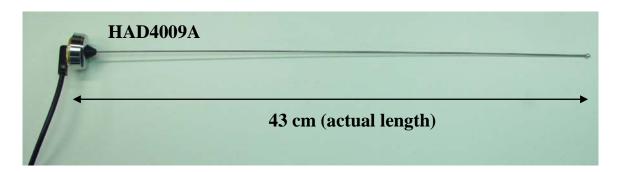
- Car body. The car model is very similar to the car used for MPE measurements, so as to be able to correlate measured and simulated field values. This car model has been developed for the SAR computational draft standard IEC/IEEE 62704-2.
- Antenna. We used a straight wire, even when the gain antenna has a base coil for tuning. All the coil does is compensating for excess capacitance due to the antenna being slightly longer than half a wavelength. We do not need to do that in the model, as we used normalization with respect to the net radiated power, which is determined by the input resistance only. In this way, we neglect mismatch losses and artificially produce an overestimation of the SAR, thereby introducing a conservative bias in the model. This simulation model was also validated by comparing the computed and measured near-field distributions in the condition with antenna mounted on the reference ground plane and showed good agreement experimental data [9].
- Antenna location. We used the same location, relative to the edge of the car trunk, the backseat, or the roof, used in the MPE measurements. The following pictures show a lateral and a perspective view of the bystander and passenger model.





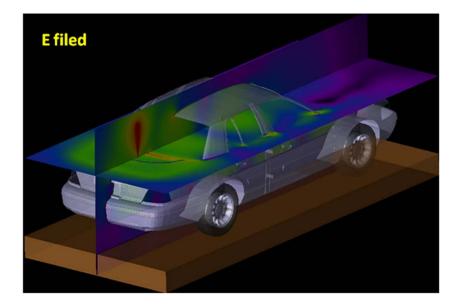


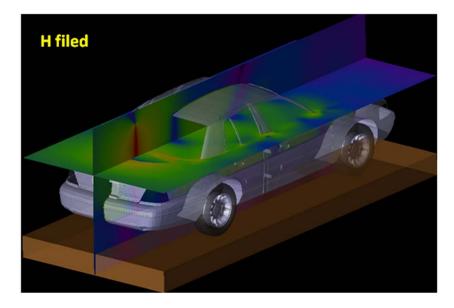




The car model is constituted by perfect electric conductor and does not include wheels in order to reduce its complexity. The passenger model is surrounded by air, as the seat, which is made out of poorly conductive fabrics, is not included in the computational model. The pavement has not been included in the model. The passenger and bystander models were validated for similar antenna and frequency conditions by comparing the MPE measurements at two VHF frequencies (146 MHz and 164 MHz) for antennas used for a VHF mobile radio analyzed previously in 2003 (FCC ID#ABZ99FT3046). The corresponding MPE measurements are reported in the compliance report relative to FCC ID#ABZ99FT3046. The comparison results are presented below, according to following definitions for the equivalent power densities (based on E or H-field):

$$S_E = \frac{\left|\mathbf{E}\right|^2}{2\eta}, \quad S_H = \frac{\eta}{2} \left|\mathbf{H}\right|^2, \quad \eta = 377 \ \Omega$$

#### Passenger with 43 cm monopole antenna (HAD4009A 164 MHz)


The following figures of the test model show the empty car model, where the red dotted line represents the location of the passenger in the back seat, as it can be observed from the complete model picture above. The comparison has been performed by taking the computed steady-state field values at the red dots locations corresponding to the head, chest, and lower trunk area and comparing them with the corresponding measurements. Such a comparison is carried out at the same average power level (56.5 W) used in the measurements. Steady-state E-field and H-field distributions at a vertical crossing the passenger's head are displayed as well. Finally, a picture of the antenna is shown.

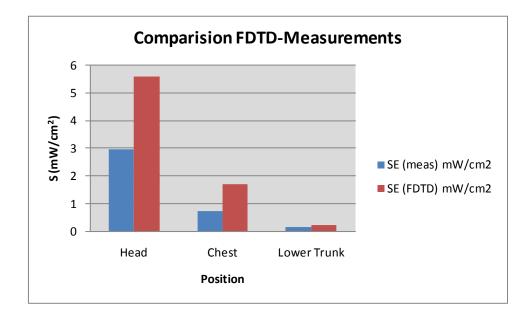





The highest exposure occurs in the middle of the backseat, which is also the case in the measurements. Therefore, the field values were determined on the yellow line centered at the middle of the backseat, approximately at the three locations that are shown by white dots. In actuality, the line is inclined so as to follow the inclination of the passenger's back, as shown previously.

Because the peak exposure occurs in the center of the back seat, that was where we placed the passenger model to perform the SAR evaluations presented in the report. However, it can be observed that the H-field distribution features peaks near the lateral edges of the rear window. That is the reason why we also carried out one SAR computation by placing the passenger laterally in the back seat, in order to determine whether the SAR would be higher in this case.



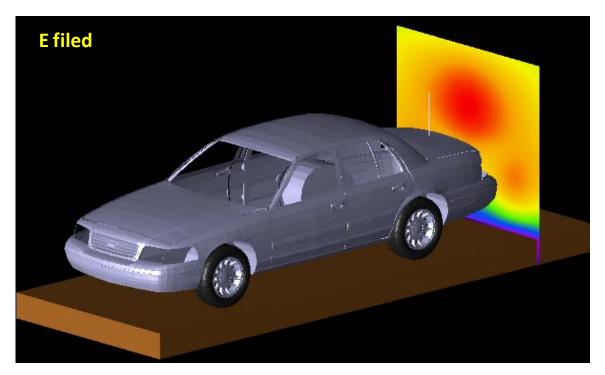


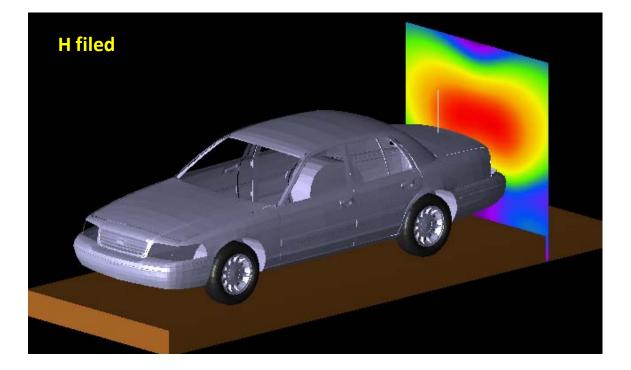

As done in the measurements, the equivalent power density (S) is computed from the E-field, the H-field being much lower. The following table reports the E-field values computed by  $XFDTD^{TM}$  at the three locations, and the corresponding power density.

Location	E-field magnitude (V/m)	$S(W/m^2)$
Head	1.27	2.14E-03
Chest	0.70	6.55E-04
Lower Trunk area	0.20	7.70E-05
	Average S	9.57E-04

The input impedance is 24.8-j11.9 ohm, therefore the radiated power (considering the mismatch to the 50 ohm unitary voltage source) is 2.16E-3 W. The scaled-up power density for 56.5 W radiated power is  $25.0 \text{ W/m}^2$ , corresponding to  $2.50 \text{ mW/cm}^2$ . Measurements gave an average of  $1.29 \text{ mW/cm}^2$ , which is a reasonable overestimation considering conservativeness of simulations model. The following table and the graph show a comparison between the simulated power density and the measured one (see also MPE report in FCC ID#ABZ99FT3046, Table 43), normalized to 56.5 W radiated.

Position	SE (meas) mW/cm ²	SE (FDTD) mW/cm ²	
Head	2.98	5.59	
Chest	0.74	1.71	
Lower Trunk	0.14	0.2	



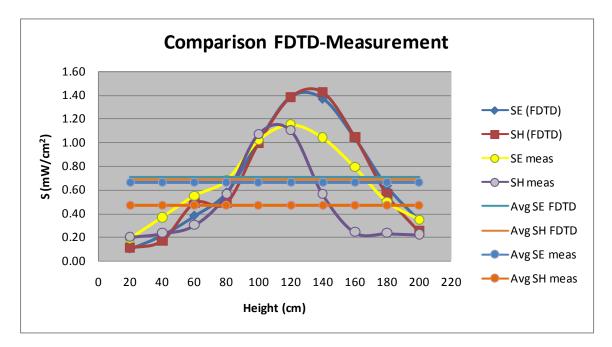


# Bystander with 48 cm monopole antenna (HAD4007A 146 MHz)

The following figures show the E-field and H-field distributions across a vertical plane passing for the antenna and cutting the car in half. As done in the measurements, the MPE is computed from both E-field and H-field distributions, along the yellow dotted line at 10 points spaced 20 cm apart from each other up to 2 m in height. These lines and the field evaluation points are approximately indicated in the figures. The E-field and H-field distributions in the vertical plane placed at 60 cm from the antenna, are shown as well. The points where the fields are sampled to determine the equivalent power density (S) are approximately indicated by the white dots. A picture of the antenna is not reported because it is identical to the HAD4009A except for the length.










The following table reports the field values computed by XFDTDTM and the corresponding power density values. The average exposure levels are computed as well.

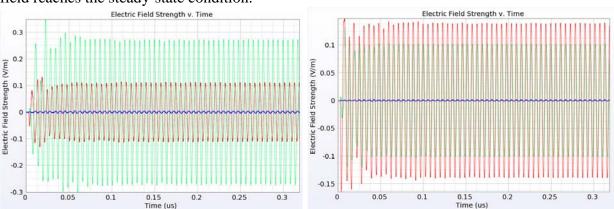
Height (cm)	E (V/m)	$S_{\rm E} (W/m^2)$	H (A/m)	$S_{\rm H} (W/m^2)$
20	1.84E-01	4.50E-05	5.10E-04	4.89E-05
40	2.71E-01	9.71E-05	6.38E-04	7.68E-05
60	3.58E-01	1.70E-04	1.08E-03	2.20E-04
80	4.42E-01	2.59E-04	1.54E-03	2.20E-04
100	5.85E-01	4.55E-04	1.82E-03	4.48E-04
120	6.86E-01	6.24E-04	1.85E-03	6.23E-04
140	6.82E-01	6.17E-04	1.58E-03	6.42E-04
160	5.93E-01	4.67E-04	1.16E-03	4.72E-04
180	4.63E-01	2.84E-04	7.67E-04	2.52E-04
200	3.41E-01	1.55E-04	4.94E-04	1.11E-04
	Average S _E	3.17E-04	Average S _H	3.11E-04

The input impedance is 33.7-j3.0 ohm, therefore the radiated power (considering the mismatch to the 50 ohm unitary voltage source) is 2.40E-3 W. The scaled-up power density values for 53.2 W radiated power are 7.03 W/m² (E), and 6.90 W/m² (H), that correspond to 0.70 mW/cm² (E), and 0.69 mW/cm² (H). Measurements yielded average power density of 0.664 mW/cm² (E), and 0.471 mW/cm² (H), i.e., which are in good agreement with the simulations. The following table and graph show a comparison between the simulated power density and the measured one, based on E (see MPE report in FCC ID#ABZ99FT3046, Table 1) or H fields (see MPE report in FCC ID#ABZ99FT3046, Table 1) or H fields.

Height (cm)	SE (meas) mW/cm ²	SE (FDTD) mW/cm ²	SH (meas) mW/cm ²	SH (FDTD) mW/cm ²	Avg SE meas mW/cm ²	Avg SE FDTD mW/cm ²	Avg SH meas mW/cm ²	Avg SH FDTD mW/cm ²
20	0.19	0.10	0.2	0.11				
40	0.37	0.22	0.23	0.17			702 0.471	
60	0.55	0.38	0.3	0.49				
80	0.68	0.57	0.56	0.49		0 700		
100	1.02	1.01	1.07	0.99	0.664			0 471
120	1.15	1.38	1.1	1.38	0.664	0.703	0.471	0.690
140	1.04	1.37	0.56	1.42				
160	0.79	1.03	0.24	1.05				
180	0.5	0.63	0.23	0.56				
200	0.35	0.34	0.22	0.25				



# 7) Test device positioning


a) A description of the device test positions used in the SAR computations is provided in the SAR report.

b) Illustrations showing the separation distances between the test device and the phantom for the tested configurations are provided in the SAR report.

#### 8) Steady state termination procedures

a) The criteria used to determine that sinusoidal steady-state conditions have been reached throughout the computational domain for terminating the computations are based on the monitoring of field points to make sure they converge. The simulation projects were set to automatically track the field values throughout computational domain by means of XFDTD simulation control feature which ensures that "convergence is reached when near-zone data shows a constant amplitude sine wave – when all transients have died down and the only variation left is sinusoidal. In this case "convergence" is tested on the average electric field in the space for its deviation from a pure sine wave. XFDTD automatically places points throughout the space for this purpose." [XFDTD Reference Manual, version. 6.4 and version 7.2]. This convergence threshold was set to -50 dB.

In addition for at least one passenger and one bystander exposure condition, we placed one "field sensor" near the antenna, others between the body and the domain boundary at different locations, and one inside the head of the model. In all simulations, isotropic E-field sensors were placed at opposite sides of the computational domain. We used isotropic E and H field "sensors", meaning that all three components of the fields are monitored at these points. The following figures show an example of the time waveforms at the field point sensors in two points of the computational domain. We selected points close to antenna as well as furthest one. The highest field levels are observed for the higher index point, as it is closer to the antenna. In all cases, the field reaches the steady-state condition.



c) The XFDTDTM algorithm determines the field phasors by using the so-called "two-equations two-unknowns" method. Details of the algorithm are explained in [7].

#### 9) Computing peak SAR from field components

a) The SAR for an individual voxel is computed according to the draft IEEE 62704-1 standard. In particular, the three components of the electric field are computed in the center of each voxel and then the SAR is computed as below:

SAR = 
$$\sigma_{voxel} \frac{|E_x|^2 + |E_y|^2 + |E_z|^2}{2\rho_{voxel}}$$

where  $\sigma_{vaxel}$  and  $\rho_{vaxel}$  are the conductivity and the mass density of the voxel.

## 10) One-gram and ten-gram averaged SAR procedures

a) XFDTD[™] computes the Specific Absorption Rate (SAR) in each complete cell containing lossy dielectric material and with a non-zero material density. Using the SAR values computed for each voxel of the model the averaging calculation employs the method and specifications defined in the draft IEEE 62704-1 standard to generate one-gram and ten-gram average SAR.

**11)** Total computational uncertainty – We derived an estimate for the uncertainty of FDTD methods in evaluating SAR by referring to [6]. In Fig. 7 in [6] it is shown that the deviation between SAR estimates using the XFDTDTM code and those measured with a compliance system are typically within 10% when the probe is away from the phantom surface so that boundary effects are negligible. In that example, the simulated SAR always exceeds the measured SAR.

As discussed in 6(a), a conservative bias has been introduced in the model so as to reduce concerns regarding the computational uncertainty related to the car modeling, antenna modeling, and phantom modeling. The results of the comparison between measurements and simulations presented in 6(a) suggest that the present model produces an overestimate of the exposure between 4% and 36%. Such a conservative bias should eliminate the need for including uncertainty considerations in the SAR assessment.

## 12) Test results for determining SAR compliance

a) Illustrations showing the SAR distribution of dominant peak locations produced by the test transmitter, with respect to the phantom and test device, are provided in the SAR report.

b) The input impedance and the total power radiated under the impedance match conditions that occur at the test frequency are provided by XFDTDTM. XFDTDTM computes the input impedance by following the method outlined in [8], which consists in performing the integration of the steady-state magnetic field around the feed point edge to compute the steady-state feed point current (*I*), which is then used to divide the feed-gap steady-state voltage (*V*). The net average radiated power is computed as

$$P_{XFDTD} = \frac{1}{2} \operatorname{Re}\left\{ VI^* \right\}$$

Both the input impedance and the net average radiated power are provided by XFDTDTM at the end of each individual simulation.

We normalize the SAR to such a power, thereby obtaining SAR per radiated Watt (*normalized SAR*) values for the whole body and the 1-g SAR. Finally, we multiply such normalized SAR values times the max power rating of the device under test. In this way, we obtain the exposure metrics for 100% talk-time, i.e., without applying source-based time averaging.

c) For mobile radios, 50% source-based time averaging is applied by multiplying the SAR values determined at point 12(b) times a 0.5 factor.

## REFERENCES

[1] K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media," *IEEE Transactions on Antennas and Propagation*, vol. 14, no. 3, 302-307, March 1966.

[2] Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," <u>Scientia Sinica</u>, vol. 28, no. 10, pp 1063-1076, Oct. 1984.

[3] Validation exercise: Mie sphere. Remcom Inc. (enclosed PDF)



[4] NEC-Win PRO TM v 1.1, Nittany Scientific, Inc., Riverton, UT.

[5] C. M. Collins and M. B. Smith, "Calculations of B1 distribution, SNR, and SAR for a surface coil against an anatomically-accurate human body model," *Magn. Reson. Med.*, 45:692-699, 2001. (enclosed TIF)



[6] Martin Siegbahn and Christer Törnevik, "Measurements and FDTD Computations of the IEEE SCC 34 Spherical Bowl and Dipole Antenna," Report to the IEEE Standards Coordinating Committee 34, Sub-Committee 2, 1998. (enclosed PDF)



[7] C. M. Furse and O. P. Gandhi, "Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method with a novel time-to-frequency-domain conversion," Antennas and Propagation Society International Symposium, 1996. (enclosed PDF)



[8] *The Finite Difference Time Domain Method for Electromagnetics*, Chapter 14.2, by K. S. Kunz and R. J. Luebbers, CRC Press, Boca Raton, Florida, 1993.

[9] Validation of Mobile Antenna Modeling by Comparison with Near-field Measurements," Report to the IEEE Standards Coordinating Committee 34, Sub-Committee 2, 2006. (enclosed PDF)



[10] Antenna Theory: analysis and design, Chapter 4, by C. A. Balanis, 2nd ed. John Wiley & Sons, Inc.

[11] S. Gabriel, R. W. Lau, and C. Gabriel. 1996. The dielectric properties of biological tissues: III. Parametric models for the frequency spectrum of tissues. Phys. Med. Biol. 41:2271–2293.