

COMPUTATIONAL EME COMPLIANCE ASSESSMENT OF THE DIGITAL VEHICULAR REPEATER (DVR 800), MOBEXCOM DVRS 800 (DQPMDVR8000P) AND COMPANION APX SERIES MODEL M37TSS9PW1AN MOBILE RADIO.

December 06, 2017

Saw Sun Hock, Giorgi Bit-Babik, Ph.D., and Antonio Faraone, Ph.D. Motorola Solutions EME Research Lab, Plantation, Florida

Introduction

This report summarizes the computational [numerical modeling] analysis performed to document compliance of the DVR 800, model # MOBEXCOM DVRS 800 (DQPMDVR8000P) with FCC ID# LO6-DVRS800 and IC# 2098B-DVRS800 interfaced with, and transmitting simultaneously with companion mobile radio, model # M37TSS9PW1AN and vehicle-mounted antennas with the US Federal Communications Commission (FCC) and the Innovation, Science and Economic Development (ISED) Canada guidelines for human exposure to radio frequency (RF) emissions. The devices operate in the following frequency bands:

Regions	Device	Bands	Frequency Band (MHz)
	DVR 800	800 MHz	806-824; 851-869
EGG III		LMR VHF	150.8 – 173.4
FCC US	Campanian	LMR UHF1	406.1 – 470
	Companion Mobile	LMR UHF2	450 -512
	TVIO OTIC	LMR 7/800	769-775; 799-824; 851-869
	DVR 800	800 MHz	806-824; 851-869
		LMR VHF	138 - 174
ISED Canada	Componion	LMR UHF1	406.1 – 430; 450 -470
	Companion Mobile	LMR UHF2	450 -470
	1.100ne	LMR 7/800	769-775; 799-824; 851-869

This computational analysis supplements the measurements conducted to evaluate the compliance of the exposure from this DVR and companion mobile radio with respect to applicable *maximum permissible exposure* (MPE) limits. All test conditions (25 in total) that did not conform with applicable MPE limits were analyzed to determine whether those conditions complied with the *specific absorption rate* (SAR) limits for general public exposure (1.6 W/kg averaged over 1 gram of tissue and 0.08 W/kg averaged over the whole body) set forth in FCC guidelines, which are based on the IEEE C95.1-1999 standard [1]. The same test conditions were also analyzed to determine compliance with the SAR limits set forth in the ICNIRP [3] guidelines and IEEE Std. C95.1-2005 standard [4] (2.0 W/kg averaged over 10 gram of tissue and 0.08 W/kg averaged over the whole body). In total 50 independent simulations had been performed addressing exposure of back seat passenger to the DVR 800 repeater with trunkmounted antennas and Companion mobile radio (VHF, UHF R1, UHF R2 and 7/800) with roofmount antennas.

For all simulations a commercial code based on Finite-Difference-Time-Domain (FDTD) methodology was employed to carry out the computational analysis. It is well established and recognized within the scientific community that SAR is the primary dosimetric quantity used to evaluate the human body's absorption of RF energy and that MPE limits are in fact derived from SAR. Accordingly, the SAR computations provide a scientifically valid and more relevant estimate of human exposure to RF energy.

Method

The simulation code employed is XFDTDTM v7.6.0, by Remcom Inc., State College, PA. This computational suite provides means to simulate the heterogeneous full human body model defined according to the IEC/IEEE 62704-2-2017 standard and derived from the so-called Visible Human [2], discretized in 3 mm voxels. The IEC/IEEE 62704-2-2017 standard dielectric properties of 39 body tissues are automatically assigned by XFDTDTM at any specific frequency. The "seated" man model was obtained from the standing model by modifying the articulation angles at the hips and the knees. Details of the computational method and model are provided in the Appendix A to this report. The evaluation of the computational uncertainties and results of the benchmark validations are provided in the Appendix B attached to this report. The XFDTD

code validation performed according to IEEE/IEC 62704-1 draft standard by Remcom Inc., is provided in conjunction with this report.

The car model has been imported into XFDTDTM from the CAD file of a sedan car having dimensions 4.98 m (L) x 1.85 m (W) x 1.18 m (H), and discretized with the minimum resolution of 3 mm and the maximum resolution of 8 mm. The Figure 1 below show both the CAD model and the photo of the actual car This CAD model has been incorporated into the IEC/IEEE 62704-2-2017 standard.

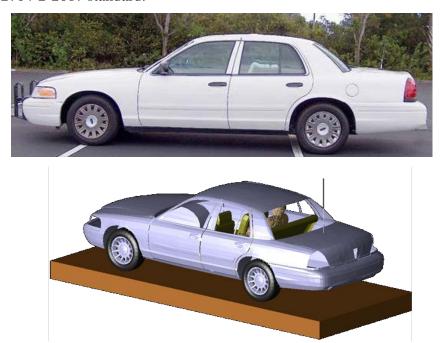
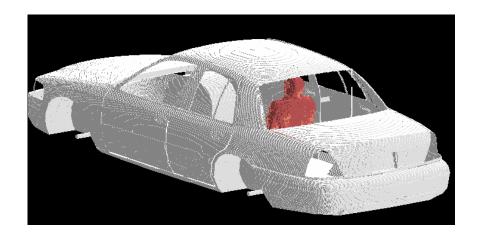



Figure 1: The photo picture of the car used in field measurements and the corresponding CAD model used in simulations

For passenger exposure, the antenna position is on the trunk and the distance of trunk mounted antenna from the passenger head when the passenger is located in the center of the back seat was set at 85 cm, to replicate the experimental conditions used in MPE measurements. Figure 2 shows some of the XFDTDTM computational models used for passenger exposure to trunk mounted antennas

According to the IEC/IEEE 62704-2-2017 for exposure simulations from vehicle mount antennas the lossy dielectric slab with 30 cm thickness, dielectric constant of 8 and conductivity

of 0.01 S/m has been introduced in the computational model to properly account for the effect of the ground (pavement) on exposure.

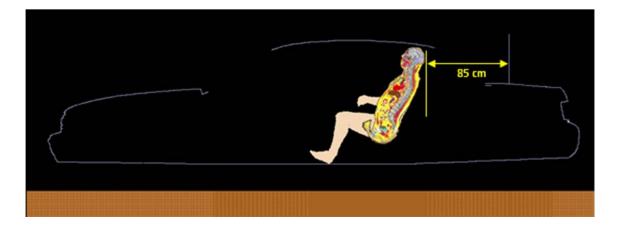


Figure 2: Passenger model exposed to a trunk-mount antenna: XFDTD geometry.

The antenna is mounted at 85 cm from the passenger located in the center of the back seat.

The computational code employs a time-harmonic excitation to produce a steady state electromagnetic field in the exposed body. Subsequently, the corresponding SAR distribution is automatically processed in order to determine the whole-body, 1-g, and 10-g average SAR. The maximum average output power from DVR 800 repeater is 10W (806-825MHz; 851-870MHz) and companion mobile radio antenna is 60W (136-174MHz). Since the ohmic losses in the car materials, as well as the mismatch losses at the antenna feed-point are neglected, and source-based time averaging (100% talk time) for DVR 800 repeater and (50% talk time) for companion mobile radio were employed, all computational results are normalized full to DVR 800 repeater 10W (806-825MHz; 851-870MHz) and companion mobile radio is half of it, i.e., 30W (136-174MHz) average net output power; less the corresponding minimum insertion loss in excess of 0.5 dB of the feed cables supplied with the antennas. This power normalization is in accordance with the IEC/IEEE 62704-2-2017.

Results of SAR computations for car passengers

The test conditions requiring SAR computations are summarized in Table 1 (DVR 800,_100% talk time) and Table 2 (Companion mobile, 50% talk time), together with the antenna data, the SAR results, and power density (P.D.) as obtained from the measurements in the corresponding test conditions. The conditions are for antennas mounted on the trunk (DVR 800) and side roof, offset 20 cm from center of the roof (Companion mobile). The antenna length in Table 1 & 2 includes the 1.8 cm magnetic mount base used in measurements to position the antenna on the vehicle. The same length was used in simulation model.

The passenger is located in the center or on the side of the rear seat corresponding to the respective configurations defined in the IEC/IEEE 62704-2-2017 standard.

All the transmit frequency, antenna length, and passenger location combinations reported in Table 1 & 2 have been simulated individually. These tables also include the interpolated adjustment factor and corresponding SAR scaled values following requirement of the IEC/IEEE 62704-2-2017 standard.

Table 1a (configurations exceed FCC MPE limits):
Results of the Computations and Adjusted SAR for passenger exposure of
DVR 800 repeater (100% talk-time)

Mount	Antenna Kit#	Antenna Length	Freq (MHz)	P.D. (mW/cm^2)	Exposure Location		Evnosure Location (W/k		putations (W/kg)	utations SAR (W/kg)		Interpolated Adjustment Factors			Adjusted SAR Results (W/kg)			
Location		(cm)		(III VV/CIII 2)		1 g	10 g	WB	1 g	10 g	WB	1 g	10 g	WB				
			806.0000	0.06	Back Center	0.15	0.11	0.004	1.01	1.00	2.19	0.15	0.11	0.008				
					Back Side	0.08	0.05	0.004	1.39	1.19	1.89	0.12	0.06	0.007				
			815.0000	0.06	Back Center	0.09	0.06	0.003	1.02	1.01	2.18	0.09	0.06	0.007				
Trunk	HAF4016A, 1/4 Wave (764-	10.8			Back Side	0.10	0.05	0.003	1.37	1.19	1.89	0.14	0.06	0.005				
	870MHz)	10.0	824.0000	0.05	Back Center	0.11	0.07	0.003	1.04	1.01	2.16	0.11	0.07	0.007				
					Back Side	0.09	0.04	0.003	1.35	1.18	1.88	0.12	0.05	0.006				
			851.0000	0.05	Back Center	0.11	0.08	0.003	1.08	1.03	2.12	0.12	0.08	0.007				
					Back Side	0.10	0.06	0.004	1.30	1.15	1.85	0.13	0.07	0.007				

Table 1b (configurations exceed ISED MPE limits):

Results of the Computations and Adjusted SAR for passenger exposure of DVR 800 repeater (100% talk-time)

Mount	Antenna Kit#	Antenna Length	Freq (MHz)	P.D. (mW/cm^2)	Exposure Location		putations (W/kg)			terpolate tment Fa		Adjusted SAR Results (W/kg)			
Location		(cm)		(mw/cm^2)		1 g	10 g	WB	1 g	10 g	WB	1 g	10 g	WB	
			# 806.0000	0.06	Back Center	0.15	0.11	0.004	1.01	1.00	2.19	0.15	0.11	0.008	
				0.00	Back Side	0.08	0.05	0.004	1.39	1.19	1.89	0.12	0.06	0.007	
			# 815.0000	0.06	Back Center	0.09	0.06	0.003	1.02	1.01	2.18	0.09	0.06	0.007	
				0.00	Back Side	0.10	0.05	0.003	1.37	1.19	1.89	0.14	0.06	0.005	
			# 824.0000	0.05	Back Center	0.11	0.07	0.003	1.04	1.01	2.16	0.11	0.07	0.007	
Trunk	HAF4016A, 1/4 Wave (764-	10.9			Back Side	0.09	0.04	0.003	1.35	1.18	1.88	0.12	0.05	0.006	
	870MHz)	10.8		0.05	Back Center	0.11	0.08	0.003	1.08	1.03	2.12	0.12	0.08	0.007	
					Back Side	0.10	0.06	0.004	1.30	1.15	1.85	0.13	0.07	0.007	
			860.0000	0.04	Back Center	0.11	0.06	0.004	1.09	1.03	2.11	0.12	0.07	0.008	
			223.0000		Back Side	0.10	0.07	0.004	1.28	1.14	1.84	0.13	0.08	0.007	
			869.0000	0.02	Back Center	0.14	0.07	0.003	1.10	1.03	2.10	0.15	0.07	0.007	
					Back Side Fig 3 & 4	0.14	0.07	0.004	1.26	1.13	1.83	0.17	0.08	0.007	

Note: # Same SAR simulation configuration as FCC US.

Table 2a (configurations exceed FCC MPE limits):

Results of the Computations and Adjusted SAR for passenger exposure of Companion mobile radio (50% talk-time)

Mount	Antenna Kit#	Antenna Length	Freq (MHz)	P.D. (mW/cm^2)	Evnosure Location		putations (W/kg)	SAR		terpolate tment Fa		Adjusted	SAR Resu	lts (W/kg)
Location		(cm)		(III W/CIII 2)		1 g	10 g	WB	1 g	10 g	WB	1 g	10 g	WB
Roof	of HAD4007A, 1/4 Wave 50.8	50.0	50.8 150.8000	0.18	Back Center	0.12	0.11	0.003	1.21	1.01	2.01	0.14	0.11	0.006
	(144-150.8MHz)				Back Side	0.27	0.23	0.004	1.00	1.00	1.50	0.27	0.23	0.006
Roof	HAD4008A,	/4 Wave 47.3	162.0000	0.18	Back Center	0.03	0.02	0.001	1.31	1.11	2.11	0.04	0.02	0.002
	(150.8-162MHz)		162.0000	0.18	Back Side	0.11	0.09	0.002	1.03	1.05	1.55	0.11	0.09	0.003

FCC ID: LO6-DVRS800 / IC: 2098B-DVRS800

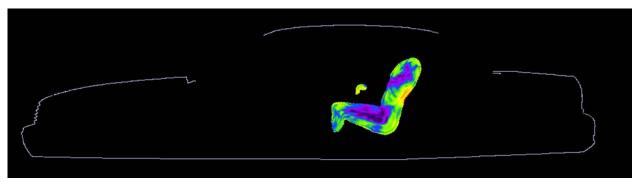
Table 2b (configurations exceed ISED MPE limits):

Results of the Computations and Adjusted SAR for passenger exposure of Companion mobile radio (50% talk-time)

Mount	Antenna Kit#	Antenna Length	Freq (MHz)	P.D.	Exposure Location	Com	putations (W/kg)	SAR		terpolate tment Fa		Adjusted	SAR Resu	lts (W/kg)		
Location		(cm)		(mW/cm^2)	•	1 g	10 g	WB	1 g	10 g	WB	1 g	10 g	WB		
			144.0000	0.11	Back Center	0.16	0.14	0.006	1.18	1.00	1.91	0.19	0.14	0.011		
			144.0000		Back Side	0.27	0.23	0.006	1.00	1.00	1.49	0.27	0.23	0.008		
			150.8000	0.12	Back Center	0.12	0.11	0.003	1.21	1.01	2.01	0.15	0.11	0.006		
Roof	HAD4016A, 1/4 Wave	53.1	130.8000	0.12	Back Side	0.27	0.23	0.004	1.00	1.00	1.50	0.27	0.23	0.006		
	(136-162MHz)	33.1	156.4000	0.13	Back Center	0.12	0.10	0.003	1.26	1.06	2.06	0.15	0.11	0.005		
			130.4000	0.13	Back Side	0.17	0.14	0.002	1.02	1.03	1.53	0.17	0.14	0.004		
			162.0000	0.10	Back Center	0.03	0.02	0.001	1.31	1.11	2.11	0.04	0.02	0.003		
			10210000	0.10	Back Side	0.11	0.09	0.002	1.03	1.05	1.55	0.11	0.10	0.003		
			145,0000	0.00	Back Center	0.13	0.11	0.004	1.19	1.00	1.94	0.15	0.11	0.009		
		48.0	146.0000	0.09	Back Side	0.27	0.23	0.005	1.00	1.00	1.49	0.27	0.23	0.007		
Roof	HAD4017A,		150,0000	0.10	Back Center	0.12	0.11	0.003	1.21	1.01	2.01	0.15	0.11	0.006		
11001	1/4 Wave (146-174MHz)		150.8000	0.10	Back Side	0.27	0.23	0.004	1.00	1.00	1.50	0.27	0.23	0.006		
			158.0125	0.12	Back Center	0.08	0.07	0.002	1.27	1.07	2.07	0.11	0.08	0.005		
			136.0123		Back Side	0.14	0.12	0.002	1.02	1.03	1.53	0.15	0.12	0.003		
		53.5	144,0000	0.14	Back Center	0.16	0.13	0.006	1.18	1.00	1.91	0.19	0.13	0.011		
Roof	HAD4021A,		144.0000	0.14	Back Side	0.27	0.23	0.006	1.00	1.00	1.49	0.27	0.23	0.008		
	1/4 Wave (136-174MHz)		53.5	53.5	53.5	150.0125	0.14	Back Center	0.08	0.07	0.002	1.27	1.07	2.07	0.11	0.08
			158.0125	0.14	Back Side	0.14	0.12	0.002	1.02	1.03	1.53	0.14	0.12	0.003		
					Back Center Fig 5 & 6	0.26	0.19	0.006	1.17	1.00	1.86	0.30	0.19	0.011		
Roof	HAD4006A,	52.0	140.0000	0.19	Back Side	0.27	0.18	0.007	1.00	1.00	1.49	0.27	0.18	0.010		
11001	1/4 Wave (136-144MHz)	53.8	144,0000	0.15	Back Center	0.16	0.13	0.006	1.18	1.00	1.91	0.19	0.13	0.011		
			144.0000	0.15	Back Side	0.27	0.23	0.006	1.00	1.00	1.49	0.27	0.23	0.009		
				_	Back Center	0.16	0.13	0.006	1.18	1.00	1.91	0.19	0.13	0.011		
Roof	HAD4007A,		144.0000	0.15	Back Side	0.27	0.23	0.006	1.00	1.00	1.49	0.27	0.23	0.009		
Kooi	1/4 Wave (144-150.8MHz)	50.8	## # 0 0000	0.10	Back Center	0.12	0.11	0.003	1.21	1.01	2.01	0.14	0.11	0.006		
			#150.8000	0.18	Back Side	0.27	0.23	0.004	1.00	1.00	1.50	0.27	0.23	0.006		

Note: # Same SAR simulation configuration as FCC US.

FCC ID: LO6-DVRS800 / IC: 2098B-DVRS800


Table 2b Continued (configurations exceed ISED MPE limits):

Results of the Computations and Adjusted SAR for passenger exposure of Companion mobile radio (50% talk-time)

Mount Location	Antenna Kit#	Antenna Length (cm)	Freq (MHz)	P.D. (mW/cm^2)	Exposure Location	Computations SAR (W/kg)		Interpolated Adjustment Factors			Adjusted SAR Results (W/kg)			
					Back Center	0.12	0.11	0.003	1.21	1.01	2.01	0.14	0.11	0.006
			150.8000	0.17	Back Side	0.27	0.23	0.004	1.00	1.00	1.50	0.27	0.23	0.006
Roof	HAD4008A,	47.2	156,4000	0.17	Back Center	0.12	0.10	0.003	1.26	1.06	2.06	0.15	0.11	0.006
	1/4 Wave (150.8-162MHz)	47.3	130.4000	0.17	Back Side	0.17	0.14	0.002	1.02	1.03	1.53	0.17	0.14	0.003
			#162.0000	0.18	Back Center	0.03	0.02	0.001	1.31	1.11	2.11	0.04	0.02	0.002
					Back Side	0.11	0.09	0.002	1.03	1.05	1.55	0.11	0.09	0.003
			162,0000	0.16	Back Center	0.03	0.02	0.001	1.31	1.11	2.11	0.04	0.02	0.002
			162.0000		Back Side	0.11	0.09	0.002	1.03	1.05	1.55	0.11	0.09	0.003
Roof	HAD4009A,	44.0	165 0125	0.14	Back Center	0.02	0.01	0.001	1.34	1.14	2.14	0.03	0.01	0.002
	1/4 Wave (162-174MHz)	44.8	165.0125		Back Side	0.09	0.06	0.002	1.04	1.07	1.56	0.09	0.06	0.003
			173.0125	0.09	Back Center	0.15	0.09	0.003	1.41	1.21	2.21	0.21	0.11	0.006
				****	Back Side	0.25	0.14	0.007	1.06	1.10	1.59	0.26	0.15	0.010

Note: # Same SAR simulation configuration as FCC US.

The SAR distribution in the exposure condition that gave highest adjusted 1-g SAR for DVR 800 is reported in Figure 3 (869.0000 MHz, passenger on the side of the back seat, HAF4016A antenna).

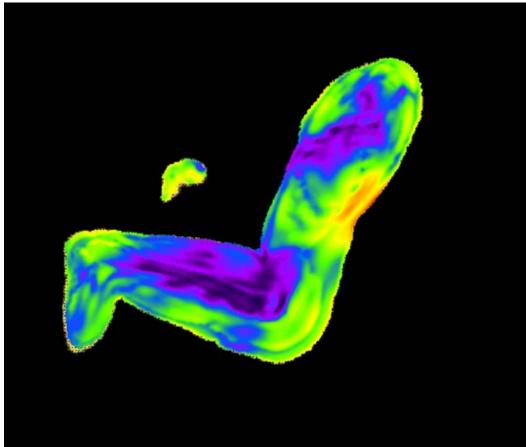
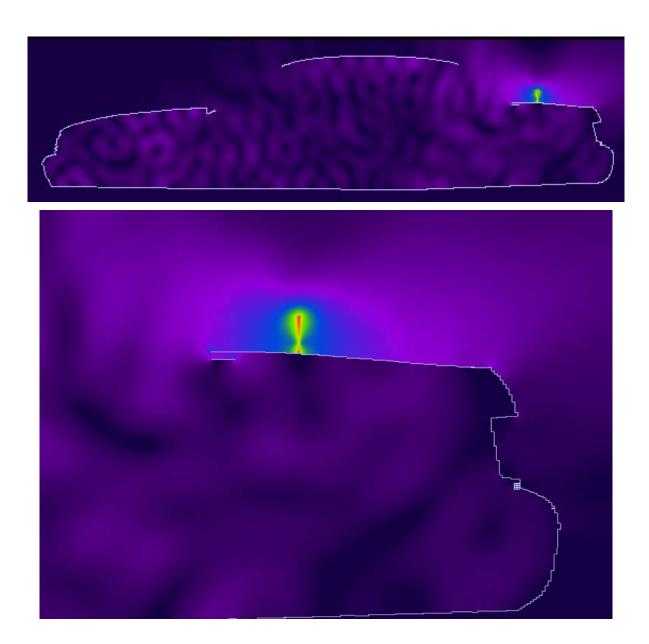



Figure 3. SAR distribution at 869.0000 MHz in the passenger model located on the side of the back seat, produced by the trunk-mount HAF4016A antenna. The contour plot is relative to the plane where the peak 1-g average SAR for this exposure condition occurs.

The two pictures below in Figure 4 show the E and H field distributions in the plane of the antenna corresponding to the condition in Figure 3.

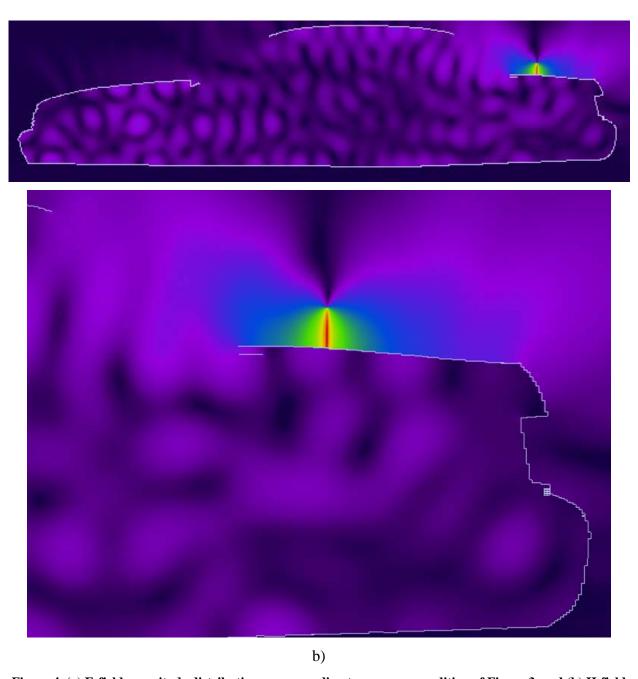


Figure 4. (a) E-field magnitude distribution corresponding to exposure condition of Figure 3, and (b) H-field magnitude distribution corresponding to exposure condition of Figure 3.

FCC ID: LO6-DVRS800 / IC: 2098B-DVRS800

The SAR distribution in the exposure condition that gave highest adjusted 1-g SAR for Companion mobile radio VHF Band is reported in Figure 5 (140.0000 MHz, passenger on the center of the back seat, HAD4006A antenna).

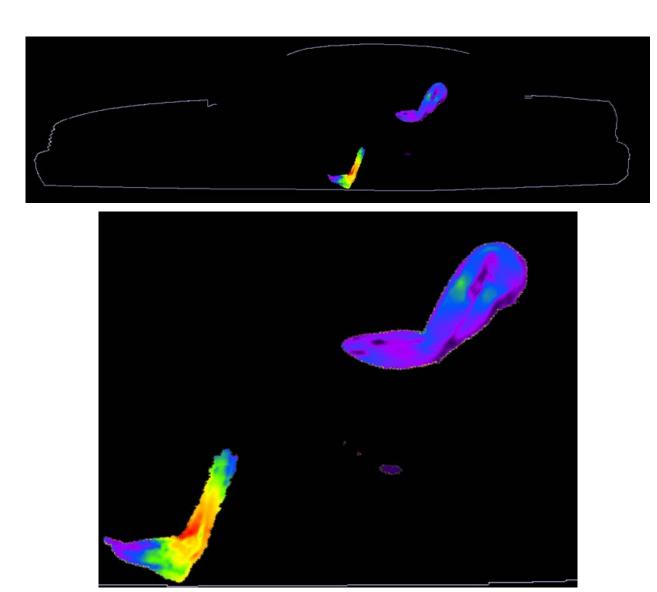
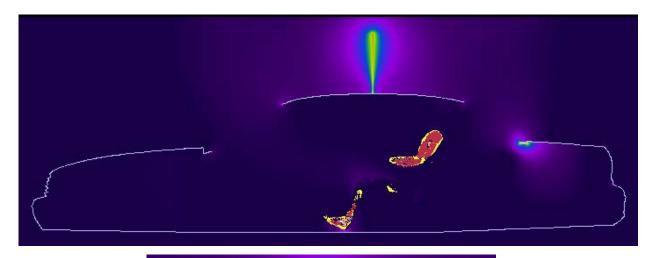
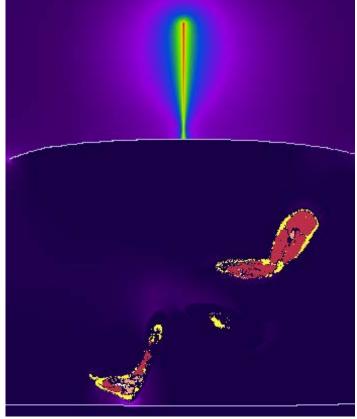




Figure 5. SAR distribution at 140.0000 MHz in the passenger model located on the center of the back seat, produced by the roof-mount HAD4006A antenna. The contour plot is relative to the plane where the peak 1-g average SAR for this exposure condition occurs.

The pictures below in Figure 6 show the E and H field distributions in the plane of the antenna corresponding to the condition in Figure 5.

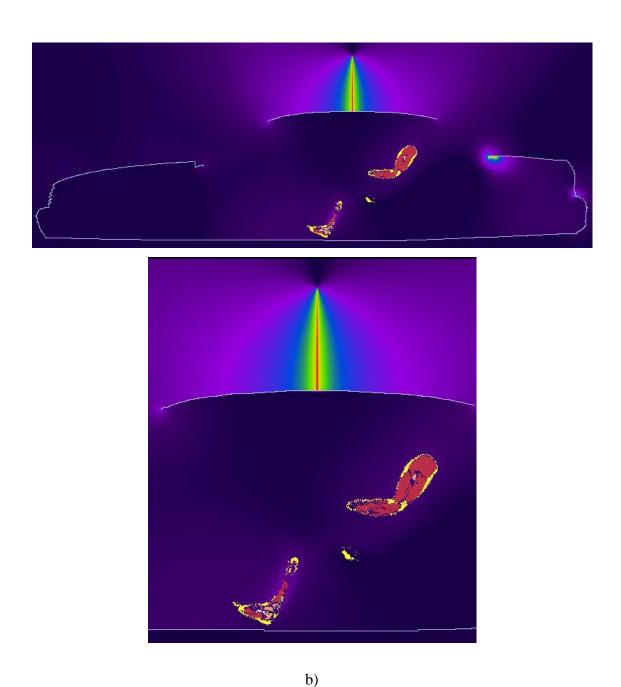


Figure 6. (a) E-field magnitude distribution corresponding to exposure condition of Figure 5, and (b) H-field magnitude distribution corresponding to exposure condition of Figure 5.

The highest adjusted 1-g SAR was produced in the passenger exposure condition with HAD4006A antenna at 140.0000 MHz (passenger on the center of the back seat).

Results of SAR computations for combined exposure

From all simulated results the worst case peak SAR values were identified for both DVR 800 and Companion mobile radio VHF band exposure and then combined to produce the composite peak SAR value in corresponding locations of the human body model. Table 3 and Table 4 present the worst case composite peak SAR value.

Table 3: Worst case peak 1-g average SAR for passenger exposure conditions and composite 1-g average SAR from simultaneous exposure.

	Passenger location	DVR UHF [W/kg]	Companion mobile radio	Total [W/kg]
FCC US	Back Center	0.15	0.14	0.29
FCC US	Back Side	0.14	0.27	0.41
ISED Canada	Back Center	0.15	0.30	0.45
ISED Canada	Back Side	0.17	0.27	0.44

Table 4: Worst case peak whole body average SAR for passenger exposure conditions and composite whole body average SAR from simultaneous exposure.

	Passenger location	DVR UHF [W/kg]	Companion mobile radio	Total [W/kg]
FCC US	Back Center 0.008		0.006	0.014
	Back Side	0.007	0.006	0.013
ISED Canada	Back Center	0.008	0.011	0.019
ISED Canada	Back Side	0.007	0.010	0.017

From Table 3 and Table 4 the maximum combined peak 1-g SAR is 0.45 W/kg, less than the 1.6 W/kg limit, while the maximum combined whole-body average SAR is 0.019 W/kg, less than the 0.08 W/kg limit.

The overall maximum combined peak 10-g SAR is 0.31 W/kg, less than the 2.0 W/kg limit.

Conclusions

Under the test conditions described for evaluating passenger exposure to the RF electromagnetic fields emitted by vehicle-mounted antennas used in conjunction with these mobile radio products, the present analysis shows that the computed SAR values are compliant with the FCC US and ISED Canada exposure limits for the general public as well as with the corresponding ICNIRP and IEEE Std. C95.1-2005 SAR limits.

References

- [1] IEEE Standard C95.1-1999. *IEEE Standard for Safety Levels with Respect to Human Exposure to RF Electromagnetic Fields*, 3 kHz to 300 GHz.
- [2] http://www.nlm.nih.gov/research/visible/visible_human.html
- [3] ICNIRP (International Commission on Non-Ionising Radiation Protection). 1998. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
- [4] IEEE. 2005. *IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,* IEEE Std C95.1-2005
- [5] Simon, W., Bit-Babik, G., "Effect of the variation in population on the whole-body average SAR of persons exposed to vehicle mounted antennas W. Simon", ICEAA September 2-7, 2012, Cape 1380 Town.