Company: Actiontec Electronics Inc

Test of: WCB6240Q To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) + Industry Canada RSS-247 Issue 1

Report No.: ATEC09-U5b Radiated Rev C

RADIATED TEST REPORT

Test of: Actiontec Electronics Inc WCB6240Q to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) + Industry Canada RSS-247 Issue 1

Test Report Serial No.: ATEC09-E5b Radiated Rev C

This report supersedes: ATEC09-E5b Radiated Rev B

Note: this report is one of a set of three reports that together address the requirements for certification purposes

Report Number	Test Report Type
ATEC09-U5a, b	2.4 GHz Conducted & Radiated Test Reports
ATEC09-U8a, b	5 GHz (non-DFS) Conducted, Radiated Test Reports
ATEC09-U11a, b, c	5 GHz (DFS) Conducted, Radiated, DFS Test Reports
ATEC09-U2	FCC Part 15B / ICES-003 Test Report

Applicant:	Actiontec Electronics Inc 760 N Mary Avenue Sunnyvale California 94085
Product Function:	USA Gigabit Wireless Router

Issue Date: 24th November 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015 Page: 3 of 56

Table of Contents

.4
.4
.5
.6
.7
.8
9
.9
0
1
1
2
5
5
5
6
6
6
7
8
8
20
20
20
20
26
89
10
10
10
4

Title: Issue Date: Page:

Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B 24th November 2015 4 of 56

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015 Page: 5 of 56

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

Title: To: Serial #: Issue Date: Page:

Actiontec Electronics Inc WCB6240Q
FCC Part 15.247 (DTS) + IC RSS-247 Issue 1
ATEC09-U5b Radiated Rev B
24th November 2015
6 of 56

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:7 of 56

2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	12 th October 2015				
Draft #2	19 th October 2015				
Rev A	27 th October 2015	Initial Release			
Draft #3	12 th November 2015	The initial program (Rev A) for 802.11n HT-40 was not tested for band-edge as the device only operated on the mid channel (2437 MHz). As a result of the manufacturer introducing additional frequencies for HT-40 operational mode radiated band-edge measurements were required			
Rev B	16 th November 2015	2 nd document release			
Rev C	24 th November 2015	Corrected radiated emission margin table			

In the above table the latest report revision will replace all earlier versions.

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015 **Page:** 8 of 56

3. TEST RESULT CERTIFICATE

Manufacturer: Actiontec Electronics Inc 760 N Mary Avenue Sunnyvale California 94085 USA

Model: WCB6240Q

Type Of Equipment: 802.11a/b/g/n/ac Wireless Router

S/N's: GWXA5360700016

Test Date(s): 29th – 30th September 2015

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304 **Fax:** +1 925 462 0306

TEST RESULTS

EQUIPMENT COMPLIES

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) Industry Canada RSS-247 Issue 1

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

Page: 9 of 56

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
п	KDB 558074 D01 v03r03	9th June 2015	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
Ш	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2014	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
х	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015 Page: 10 of 56

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:11 of 56

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Actiontec Electronics Inc WCB6240Q to FCC CFR 47 Part 15 Subpart C 15.247 (DTS) + Industry Canada RSS-247 Issue 1
Applicant:	Actiontec Electronics Inc 760 N Mary Avenue
Manufacturer:	Sunnyvale California 94085 USA
Laboratory performing the tests:	
Test report reference number:	
	15 th September 2015
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS) Industry Canada RSS-247 Issue 1
Dates of test (from - to):	22 nd – 30 th September 2015
No of Units Tested:	
	802.11a/b/g/n/ac Wireless Router
	802.11ac Wireless 4-Port Ethernet Bridge with Optional MoCA
Model(s):	Tested Device: WCB6240Q + WEB6040Q
Location for use:	
Declared Frequency Range(s):	
,	Wireless Access Point and Ethernet Router
Secondary function of equipment:	Optional Cable MoCA Bridge
Type of Modulation:	Per 802.11 –CCK, BPSK, QPSK, DSSS, OFDM
EUT Modes of Operation:	802.11b/g/HT-20/HT-40;
Declared Nominal Output Power (Ave):	+25 dBm
Transmit/Receive Operation:	· · · · · · · · · · · · · · · · · · ·
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 12Vdc, 2A
Operating Temperature Range:	Declared Range 0°C to 40°C
ITU Emission Designator:	802.11b 10M1G1D 802.11g 16M6D1D 802.11n - HT-20 17M5D1D 802.11n - HT-40 36M2D1D
Equipment Dimensions:	9 x 1.5 x 5.75 inches
Weight:	1.1 lbs
Hardware Rev:	AM3
	1.1.01.19yfa

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:12 of 56

5.2. Scope Of Test Program

Actiontec Electronics Inc WCB6240Q

The scope of the test program was to test the Actiontec Electronics Inc WCB6240Q configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C - Intentional Radiators

Industry Canada RSS-247 Issue 1

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices

Manufacturers Declaration of Similarity

FCC ID: LNQWXB6X40Q IC ID: 2496A-WXB6X40Q Actiontec Models: WxB6x40Q

Product Similarities;

Actiontec Models: WCB6240Q and WEB6040Q To whom it may concern: We, Actiontec Electronics, Inc., hereby to declare the mentioned two models have electrically identical Wireless circuitry with the same electromagnetic emissions and electromagnetic compatibility characteristics. Descriptions of the differences between these two models are as follows;

WCB6240Q – 802.11ac Wireless 4-Port Ethernet Bridge with Bonded MoCA WEB6040Q – 802.11ac Wireless 4-Port Ethernet Bridge without MoCA.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:13 of 56

Actiontec Electronics Inc WCB6240Q

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:14 of 56

Actiontec Electronics Inc WCB6240Q

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless Router	Actiontec	WCB6240Q	GWXA5360700016
EUT	Power Adapter 100 - 240Vac 50/60Hz 0.7A 12 Vdc 2.0 A	Actiontec	WA-24Q12FU	DJ87714D14043198 400
Support	Laptop PC	IBM	Thinkpad	None

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Galtronics	Custom PCB SMT	Dipole	3.1	-	360	Y	2400 - 2483.5
integral	Galtronics	Custom Internal Cabled	Dipole	3.1	-	360	Y	2400 - 2483.5
integral	Galtronics	Custom PCB SMT	Dipole	4.5	1.8	360	Y	5725 - 5850
integral	Galtronics	Custom Internal Cabled	Dipole	4.5	1.8	360	Y	5725 - 5850
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization								

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100m GbE LAN	4	Ν	RJ45	Packet Data

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz) Low Mid High				
(802.11a/b/g/n/ac)	MBit/s					
	2400 - 2483.5 MHz					
802.11b	1	2,412.00	2,437.00	2,462.00		
802.11g	6	2,412.00		2,462.00		
802.11n HT-20	6.5	2,412.00		2,462.00		

*NOTE: No 802.11n HT-40 band-edge results are included in this report as the WCB6240Q transmits on a single channel frequency at 2437 MHz. Results for HT-40 mid-channel operation are included in the conducted test report, see ATEC09-U5a 'Equipment Modifications'.

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

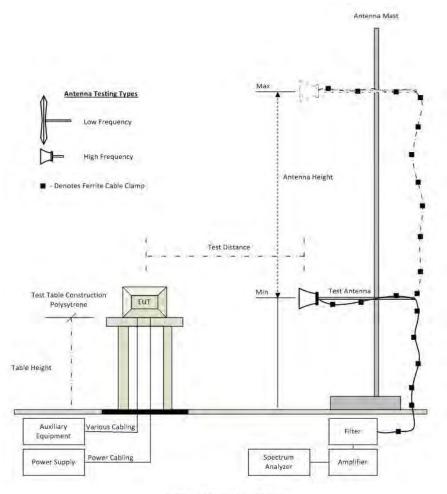
Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:17 of 56

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
15.247(d) Emissions	-	-
(2) Radiated Emissions	-	-
(i) 15.205 Restricted Band Emissions	Complies	View Data
(ii) 15.205 Restricted Band-Edge Emissions	Complies	View Data
(3) 15.209 Digital Emissions (0.03 - 1 GHz)	Complies*	-

*Results included in the ATEC09-U2 Part 15B Unintentional Radiators

Title:


Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015 Page: 18 of 56

7. TEST EQUIPMENT CONFIGURATION(S)

Radiated Emissions - 3m Chamber

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Spurious Emissions
- 2. Restricted Band-Edge Emissions
- 3. Radiated Digital Emissions (0.03 1 GHz)

Radiated Emission Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

> This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Title: Actiontec Electronics Inc WCB6240Q To: FCC Part 15.247 (DTS) + IC RSS-247 Issue 1 Serial #: ATEC09-U5b Radiated Rev B **Issue Date:** 24th November 2015

Page: 19 of 56

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	18 Aug 2016
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Nov 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0.73	447	Not Required
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	11 Aug 2016
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	11 Aug 2016
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	11 Aug 2016

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:20 of 56

8. TEST RESULTS

8.1. Emissions

8.1.1. Radiated Emissions

8.1.1.1. Restricted Band Emissions

Radiated Test C	conditions for Radiated Spurious	s and Band-Edge Emissions (Re	stricted Bands)					
Standard:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)	Ambient Temp. (°C):	20.0 - 24.5					
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.205, 15.209	5.205, 15.209 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References							
Radiated emissions for restricted in both horizontal and vertical pol 360° with a spectrum analyzer in used to remove the fundamental Measurements on any restricted employing peak and average dete	burious and Band-Edge Emissio bands above 1 GHz are measured arities. The emissions are record peak hold mode. Depending on the frequency. The highest emissions band frequency or frequencies abore ectors. All measurements were pro-	d in the anechoic chamber at a 3-r ed and maximized as a function of e frequency band spanned a notcl relative to the limit are listed for e ove 1 GHz are based on the use o erformed using a resolution bandw	f azimuth by rotation through h filter and waveguide filter was ach frequency spanned. f measurement instrumentation <i>i</i> idth of 1 MHz.					
Test configuration and setup for F document.	Radiated Spurious and Band-Edge	Measurement were per the Radia	ated Test Set-up specified in this					
Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m								
Field Strength Calculation The field strength is calculated by reading. All factors are included in FS = R + AF + CORR - FO	v adding the Antenna Factor and C n the reported data.	able Loss, and subtracting Amplifi	er Gain from the measured					
where: FS = Field Strength R = Measured Spectrum analyze: AF = Antenna Factor CORR = Correction Factor = CL - CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waves	– AG + NFL							
	1.5 dBmV; Antenna Factor of 8.5 d 1 dB. The Field Strength (FS) of		actor of 0 dB, an Amplifier Gain					
FS = 51.5 + 8.5 + 1.3 - 26.0 +1 =	36.3 dBmV/m							
Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))								
40 dBmV/m = 100 mV/m								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:21 of 56

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4				
6.31175-6.31225	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	Above 38.6				
13.36-13.41							

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:22 of 56

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:23 of 56

Equipment Configuration for Radiated Spurious - Restricted Band Emissions								
Antenna:	Variant:	802.11n HT20						
Antenna Gain (dBi):	3.10	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98					
Channel Frequency (MHz):	2412.00	Data Rate:	6.500 MBit/s					
Power Setting:	23	Tested By:	SB					

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3856.60	53.33	3.23	-10.81	45.75	Peak (Scan)	Vertical	100	110			
#2	3856.60	53.33	3.23	-10.81	45.75	Peak (NRB)	Vertical	100	110			Pass
#3	3856.60	57.17	3.23	-10.81	49.59	Max Avg	Vertical	188	35	54.0	-4.4	Pass
#4	3856.60	60.06	3.23	-10.81	52.48	Max Peak	Vertical	188	35	74.0	-21.5	Pass
#5	3856.60	56.09	3.23	-10.81	48.51	Max Avg	Horizontal	100	33	54.0	-5.5	Pass
#6	3856.60	59.24	3.23	-10.81	51.66	Max Peak	Horizontal	100	33	74.0	-22.3	Pass
#7	7713.66	53.04	4.41	-6.85	50.60	Max Avg	Horizontal	100	43	54.0	-3.4	Pass
#8	7713.66	56.66	4.41	-6.85	54.22	Max Peak	Horizontal	100	43	74.0	-19.8	Pass
#9	7713.66	28.12	4.41	-6.85	25.68	Max Avg	Vertical	196	277	54.0	-28.3	Pass
#10	7713.66	39.71	4.41	-6.85	37.27	Max Peak	Vertical	196	277	74.0	-36.7	Pass
Test No	tes: ethernet of	cable con	nected to	laptop (o	utside)					•		

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:24 of 56

Equipment Configuration for Radiated Spurious - Restricted Band Emissions								
Antenna:	Antenna: Galtronics Custom PCB SMT Variant: 802							
Antenna Gain (dBi):	3.10	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98					
Channel Frequency (MHz):	2437.00	Data Rate:	6.50 MBit/s					
Power Setting:	SB							

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2270.38	36.83	2.66	-12.14	27.35	Max Avg	Vertical	100	78	54.0	-26.7	Pass
#2	2270.38	48.37	2.66	-12.14	38.89	Max Peak	Vertical	100	78	74.0	-35.1	Pass
#3	3856.67	48.69	3.23	-10.81	41.11	Peak (Scan)	Vertical	198	185			
#4	3856.67	48.69	3.23	-10.81	41.11	Peak (NRB)	Vertical	198	185			Pass
#5	3856.67	56.82	3.23	-10.81	49.24	Max Avg	Vertical	188	33	54.0	-4.8	Pass
#6	3856.67	59.52	3.23	-10.81	51.94	Max Peak	Vertical	188	33	74.0	-22.1	Pass
#7	7334.83	36.24	4.28	-7.24	33.28	Max Avg	Vertical	144	168	54.0	-20.7	Pass
#8	7334.83	47.64	4.28	-7.24	44.68	Max Peak	Vertical	144	168	74.0	-29.3	Pass
# 9	7334.83	45.75	4.28	-7.24	42.79	Peak (Scan)	Vertical	100	215			
#10	7334.83	45.75	4.28	-7.24	42.79	Peak (NRB)	Vertical	100	215			Pass
#11	7713.54	60.17	4.41	-6.85	57.73	Max Avg	Vertical	196	74	54.0	-3.7	Pass
#12	7713.54	61.87	4.41	-6.85	59.43	Max Peak	Vertical	196	74	74.0	-14.6	Pass
#13	7713.54	54.80	4.41	-6.85	52.36	Max Avg	Horizontal	100	43	54.0	-1.6	Pass
#14	7713.54	57.69	4.41	-6.85	55.25	Max Peak	Horizontal	100	43	74.0	-18.8	Pass
#15	7713.54	44.94	4.41	-6.85	42.50	Peak (Scan)	Vertical	198	237			
#16	7713.54	44.94	4.41	-6.85	42.50	Peak (NRB)	Vertical	198	237			Pass
#17	9779.56	44.63	5.25	-6.18	43.70	Peak (Scan)	Vertical	200	185			
#18	9779.56	35.22	5.25	-6.18	34.29	Max Avg	Vertical	116	135	54.0	-19.7	Pass
#19	9779.56	47.71	5.25	-6.18	46.78	Max Peak	Vertical	116	135	74.0	-27.2	Pass

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:25 of 56

Equipment Configuration for Radiated Spurious - Restricted Band Emissions								
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11n HT20					
Antenna Gain (dBi):	3.10	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98					
Channel Frequency (MHz):	2462.00	Data Rate:	6.5.00 MBit/s					
Power Setting:	23	Tested By:	SB					

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail				
#1	2184.37	47.68	2.64	-12.56	37.76	Peak (Scan)	Vertical	159	166							
#2	2184.37	37.70	2.64	-12.56	27.78	Max Avg	Vertical	138	151	54.0	-26.2	Pass				
#3	2184.37	49.39	2.64	-12.56	39.47	Max Peak	Vertical	138	151	74.0	-34.5	Pass				
#4	7440.32	45.65	4.30	-7.13	42.82	Peak (Scan)	Vertical	151	349							
#5	7440.32	35.99	4.30	-7.13	33.16	Max Avg	Vertical	103	103	54.0	-20.8	Pass				
#6	7440.32	47.89	4.30	-7.13	45.06	Max Peak	Vertical	103	103	74.0	-28.9	Pass				
#7	7713.22	62.37	4.41	-6.85	59.93	Max Avg	Vertical	195	76	54.0	-5.9	Pass				
#8	7713.22	63.65	4.41	-6.85	61.21	Max Peak	Vertical	195	76	74.0	-12.8	Pass				
#9	7713.22	45.70	4.41	-6.85	43.26	Peak (Scan)	Vertical	200	349							
#10	7713.22	45.70	4.41	-6.85	43.26	Peak (NRB)	Vertical	200	349			Pass				
#11	9743.89	35.37	5.35	-6.24	34.48	Max Avg	Horizontal	154	178	54.0	-19.5	Pass				
#12	9743.89	47.36	5.35	-6.24	46.47	Max Peak	Horizontal	154	178	74.0	-27.5	Pass				
Test No	tes: ethernet of	cable con	nected to	laptop (o	utside)			est Notes: ethernet cable connected to laptop (outside)								

8.1.1.2. Restricted Band-Edge Emissions

Complied Summary of Radiated Band-Edge Results

NOTE:

Legacy modes 802.11b/g could only operate on a single chain at any given time therefore each chain was tested separately, 802.11n operates on both channels simultaneously

Galtronics Cus	stom PCB SMT	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
802.11b	2412.00	2390.00	63.69	51.41	25.00
802.11g	2412.00	2390.00	70.50	52.41	23.00
802.11n HT-20	2412.00	2390.00	61.70	49.08	25.00
802.11n HT-40	2422.00	2390.00	68.68	53.77	25.00
802.11b	2462.00	2483.50	61.44	50.98	25.00
802.11g	2462.00	2483.50	43.68	33.83	25.00
802.11n HT-20	2462.00	2483.50	73.48	53.67	25.00
802.11n HT-40	2452.00	2483.50	72.82	50.92	25.00

2nd Antenna Chain (Legacy b/g only)

Galtronics Cus	Galtronics Custom PCB SMT		Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	I ower octaing	
802.11b	2412.00	2390.00	63.98	51.53	25.00	
802.11g	2412.00	2390.00	66.95	48.57	25.00	
802.11b	2462.00	2483.50	56.41	45.11	25.00	
802.11g	2462.00	2483.50	56.32	45.12	25.00	

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:27 of 56

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions									
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11b						
Antenna Gain (dBi):	3.10	Modulation:	CCK						
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98						
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s						
Power Setting:	Tested By:	SB							

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2364.57	73.12	2.70	-12.13	63.69	Max Peak	Vertical	151	158	74.0	-10.3	Pass
#2	2375.39	60.76	2.70	-12.05	51.41	Max Avg	Vertical	151	158	54.0	-2.6	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipmen	t Configuration for Radiated - L	ower Restricted Band-Edge Emission	าร
		1	
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11g
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2412.00	Data Rate:	6.00 MBit/s
Power Setting:	23	Tested By:	SB

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2389.64	79.73	2.69	-11.92	70.50	Max Peak	Vertical	151	158	74.0	-3.5	Pass
#2	2390.00	61.64	2.69	-11.92	52.41	Max Avg	Vertical	151	158	54.0	-1.6	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:29 of 56

Equipmen	t Configuration for Radiated - L	ower Restricted Band-Edge Emission	าร
	r		
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11n HT-20
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2412.00	Data Rate:	6.50 MBit/s
Power Setting:	25	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2375.39	58.43	2.70	-12.05	49.08	Max Avg	Vertical	151	158	54.0	-4.9	Pass
#2	2375.93	71.04	2.70	-12.04	61.70	Max Peak	Vertical	151	158	74.0	-12.3	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipmen	t Configuration for Radiated - L	ower Restricted Band-Edge Emission	IS
	1		
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11n HT-40
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2422.00	Data Rate:	6.50 MBit/s
Power Setting:	25	Tested By:	JH

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2375.39	53.77	2.70	-12.05	44.42	Max Avg	Vertical	151	158	54.0	-9.58	Pass
#2	2375.93	71.04	2.70	-12.04	59.34	Max Peak	Vertical	151	158	74.0	-14.66	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipmen	t Configuration for Radiated - L	Jpper Restricted Band-Edge Emissior	าร
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11b
Antenna Gain (dBi):	3.10	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s
Power Setting:	25	Tested By:	SB

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	59.89	2.73	-11.64	50.98	Max Avg	Horizontal	141	195	54.0	-3.0	Pass
#2	2486.30	70.35	2.73	-11.64	61.44	Max Peak	Horizontal	141	195	74.0	-12.6	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipmen	t Configuration for Radiated - L	Jpper Restricted Band-Edge Emissior	IS
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11g
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2462.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	SB

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2500.03	52.56	2.73	-11.61	43.68	Max Peak	Horizontal	141	195	74.0	-30.3	Pass
#2	2500.16	42.71	2.73	-11.61	33.83	Max Avg	Horizontal	141	195	54.0	-20.2	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipmen	t Configuration for Radiated - L	Ipper Restricted Band-Edge Emissior	าร
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11n HT-20
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2462.00	Data Rate:	6.50 MBit/s
Power Setting:	25	Tested By:	SB

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	62.58	2.73	-11.64	53.67	Max Avg	Horizontal	141	195	54.0	-0.3	Pass
#2	2484.83	82.39	2.73	-11.64	73.48	Max Peak	Horizontal	141	195	74.0	-0.5	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions										
	I									
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11n HT-40							
Antenna Gain (dBi):	3.10	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98							
Channel Frequency (MHz):	2452.00	Data Rate:	6.50 MBit/s							
Power Setting:	25	Tested By:	JH							

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	50.92	2.73	-11.64	44.01	Max Avg	Horizontal	141	195	54.0	-11.99	Pass
#2	2484.83	72.82	2.73	-11.64	63.91	Max Peak	Horizontal	141	195	74.0	-10.09	Pass
Test Not	Test Notes: ethernet cable connected to laptop (outside)											

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:35 of 56

2nd Antenna Chain

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	Galtronics Custom PCB SMT	Variant:	802.11b
Antenna Gain (dBi):	3.10	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s
Power Setting:	25	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2382.42	73.28	2.69	-11.99	63.98	Max Peak	Vertical	141	157	74.0	-10.0	Pass
#2	2384.59	60.81	2.68	-11.96	51.53	Max Avg	Vertical	141	157	54.0	-2.5	Pass
Test Not	est Notes: ethernet cable connected to laptop (outside)											

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:36 of 56

2nd Antenna Chain

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	Galtronics Custom PCB SMT	Variant:	802.11g
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2412.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2390.00	57.80	2.69	-11.92	48.57	Max Avg	Vertical	141	157	54.0	-5.4	Pass
#2	2390.00	76.18	2.69	-11.92	66.95	Max Peak	Vertical	141	157	74.0	-7.1	Pass
Test Not	Fest Notes: ethernet cable connected to laptop (outside)											

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:37 of 56

2nd Antenna Chain

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	Galtronics Custom PCB SMT	Variant:	802.11b
Antenna Gain (dBi):	3.10	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s
Power Setting:	25	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
#1	2483.50	54.02	2.73	-11.64	45.11	Max Avg	Horizontal	141	195	54.0	-8.9	Pass		
#2	2488.03	65.31	2.73	-11.63	56.41	Max Peak	Horizontal	141	195	74.0	-17.6	Pass		
Test Not	Test Notes: ethernet cable connected to laptop (outside)													

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:38 of 56

2nd Antenna Chain

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

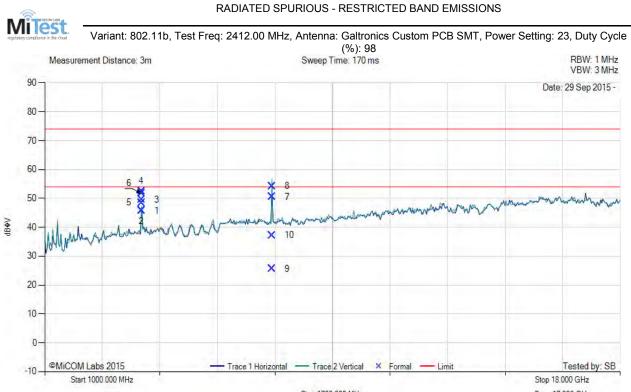
Antenna:	Galtronics Custom PCB SMT	Variant:	802.11g
Antenna Gain (dBi):	3.10	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	98
Channel Frequency (MHz):	2462.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	54.03	2.73	-11.64	45.12	Max Avg	Horizontal	141	195	54.0	-8.9	Pass
#2	2500.29	65.20	2.73	-11.61	56.32	Max Peak	Horizontal	141	195	74.0	-17.7	Pass
Test Notes: ethernet cable connected to laptop (outside)												

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:39 of 56

A. APPENDIX - GRAPHICAL IMAGES


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

	Title:	Actiontec Electronics Inc WCB6240Q
	To:	FCC Part 15.247 (DTS) + IC RSS-247 Issue 1
MiC@MLabs	Serial #:	ATEC09-U5b Radiated Rev B
\mathcal{L}	Issue Date:	24 th November 2015
	Page:	40 of 56

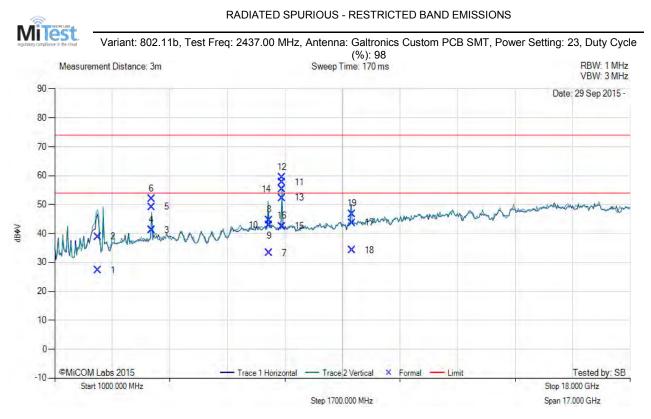
A.1. Emissions

A.1.1. Radiated Emissions

A.1.1.1. Restricted Band Emissions

	Second Second	a second
Sten	1700.000	MHZ

Span 17.000 GHz


Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	3856.60	53.33	3.23	-10.81	45.75	Peak (Scan)	Vertical	100	110			
2	3856.60	53.33	3.23	-10.81	45.75	Peak (NRB)	Vertical	100	110			Pass
3	3856.60	57.17	3.23	-10.81	49.59	Max Avg	Vertical	188	35	54.0	-4.4	Pass
4	3856.60	60.06	3.23	-10.81	52.48	Max Peak	Vertical	188	35	74.0	-21.5	Pass
5	3856.60	56.09	3.23	-10.81	48.51	Max Avg	Horizontal	100	33	54.0	-5.5	Pass
6	3856.60	59.24	3.23	-10.81	51.66	Max Peak	Horizontal	100	33	74.0	-22.3	Pass
7	7713.66	53.04	4.41	-6.85	50.60	Max Avg	Horizontal	100	43	54.0	-3.4	Pass
8	7713.66	56.66	4.41	-6.85	54.22	Max Peak	Horizontal	100	43	74.0	-19.8	Pass
9	7713.66	28.12	4.41	-6.85	25.68	Max Avg	Vertical	196	277	54.0	-28.3	Pass
10	7713.66	39.71	4.41	-6.85	37.27	Max Peak	Vertical	196	277	74.0	-36.7	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

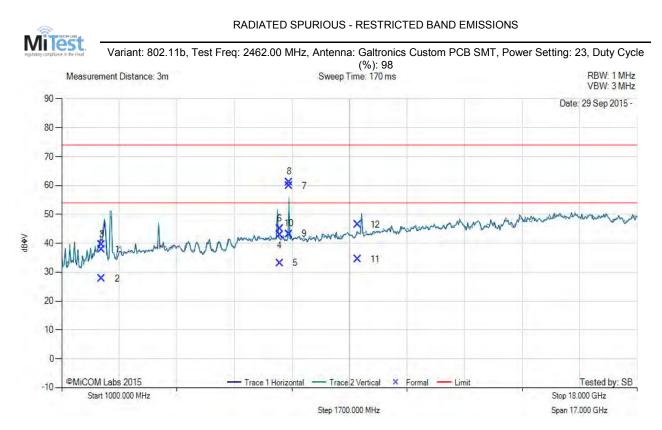
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

	Title:	Actiontec Electronics Inc WCB6240Q
MiceMLabs	To:	FCC Part 15.247 (DTS) + IC RSS-247 Issue 1
VIC VILabs	Serial #:	ATEC09-U5b Radiated Rev B
\mathcal{L}	Issue Date:	24 th November 2015
	Page:	41 of 56
	_	

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2270.38	36.83	2.66	-12.14	27.35	Max Avg	Vertical	100	78	54.0	-26.7	Pass
2	2270.38	48.37	2.66	-12.14	38.89	Max Peak	Vertical	100	78	74.0	-35.1	Pass
3	3856.67	48.69	3.23	-10.81	41.11	Peak (Scan)	Vertical	198	185			
4	3856.67	48.69	3.23	-10.81	41.11	Peak (NRB)	Vertical	198	185			Pass
5	3856.67	56.82	3.23	-10.81	49.24	Max Avg	Vertical	188	33	54.0	-4.8	Pass
6	3856.67	59.52	3.23	-10.81	51.94	Max Peak	Vertical	188	33	74.0	-22.1	Pass
7	7334.83	36.24	4.28	-7.24	33.28	Max Avg	Vertical	144	168	54.0	-20.7	Pass
8	7334.83	47.64	4.28	-7.24	44.68	Max Peak	Vertical	144	168	74.0	-29.3	Pass
9	7334.83	45.75	4.28	-7.24	42.79	Peak (Scan)	Vertical	100	215			
10	7334.83	45.75	4.28	-7.24	42.79	Peak (NRB)	Vertical	100	215			Pass
11	7713.54	60.17	4.41	-6.85	57.73	Max Avg	Vertical	196	74	54.0	-3.7	Pass
12	7713.54	61.87	4.41	-6.85	59.43	Max Peak	Vertical	196	74	74.0	-14.6	Pass
13	7713.54	54.80	4.41	-6.85	52.36	Max Avg	Horizontal	100	43	54.0	-1.6	Pass
14	7713.54	57.69	4.41	-6.85	55.25	Max Peak	Horizontal	100	43	74.0	-18.8	Pass
15	7713.54	44.94	4.41	-6.85	42.50	Peak (Scan)	Vertical	198	237			
16	7713.54	44.94	4.41	-6.85	42.50	Peak (NRB)	Vertical	198	237			Pass
17	9779.56	44.63	5.25	-6.18	43.70	Peak (Scan)	Vertical	200	185			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:42 of 56

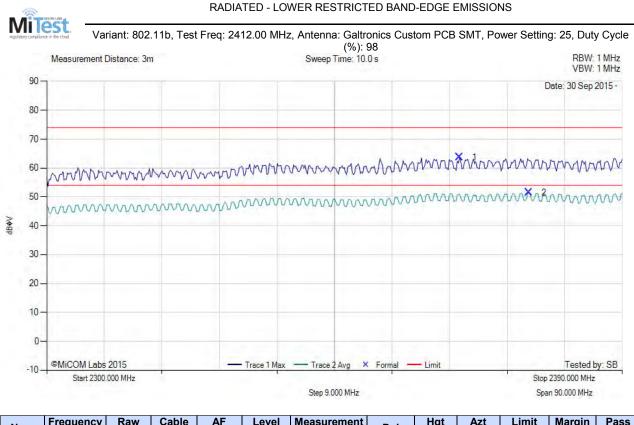

18	9779.56	35.22	5.25	-6.18	34.29	Max Avg	Vertical	116	135	54.0	-19.7	Pass
19	9779.56	47.71	5.25	-6.18	46.78	Max Peak	Vertical	116	135	74.0	-27.2	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:43 of 56

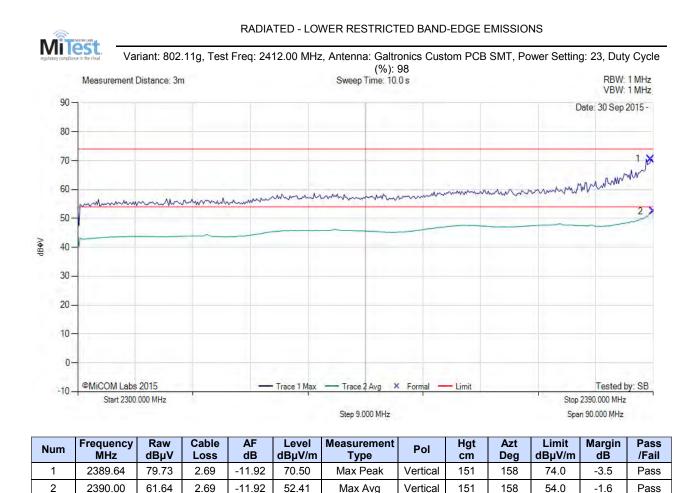
Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2184.37	47.68	2.64	-12.56	37.76	Peak (Scan)	Vertical	159	166			
2	2184.37	37.70	2.64	-12.56	27.78	Max Avg	Vertical	138	151	54.0	-26.2	Pass
3	2184.37	49.39	2.64	-12.56	39.47	Max Peak	Vertical	138	151	74.0	-34.5	Pass
4	7440.32	45.65	4.30	-7.13	42.82	Peak (Scan)	Vertical	151	349			
5	7440.32	35.99	4.30	-7.13	33.16	Max Avg	Vertical	103	103	54.0	-20.8	Pass
6	7440.32	47.89	4.30	-7.13	45.06	Max Peak	Vertical	103	103	74.0	-28.9	Pass
7	7713.22	62.37	4.41	-6.85	59.93	Max Avg	Vertical	195	76	54.0	-5.9	Pass
8	7713.22	63.65	4.41	-6.85	61.21	Max Peak	Vertical	195	76	74.0	-12.8	Pass
9	7713.22	45.70	4.41	-6.85	43.26	Peak (Scan)	Vertical	200	349			
10	7713.22	45.70	4.41	-6.85	43.26	Peak (NRB)	Vertical	200	349			Pass
11	9743.89	35.37	5.35	-6.24	34.48	Max Avg	Horizontal	154	178	54.0	-19.5	Pass
12	9743.89	47.36	5.35	-6.24	46.47	Max Peak	Horizontal	154	178	74.0	-27.5	Pass


Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

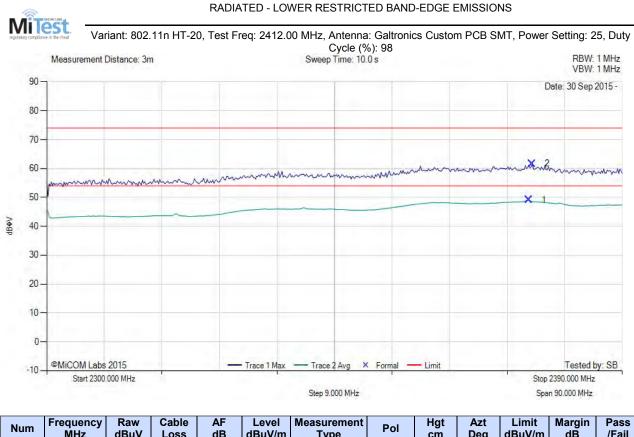
A.1.1.2. Restricted Band-Edge Emissions


Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2364.57	73.12	2.70	-12.13	63.69	Max Peak	Vertical	151	158	74.0	-10.3	Pass
2	2375.39	60.76	2.70	-12.05	51.41	Max Avg	Vertical	151	158	54.0	-2.6	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:45 of 56


Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:46 of 56

Num	MHz	Raw dBµV	Loss	dB	dBµV/m	Type	Pol	cm	Deg	dBµV/m	dB	Pass /Fail
1	2375.39	58.43	2.70	-12.05	49.08	Max Avg	Vertical	151	158	54.0	-4.9	Pass
2	2375.93	71.04	2.70	-12.04	61.70	Max Peak	Vertical	151	158	74.0	-12.3	Pass

Test Notes: ethernet cable connected to laptop (outside)

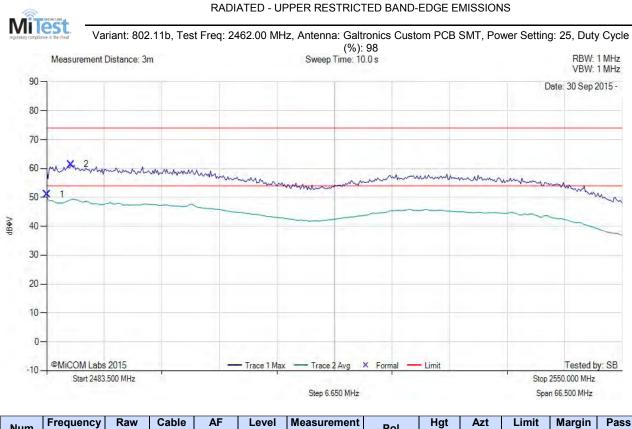
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:47 of 56

					(%): 98	Cycl	422.00 Mł				variant. 602	in the cloud.	complian
30 dB	F Att	RI		1 M	3107				er 1	Marke			~
				1 M	3707		8 dB y v					€f Lvl	
db y i	nit	Uı	s	20	ΓT	:	00 GHz	90000	2.3		∇	LOO dB	
.68 dB y V	68.	1]	[T1]	V 1						-	B Offse	-9.2 d	
0000 GHz	2.39000												
.77 dByv	53.	2]	[T2]	₹2									-
0000 GHz	2.39000												
													-
	+ +										db y v	p1 74	
													-
ANAMA												VIEW	
AAA										L		V I L.W	
T i	marane	ممسما	hech	artist	-	-					54 dBN	D2	
. A								and the second		that	54 dBy	D2	
MAN												James and and a state of the st	
T					_	~							
													-
											Г ⁻		
													Γ
	+									<u> </u>			
	_ _									Ļ			L
													•

	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
ſ	1	2390.0	53.77	2.70	-12.05	44.42	Max Avg	Vertical	151	158	54.0	-9.58	Pass
	2	2390.0	68.68	2.70	-12.04	59.34	Max Peak	Vertical	151	158	74.0	-14.66	Pass

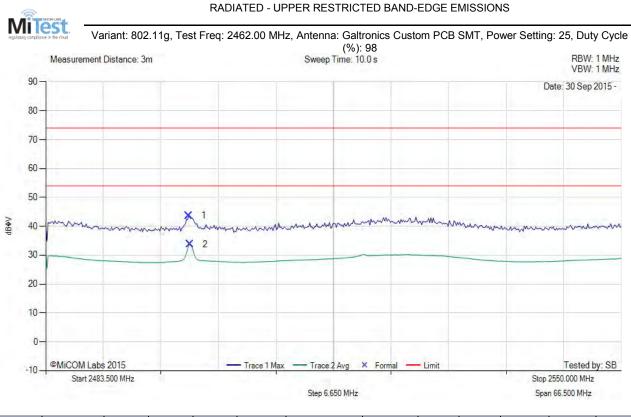

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:48 of 56

	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	2483.50	59.89	2.73	-11.64	50.98	Max Avg	Horizontal	141	195	54.0	-3.0	Pass
	2	2486.30	70.35	2.73	-11.64	61.44	Max Peak	Horizontal	141	195	74.0	-12.6	Pass
Г													

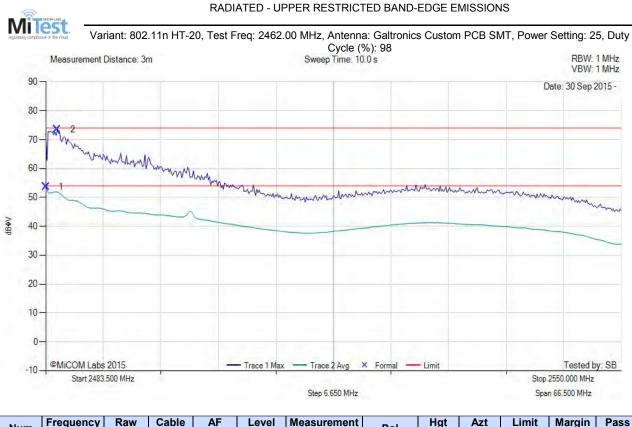

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:49 of 56

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2500.03	52.56	2.73	-11.61	43.68	Max Peak	Horizontal	141	195	74.0	-30.3	Pass
2	2500.16	42.71	2.73	-11.61	33.83	Max Avg	Horizontal	141	195	54.0	-20.2	Pass

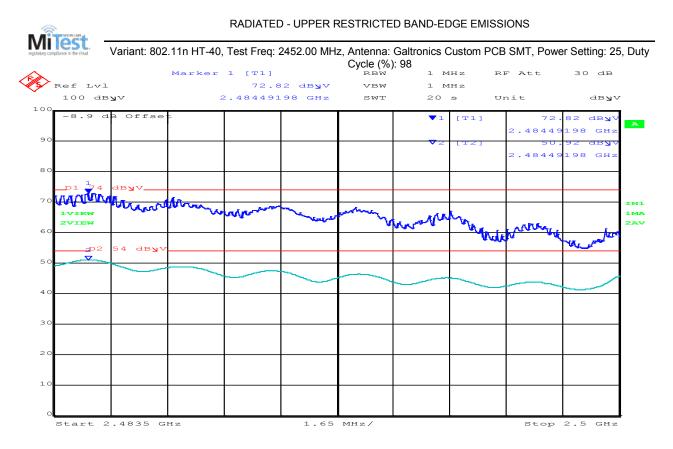

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:50 of 56

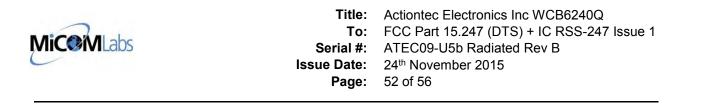
	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	2483.50	62.58	2.73	-11.64	53.67	Max Avg	Horizontal	141	195	54.0	-0.3	Pass
	2	2484.83	82.39	2.73	-11.64	73.48	Max Peak	Horizontal	141	195	74.0	-0.5	Pass
- Г													

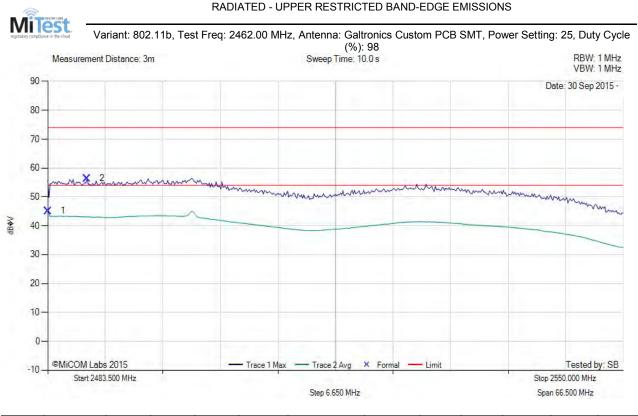

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:51 of 56



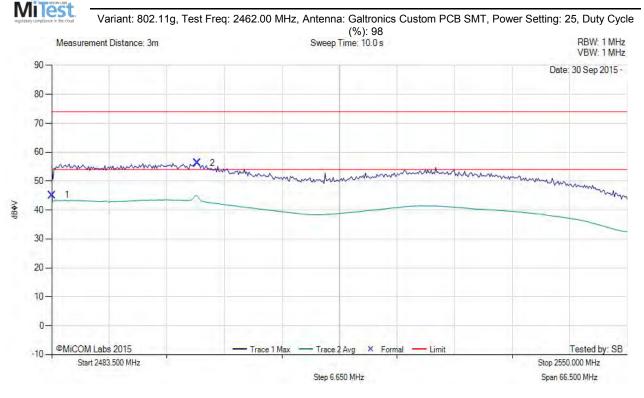

	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
ſ	1	2484.50	50.92	2.73	-11.64	42.01	Max Avg	Horizontal	141	195	54.0	-11.99	Pass
	2	2484.50	72.82	2.73	-11.64	63.91	Max Peak	Horizontal	141	195	74.0	-10.09	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	54.02	2.73	-11.64	45.11	Max Avg	Horizontal	141	195	54.0	-8.9	Pass
2	2488.03	65.31	2.73	-11.63	56.41	Max Peak	Horizontal	141	195	74.0	-17.6	Pass


Test Notes: ethernet cable connected to laptop (outside)

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:53 of 56

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	54.03	2.73	-11.64	45.12	Max Avg	Horizontal	141	195	54.0	-8.9	Pass
2	2500.29	65.20	2.73	-11.61	56.32	Max Peak	Horizontal	141	195	74.0	-17.7	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:54 of 56

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS MiTest Variant: 802.11b, Test Freq: 2412.00 MHz, Antenna: Galtronics Custom PCB SMT, Power Setting: 25, Duty Cycle (%): 98 RBW: 1 MHz VBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s 90 Date: 30 Sep 2015 -80 70-Ander 60 -0.0-0. 50 dB V 40 30 -20 -10-0 ©MiCOM Labs 2015 - Trace 1 Max - Trace 2 Avg × Formal — Limit Tested by: SB -10-Start 2300.000 MHz Stop 2390.000 MHz Step 9.000 MHz Span 90.000 MHz

Num	MHz	dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1 23	2382.42	73.28	2.69	-11.99	63.98	Max Peak	Vertical	141	157	74.0	-10.0	Pass
2 23	2384.59	60.81	2.68	-11.96	51.53	Max Avg	Vertical	141	157	54.0	-2.5	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC Part 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5b Radiated Rev BIssue Date:24th November 2015Page:55 of 56

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS MiTest Variant: 802.11g, Test Freq: 2412.00 MHz, Antenna: Galtronics Custom PCB SMT, Power Setting: 25, Duty Cycle (%): 98 RBW: 1 MHz VBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s 90 Date: 30 Sep 2015 -80 70-2 60 mymm 50 dBeV 40 30 20 -10-0 ©MiCOM Labs 2015 - Trace 1 Max - Trace 2 Avg × Formal - Limit Tested by: SB -10-Stop 2390.000 MHz Start 2300.000 MHz Step 9.000 MHz Span 90.000 MHz

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2390.00	57.80	2.69	-11.92	48.57	Max Avg	Vertical	141	157	54.0	-5.4	Pass
2	2390.00	76.18	2.69	-11.92	66.95	Max Peak	Vertical	141	157	74.0	-7.1	Pass

Test Notes: ethernet cable connected to laptop (outside)

back to matrix

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com