Company: Actiontec Electronics Inc

Test of: WCB6240Q To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) + Industry Canada RSS-247 Issue 1

Report No.: ATEC09-U5a Conducted Rev C

CONDUCTED TEST REPORT

Test of: Actiontec Electronics Inc WCB6240Q to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) + Industry Canada RSS-247 Issue 1

Test Report Serial No.: ATEC09-U5a Conducted Rev C

This report supersedes: ATEC09-U5a Conducted Rev B

Note: this report is one of a set of three reports that together address the requirements for certification purposes

Report Number	Test Report Type
ATEC09-U5a, b	2.4 GHz Conducted & Radiated Test Reports
ATEC09-U8a, b	5 GHz (non-DFS) Conducted, Radiated Test Reports
ATEC09-U11a, b, c	5 GHz (DFS) Conducted, Radiated, DFS Test Reports
ATEC09-U2	FCC Part 15B / ICES-003 Test Report

Applicant:	Actiontec Electronics Inc. 760 N Mary Avenue Sunnyvale California 94085 USA
Product Function:	Wireless Access Point and Ethernet Router
Jacua Data	24 th Nevember 2015

Issue Date: 24th November 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:3 of 152

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	-
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	18
7.1. Conducted	18
7.1. Conducted	18 20
7.1. Conducted	18 20 21
7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth	18 20 21 21
7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power	18 20 21 21 26
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 	18 20 21 21 26 32
7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions	18 20 21 21 26 32 32
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 	18 20 21 26 32 32 32
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 	18 20 21 26 32 32 32 32 37
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density 	18 20 21 26 32 32 32 37 45
7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES	18 20 21 26 32 32 32 37 45 50
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth 	18 20 21 21 26 32 32 32 37 45 50 51
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions 	18 20 21 21 26 32 32 32 32 37 45 50 51 75
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions 	18 20 21 26 26 26 26 26 26 26 27
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1.1. Conducted Spurious Emissions 	18 20 21 26 26 26 26 26 27 32 32 32 32 32 37 50 51 75 75
 7.1. Conducted 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.4. Power Spectral Density A. APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions 	18 20 21 26 26 26 26 26 27 32 32 32 32 32 37 50 51 75 75 75 75 99

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:4 of 152

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:6 of 152

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	13 th October 2015				
Draft #2	19 th October 2015				
Rev A	27 th October 2015	Initial Release			
Draft #3	13 th November 2015	The initial program (Rev A) for 802.11n HT-40 only tested mid channel (2437 MHz). As a result of the manufacturer introducing additional frequencies for HT-40 operational mode conducted measurements were required.			
Rev B	16 th November 2015	2 nd document release			
Rev C	24 th November 2015	Updated HT-40 power settings			
In the above table the latest rese	rt revision will replace all earlier w				

In the above table the latest report revision will replace all earlier versions.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:8 of 152

3. TEST RESULT CERTIFICATE

Manufacturer: Actiontec Electronics Inc 760 N Mary Avenue Sunnyvale California 94085 USA

Model: WCB6240Q

Type Of Equipment: 802.11a/b/g/n/ac Wireless Router

S/N's: GWXA5360700016

Test Date(s): 22nd – 28th September 2015

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304 Fax: +1 925 462 0306

Website: www.micomlabs.com

TESTING CERT #2381.01

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) Industry Canada RSS-247 Issue 1

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

TEST RESULTS

EQUIPMENT COMPLIES

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
П	KDB 558074 D01 v03r03	9th June 2015	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
Ш	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
v	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2014	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
x	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Actiontec Electronics Inc WCB6240Q
	to FCC CFR 47 Part 15 Subpart C 15.247 (DTS) and Industry
	Canada RSS-247 Issue 1
Applicant:	Actiontec Electronics Inc
	760 N Mary Avenue
Namu facture e	Sunnyvale California 94085 USA
Manufacturer:	
Laboratory performing the tests:	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
· · · · · · · · · · · · · · · · · · ·	15 th September 2015
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
	Industry Canada RSS-247 Issue 1
Dates of test (from - to):	22 nd – 28 th September 2015
No of Units Tested:	
Type of Equipment:	802.11a/b/g/n/ac Wireless Router
	802.11ac Wireless 4-Port Ethernet Bridge with Optional MoCA
Model(s):	Tested Device: WCB6240Q +
	WEB6040Q
Location for use:	Indoor
Declared Frequency Range(s):	
Primary function of equipment:	Wireless Access Point and Ethernet Router
Secondary function of equipment:	Optional Cable MoCA Bridge
Type of Modulation:	Per 802.11 – CCK, BPSK, QPSK, DSSS, OFDM
EUT Modes of Operation:	802.11b/g/HT-20/HT-40;
Declared Nominal Output Power (Ave):	+25 dBm
Transmit/Receive Operation:	Transceiver - Half Duplex
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 12Vdc, 2A
Operating Temperature Range:	Declared Range 0°C to 40°C
ITU Emission Designator:	802.11b 10M1G1D
	802.11g 16M6D1D
	802.11n - HT-20 17M5D1D
	802.11n – HT-40_36M2D1D
Equipment Dimensions:	
Weight:	
Hardware Rev:	
Software Rev:	1.1.01.19 y ta

5.2. Scope Of Test Program

Actiontec Electronics Inc WCB6240Q

The scope of the test program was to test the Actiontec Electronics Inc WCB6240Q configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Industry Canada RSS-247 Issue 1

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices

Manufacturers Declaration of Similarity

FCC ID: LNQWXB6X40Q IC ID: 2496A-WXB6X40Q Actiontec Models: WxB6x40Q

Product Similarities;

Actiontec Models: WCB6240Q and WEB6040Q To whom it may concern: We, Actiontec Electronics, Inc., hereby to declare the mentioned two models have electrically identical Wireless circuitry with the same electromagnetic emissions and electromagnetic compatibility characteristics. Descriptions of the differences between these two models are as follows;

WCB6240Q – 802.11ac Wireless 4-Port Ethernet Bridge with Bonded MoCA WEB6040Q – 802.11ac Wireless 4-Port Ethernet Bridge without MoCA.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:13 of 152

Actiontec Electronics Inc WCB6240Q

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:14 of 152

Actiontec Electronics Inc WCB6240Q

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless Router	Actiontec	WCB6240Q	GWXA5360700016
EUT	Power Adapter 100 - 240Vac 50/60Hz 0.7A 12 Vdc 2.0 A	Actiontec	WA-24Q12FU	DJ87714D14043198400
Support	Laptop PC	IBM	Thinkpad	None

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Galtronics	Custom PCB SMT	Dipole	3.1	-	360	-	2400 - 2483.5
integral	Galtronics	Custom Internal Cabled	Dipole	3.1	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization								

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100m GbE LAN	4	Ν	RJ45	Packet Data

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz)			
(802.11a/b/g/n/ac)	MBit/s	Low	High		
		2400 - 2483.5 MHz			
802.11b	1	2,412.00	2,437.00	2,462.00	
802.11g	6	2,412.00	2,437.00	2,462.00	
802.11n HT-20	6.5	2,412.00	2,437.00	2,462.00	
802.11n HT-40*	13.5		2,437.00		

*Only mid channel was tested for 802.11n HT-40, see Section 5.7 Equipment Modifications

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Conducted Band-Edge Emissions (802.11n HT-40 only)

Problem: Conducted Band-Edge failed on channels 2422 and 2452 MHz

Solution: 802.11n HT-40 channels 2422 and 2452 MHz were dropped and the equipment can only operate on channel 2437 MHz for HT-40 operational mode.

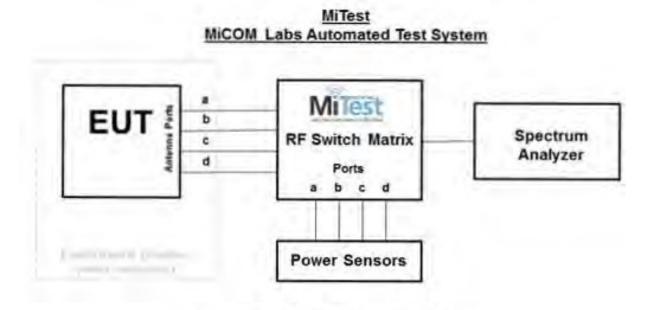
5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:17 of 152

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
15.247(a)(2) 6 dB & 99% Bandwidth	Complies	View Data
15.247(b), 15.31(e) Conducted Output Power	Complies	View Data
15.247(d) Emissions	Complies	
(1) Conducted Emissions	Complies	
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
15.247(e) Power Spectral Density	Complies	View Data


7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 6 dB & 99% Bandwidth
- 2. Conducted Output Power
- 3. Conducted Emissions
- 4. Power Spectral Density

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:19 of 152

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
380	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC001	20 Dec 2015
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2015
398	Test Software	MiCOM	MiTest ATS	Version 3.0.0.16	Not Required
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8731	31 Jul 2016
440	USB Wideband Power Sensor	Boonton	55006	8759	25 Sept 2016
441	USB Wideband Power Sensor	Boonton	55006	8731	25 Sept 2016
442	USB Wideband Power Sensor	Boonton	55006	8759	25 Sept 2016
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	28 Nov 2015
RF#1 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#1 SMA SA #452	Precision SMA Male RG-402 Spectrun Analyzer	Fairview Microwave	Precision SMA Male RG 402 coax	None	20 Dec 2015
RF#1 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#1 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Dec 2015
RF#1 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Dec 2015
RF#1 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	20 Dec 2015
RF#1 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:20 of 152

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	t(s)		o ub banu		Linin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>8.096</u>	<u>8.096</u>			8.096	8.096	≥500.0	-7.60
2437.0	<u>8.096</u>	<u>8.096</u>			8.096	8.096	≥500.0	-7.60
2462.0	<u>8.096</u>	<u>8.096</u>			8.096	8.096	≥500.0	-7.60

Test	I	Measured 99% E	Bandwidth (MHz		Maximum	
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2412.0	<u>10.100</u>	<u>10.100</u>			10.100	
2437.0	<u>10.100</u>	<u>10.020</u>			10.100	
2462.0	<u>10.100</u>	<u>10.100</u>			10.100	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11g	Duty Cycle (%):	98
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB E	Bandwidth (MH	łz)	6 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	t(s)		6 UB Balluv		Linin	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2412.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	≥500.0	-15.85
2437.0	<u>16.433</u>	<u>16.433</u>			16.433	16.433	≥500.0	-15.93
2462.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	≥500.0	-15.85

Test	t Measured 99% Bandwidth (MHz)					
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	с	d	(MHz)	
2412.0	<u>16.593</u>	<u>16.593</u>			16.593	
2437.0	<u>16.593</u>	<u>16.593</u>			16.593	
2462.0	<u>16.593</u>	<u>16.593</u>			16.593	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11n HT-20	Duty Cycle (%):	96
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB E	Bandwidth (MF	łz)	6 dB Bandy	width (MHz)	Limit	Lowest
Frequency		Por	t(s)				Linit	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2412.0	<u>17.555</u>	<u>17.555</u>			17.555	17.555	≥500.0	-17.06
2437.0	<u>17.555</u>	<u>17.555</u>			17.555	17.555	≥500.0	-17.06
2462.0	<u>17.555</u>	<u>17.635</u>			17.635	17.555	≥500.0	-17.06

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency		Por	t(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2412.0	<u>17.715</u>	<u>17.715</u>			17.715	
2437.0	<u>17.715</u>	<u>17.715</u>			17.715	
2462.0	<u>17.715</u>	<u>17.635</u>			17.715	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Engineering Test Notes:			
TPC:	Not Applicable	Tested By:	JK
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	3
Variant:	802.11n HT-40	Duty Cycle (%):	93

Test Measurement Results

Test	M	easured 6 dB E	Bandwidth (MF	łz)	6 dB Bandy	width (MHz)	Limit	Lowest
Frequency		Por	t(s)				Linit	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2422.0	<u>34.930</u>	<u>34.800</u>			34.930	34.800	≥500.0	-34.30
2437.0	<u>35.591</u>	<u>35.431</u>			35.591	35.431	≥500.0	-34.93
2452.0	<u>34.930</u>	<u>34.930</u>			34.930	34.930	≥500.0	-34.43

Test	I	Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Por	t(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2422.0	<u>35.419</u>	<u>35.491</u>			35.491	
2437.0	<u>36.072</u>	<u>36.232</u>			36.232	
2452.0	<u>35.475</u>	<u>35.602</u>			35.602	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power							
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (b) & (c)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						
	Emission Output Power Measurer asurements an average power ser						
For peak power measurements the bandwidth.	ne spectrum analyzer built-in powe	er function was used to integrate p	eak power over the 20 dB				
	bient conditions at nominal voltagasured, summed (Σ) and reported.	e only. Where the device operate	d with multiple antenna ports i.e				
Test configuration and setup use Supporting Information Calculated Power = A + G + Y+ 1		e Conducted Test Set-up specified	I in this document.				
A = Total Power [10*Log10 (10 ^{a/1} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power m							
Limits for Fundamental Emissi (b) The maximum peak conducte systems:		adiator shall not exceed the follow	ing for non-frequency hopping				
power measurement, comp power. Maximum Conducte elements averaged across level. Power must be summ during which the transmitter	liance with the one Watt limit can d Output Power is defined as the all symbols in the signaling alphab ed across all antennas and anten is off or is transmitting at a reduc	and 2400-2483.5 MHz bands: 1 W be based on a measurement of the total transmit power delivered to a et when the transmitter is operatin na elements. The average must no ed power level. If multiple modes of tput power is the highest total tran	e maximum conducted output Il antennas and antenna Ig at its maximum power control ot include any time intervals of operation are possible (e.g.,				
gains that do not exceed 6 greater than 6 dBi are used	dBi. Except as shown in paragraph , the conducted output power from	 o) of this section is based on the units of this section, if transmitting the intentional radiator shall be resound in dB that the directional gain 	antennas of directional gain educed below the stated values				
employ transmitting a	ration: in the 2400-2483.5 MHz band tha ntennas with directional gain great	t are used exclusively for fixed, po er than 6 dBi provided the maximu 3 that the directional gain of the ar	um conducted output power of				
multipoint systems, or information. The opera professionally installed	nnidirectional applications, and mu ator of the spread spectrum or dig d, the installer is responsible for er	ns (c)(1)(i) and (c)(1)(ii) of this sect ultiple co-located intentional radiat itally modulated intentional radiato nsuring that the system is used ex- tentional radiator shall contain lang	ors transmitting the same r or, if the equipment is clusively for fixed, point-to-point				

personnel. All changes will be noted in the Document History section of the report.

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	CCK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured	Output Power	+ DCCF (+0.04	dB) (dBm)	Calculated	Limit	Margin	
Frequency		Por	t(s)		Total Power Σ Port(s)			EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	J
2412.0	22.28	22.71			25.51	30.00	-4.49	
2437.0	21.85	22.44			25.17	30.00	-4.83	
2462.0	21.94	22.25			25.11	30.00	-4.89	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11g	Duty Cycle (%):	97.9
Data Rate:	6 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured	Output Power	+ DCCF (+0.09	dB) (dBm)	Calculated	Limit	Margin	
Frequency		Por	t(s)		Total Power Σ Port(s)			EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2412.0	21.79	21.93			24.87	30.00	-5.13	
2437.0	21.52	21.69			24.62	30.00	-5.38	
2462.0	21.20	21.64			24.44	30.00	-5.56	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-20	Duty Cycle (%):	96.2
Data Rate:	6 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured	Output Power	+ DCCF (+0.18	dB) (dBm)	Calculated Total Power	Linelt	Manain	
Frequency		Por	Port(s)			Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	3
2412.0	20.32	19.59			22.98	30.00	-7.02	
2437.0	19.78	19.37			22.59	30.00	-7.41	
2462.0	19.55	19.06			22.32	30.00	-7.68	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-40	Duty Cycle (%):	93.1
Data Rate:	13.5 Mbit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured	Output Power	+ DCCF (+0.32	2 dB) (dBm)	Calculated	Linelt	Manain	
Frequency		Por	t(s)		Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	J
2422.0	18.48	20.33			22.51	30.00	-7.49	
2437.0	20.12	21.26			22.74	30.00	-7.26	
2452.0	18.20	19.93			22.16	30.00	-7.84	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

9.3. Emissions

9.3.1. Conducted Emissions

9.3.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions						
Standa	d: FCC CFR 47:15.247	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Headi	g: Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45			
Standard Section	;): 15.247 (d)	15.247 (d) Pressure (mBars):				
Reference Document	See Normative References					

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration for	r Transmitter C	onducted Sr	nurious Emissions
Equipment Configuration is		onduotod op	

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	CCK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Ро	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-60.956</u>	-41.00	<u>-60.956</u>	-41.00				
2437.0	30.0 - 26000.0	<u>-59.121</u>	-42.00	<u>-58.717</u>	-42.00				
2462.0	30.0 - 26000.0	<u>-59.990</u>	-42.00	<u>-59.545</u>	-42.00				
2402.0	30.0 - 26000.0	<u>-59.990</u>	-42.00	<u>-39.545</u>	-42.00				

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11g	Duty Cycle (%):	98
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	Р	ort a	Po	rt b	Po	rt c	Ро	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-61.483</u>	-41.00	<u>-61.483</u>	-40.00				
2437.0	30.0 - 26000.0	<u>-59.545</u>	-40.00	<u>-59.121</u>	-40.00				
2462.0	30.0 - 26000.0	<u>-60.460</u>	-41.00	<u>-59.990</u>	-41.00				
2462.0	30.0 - 26000.0	<u>-60.460</u>	-41.00	<u>-59.990</u>	-41.00				

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for	Transmitter Conductor	Courieus Emissiens
Equipment Configuration for		Spurious Emissions

Variant:	802.11n HT-20	Duty Cycle (%):	96
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency			Transmitter Conducted Spurious Emissions (dBm)					
Frequency	Range	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-64.737</u>	-42.00	<u>-63.982</u>	-43.00				
2437.0	30.0 - 26000.0	<u>-61.483</u>	-42.00	<u>-62.643</u>	-43.00				
2462.0	30.0 - 26000.0	<u>-60.956</u>	-43.00	<u>-60.460</u>	-43.00				

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

	Configuration fo	. Tuese en later u	Conducated C	purious Emissions
Follioment (.ontiduration to	r i ransmitter	Conducted S	

Variant:	802.11n HT-40	Duty Cycle (%):	93
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Frequency			Transmitter Conducted Spurious Emissions (dBm)					
Frequency	Range	Po	rt a	Po	ort b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2422.0	30.0 - 26000.0	<u>-63.061</u>	-34.63	<u>-59.499</u>	-32.74				
2437.0	30.0 - 26000.0	<u>-62.643</u>	-35.00	<u>-60.956</u>	-34.00				
2452.0	30.0 - 26000.0	<u>-62.940</u>	-34.26	<u>-59.763</u>	-32.54				

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

9.3.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average					
Variant:	802.11b	Duty Cycle (%):	99.0		
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	3.1		
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz				
Band-Edge Frequency:	2400.0 MHz	00.0 MHz				
Test Frequency Range:	ge: 2350.0 - 2422.0 MHz					
	Band-Edge Markers and Limit			Revised Limit		Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-38.42</u>	-25.00	2405.10			-5.100
b	<u>-39.08</u>	-26.00	2405.00			-5.000

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11g	Duty Cycle (%):	97.9
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz				
Band-Edge Frequency:	2400.0 MHz	00.0 MHz				
Test Frequency Range:	equency Range: 2350.0 - 2422.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised Limit Ma			Margin	
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-32.91</u>	-30.00	2401.70			-1.700
b	<u>-32.58</u>	-30.00	2401.70			-1.700

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11n HT-20	Duty Cycle (%):	96.2
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz				
Band-Edge Frequency:	2400.0 MHz	00.0 MHz				
Test Frequency Range:	Test Frequency Range: 2350.0 - 2422.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-34.37</u>	-31.00	2401.70			-1.700
b	<u>-34.68</u>	-32.00	2401.70			-1.700

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11n HT-40	Duty Cycle (%):	93.1
Data Rate:	13.5 Mbit/s	Antenna Gain (dBi):	3.10
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2422.0 MHz	422.0 MHz				
Band-Edge Frequency:	2400.0 MHz	400.0 MHz				
Test Frequency Range:	cy Range: 2292.0 - 2442.0 MHz					
	Band-Ed	Band-Edge Markers and Limit Revise			ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-32.20</u>	-30.77	2402.50			-2.500
b	<u>-29.04</u>	-28.98	2402.00			-2.000

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
	Work Instruction	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty: <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB	Measurement Uncertainty	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	ge: 2452.0 - 2524.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-58.07</u>	-26.00	2468.90			-14.600
b	-57.77	-26.00	2468.90			-14.600

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11g	Duty Cycle (%):	97.9
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz	462.0 MHz				
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	t Frequency Range: 2452.0 - 2524.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-52.05</u>	-30.00	2472.10			-11.400
b	<u>-50.16</u>	-30.00	2472.10			-11.400

Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS

Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB
--------------------------	-------------------------------------

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11n HT-20	Duty Cycle (%):	96.2
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz	462.0 MHz					
Band-Edge Frequency:	2483.5 MHz						
Test Frequency Range:	Frequency Range: 2452.0 - 2524.0 MHz						
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-55.79</u>	-32.00	2472.20			-11.300	
b	<u>-56.94</u>	-32.00	2472.20			-11.300	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	802.11n HT-40	Duty Cycle (%):	93.1
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	3.10
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2452.0 MHz	2452.0 MHz				
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	2432.0 - 2582.0 N	/IHz				
	Band-Ed	Band-Edge Markers and Limit Revised Limit Margin			Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-40.16</u>	-31.23	2471.00			-12.500
b	<u>-34.59</u>	-29.45	2471.50			-12.000

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

9.4. Power Spectral Density

Conducted Test Conditions for Power Spectral Density					
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5			
Test Heading:	Power Spectral Density	32 - 45			
Standard Section(s):	15.247 (e)	5.247 (e) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References				

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	y	Amplitude Summation +		
Frequency		Port(s) (dBm/3KHz)		DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-9.817</u>	<u>-9.651</u>			<u>-6.687</u>	8.0	-14.7
2437.0	<u>-10.741</u>	<u>-10.133</u>			<u>-7.435</u>	8.0	-15.4
2462.0	<u>-10.496</u>	<u>-10.258</u>			<u>-7.321</u>	8.0	-15.3

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

				-
Fauinment	Configuration	for Power	Spectral Densit	$\Delta = \Delta v = a a$
Equipment	Configuration		opecular Densit	y - Average

Variant:	802.11g	Duty Cycle (%):	97.9
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	Measured Power Spectral Density				Amplitude Summation +		
Frequency	Port(s) (dBm/3KHz)			DCCF (+0.09 dB)	Limit	Margin		
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB	
2412.0	<u>-13.359</u>	<u>-13.157</u>			<u>-10.266</u>	8.0	-18.3	
2437.0	<u>-13.540</u>	<u>-13.726</u>			<u>-10.717</u>	8.0	-18.7	
2462.0	<u>-13.371</u>	<u>-13.565</u>			<u>-10.562</u>	8.0	-18.6	

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty: ±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-20	Duty Cycle (%):	96.2
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	3.1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	у	Amplitude Summation +		
Frequency		Port(s) (dBm/3KHz)		DCCF (+0.17 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-15.134</u>	<u>-16.346</u>			<u>-12.853</u>	8.0	-20.9
2437.0	<u>-15.695</u>	<u>-16.179</u>			<u>-12.932</u>	8.0	-20.9
2462.0	<u>-16.229</u>	<u>-16.656</u>			<u>-13.460</u>	8.0	-21.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-40	Duty Cycle (%):	93.1
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	3.10
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

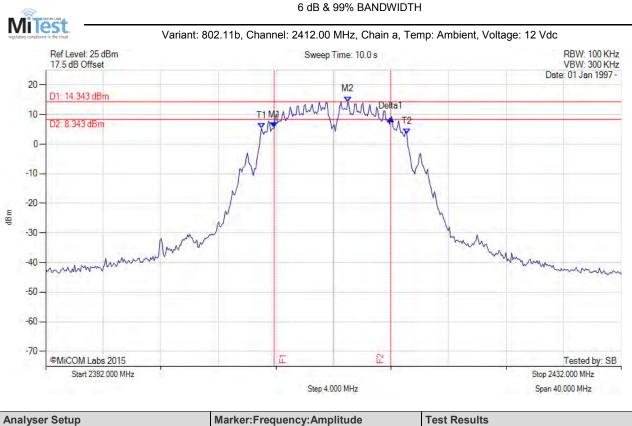
Test Measurement Results

Test	N	leasured Power	asured Power Spectral Density Amplitude		Amplitude Summation +		
Frequency	Port(s) (dBm/3KHz)			DCCF (+0.31 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2422.0	<u>-14.770</u>	<u>-12.174</u>			<u>-10.269</u>	8.0	-18.3
2437.0	<u>-14.959</u>	<u>-13.814</u>			<u>-10.887</u>	8.0	-18.9
2452.0	<u>-14.999</u>	<u>-13.398</u>			<u>-10.804</u>	8.0	-18.8

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

DCCF - Duty Cycle Correction Factor

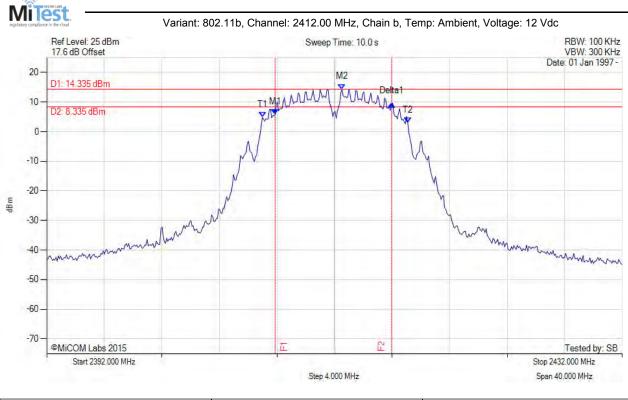
Note: click the links in the above matrix to view the graphical image (plot).


Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:50 of 152

A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

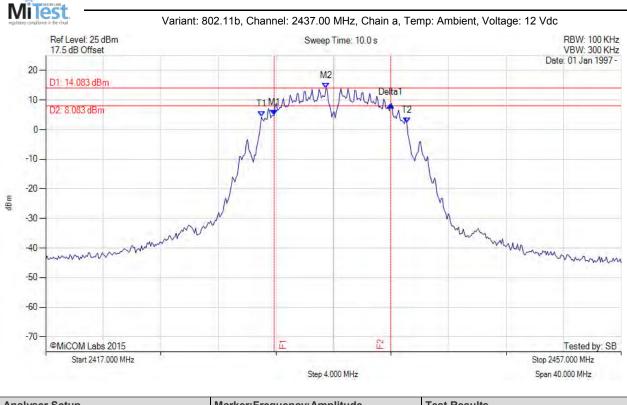
A.1. 6 dB & 99% Bandwidth



Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2407.872 MHz : 5.488 dBm	Measured 6 dB Bandwidth: 8.096 MHz
Sweep Count = 0	M2 : 2413.002 MHz : 14.343 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 8.096 MHz : 3.199 dB	Margin: -7.60 MHz
Trace Mode = MAX HOLD	T1 : 2406.990 MHz : 5.340 dBm	-
	T2 : 2417.090 MHz : 3.497 dBm	
	OBW : 10.100 MHz	

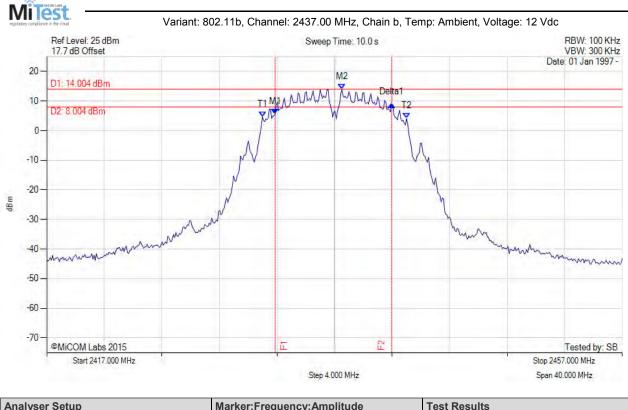
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



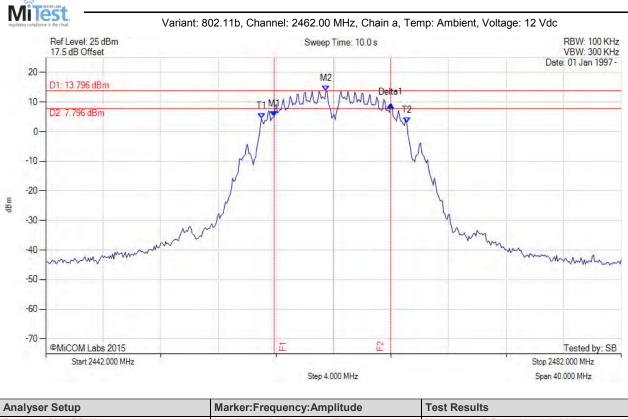
Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2407.872 MHz : 5.852 dBm M2 : 2412.521 MHz : 14.335 dBm Delta1 : 8.096 MHz : 3.575 dB T1 : 2406.990 MHz : 4.848 dBm T2 : 2417.090 MHz : 3.068 dBm OBW : 10.100 MHz	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz

back to matrix



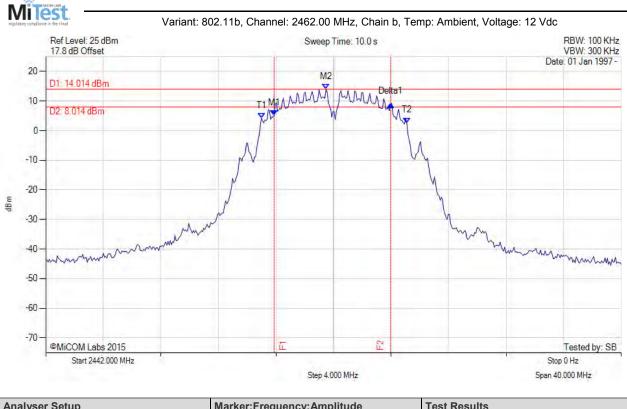
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2436.479 MHz : 14.083 dBm	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz

back to matrix



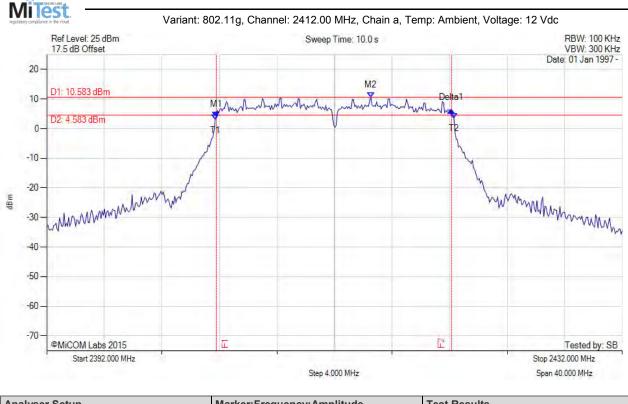
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2437.521 MHz : 14.004 dBm	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz

back to matrix



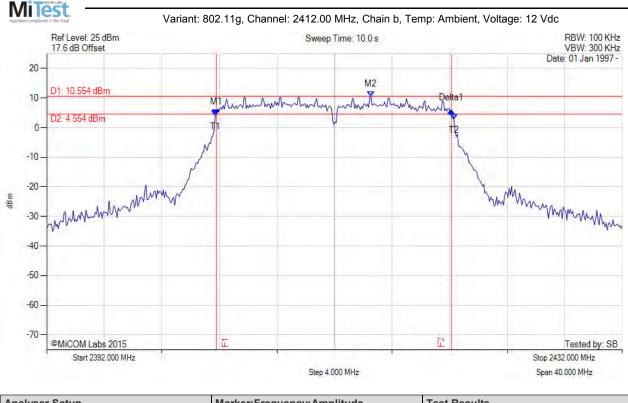
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2457.872 MHz : 5.191 dBm M2 : 2461.479 MHz : 13.796 dBm Delta1 : 8.096 MHz : 3.842 dB T1 : 2456.990 MHz : 4.433 dBm T2 : 2467.090 MHz : 3.062 dBm OBW : 10.100 MHz	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz

back to matrix



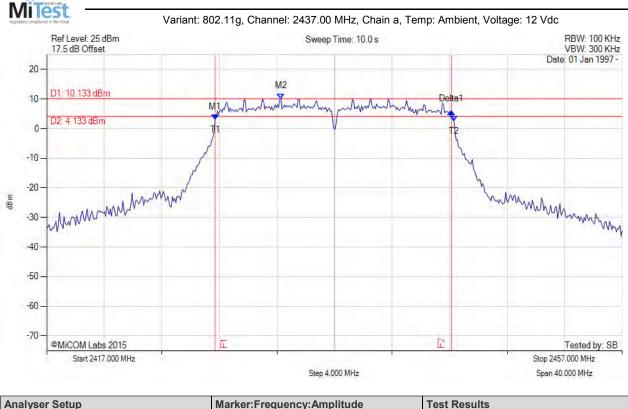
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2457.872 MHz : 5.100 dBm M2 : 2461.479 MHz : 14.014 dBm Delta1 : 8.096 MHz : 3.856 dB T1 : 2456.990 MHz : 4.258 dBm T2 : 2467.090 MHz : 2.653 dBm OBW : 10.100 MHz	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz

back to matrix



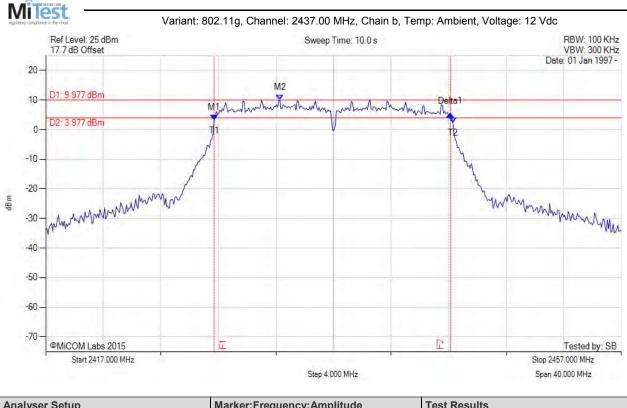
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2414.525 MHz : 10.583 dBm	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

back to matrix



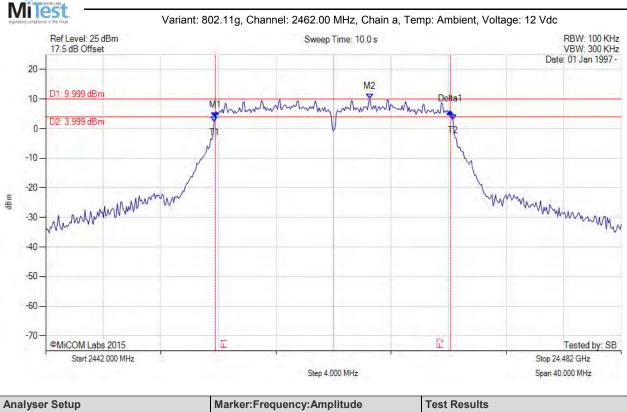
Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2403.784 MHz : 4.380 dBm M2 : 2414.525 MHz : 10.554 dBm Delta1 : 16.353 MHz : 1.487 dB T1 : 2403.703 MHz : 3.892 dBm T2 : 2420.297 MHz : 2.680 dBm OBW : 16.593 MHz	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

back to matrix



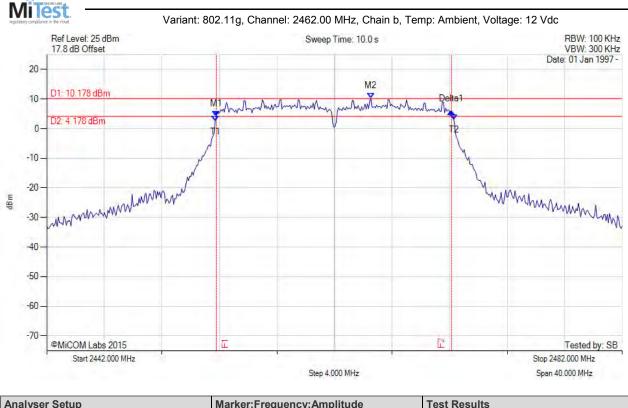
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2428.703 MHz : 3.090 dBm M2 : 2433.273 MHz : 10.133 dBm Delta1 : 16.433 MHz : 2.642 dB T1 : 2428.703 MHz : 3.090 dBm T2 : 2445.297 MHz : 2.576 dBm OBW : 16.593 MHz	Measured 6 dB Bandwidth: 16.433 MHz Limit: ≥500.0 kHz Margin: -15.93 MHz

back to matrix



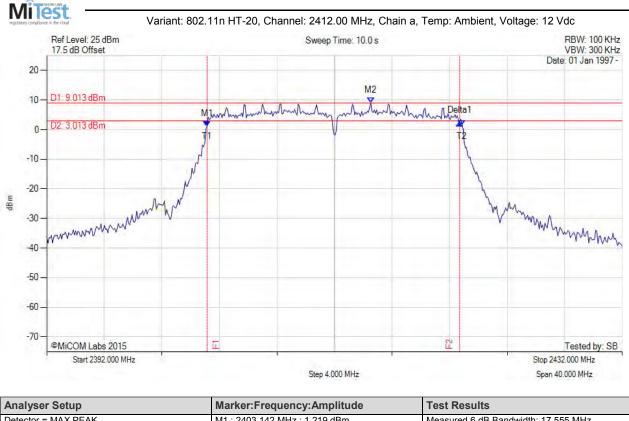
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2428.703 MHz : 3.147 dBm M2 : 2433.273 MHz : 9.977 dBm Delta1 : 16.433 MHz : 2.174 dB T1 : 2428.703 MHz : 3.147 dBm T2 : 2445.297 MHz : 2.419 dBm OBW : 16.593 MHz	Measured 6 dB Bandwidth: 16.433 MHz Limit: ≥500.0 kHz Margin: -15.93 MHz

back to matrix



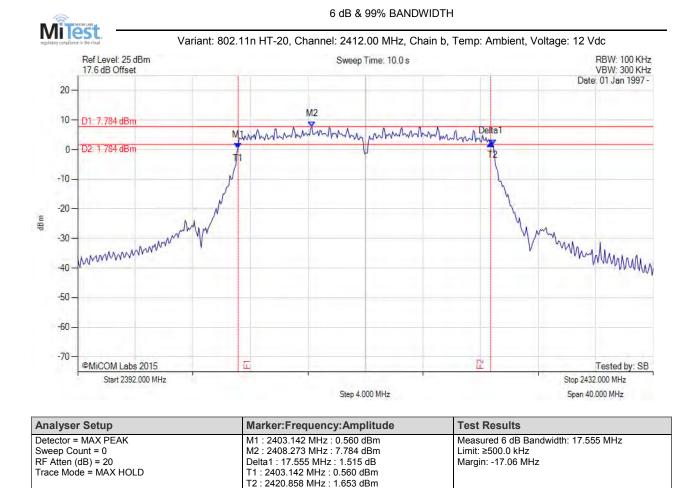
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2453.784 MHz : 3.699 dBm M2 : 2464.525 MHz : 9.999 dBm Delta1 : 16.353 MHz : 2.093 dB T1 : 2453.703 MHz : 2.210 dBm T2 : 2470.297 MHz : 2.958 dBm OBW : 16.593 MHz	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

back to matrix



Analyser Setup Marker:Frequency:Amplitude **Test Results** Detector = MAX PEAK M1: 2453.784 MHz: 4.113 dBm Measured 6 dB Bandwidth: 16.353 MHz Sweep Count = 0 M2: 2464.525 MHz: 10.178 dBm Limit: ≥500.0 kHz RF Atten (dB) = 20Delta1: 16.353 MHz: 1.678 dB Margin: -15.85 MHz T1 : 2453.703 MHz : 2.503 dBm Trace Mode = MAX HOLD T2 : 2470.297 MHz : 3.095 dBm OBW : 16.593 MHz

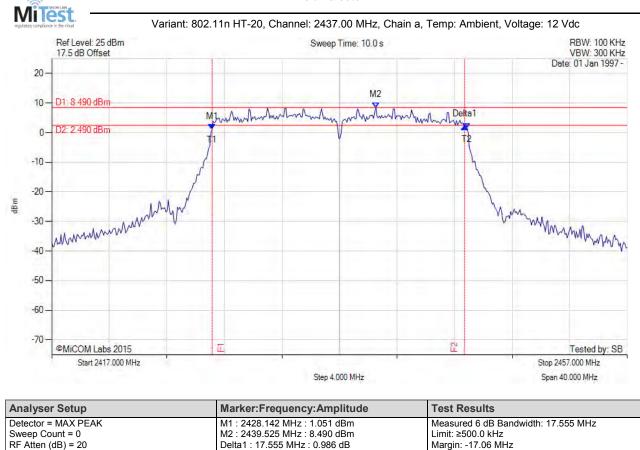
back to matrix



Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2414.525 MHz : 9.013 dBm	Measured 6 dB Bandwidth: 17.555 MHz Limit: ≥500.0 kHz Margin: -17.06 MHz

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:64 of 152

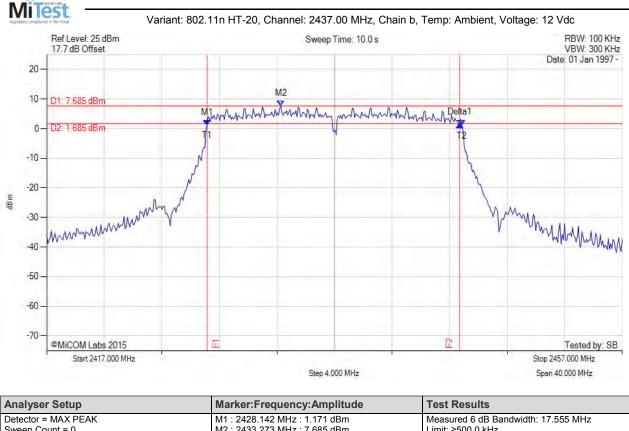


OBW : 17.715 MHz

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:65 of 152

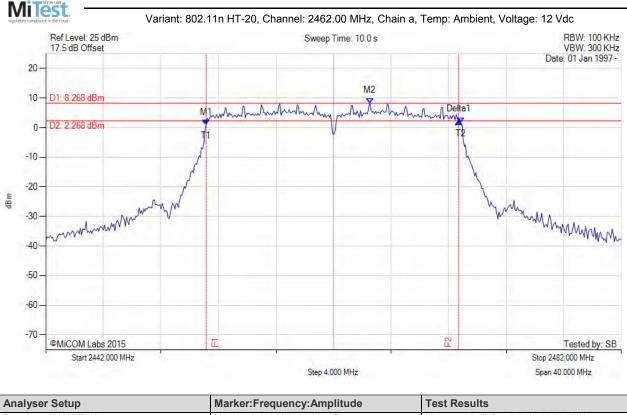
T1 : 2428.142 MHz : 1.051 dBm T2 : 2445.858 MHz : 1.335 dBm


OBW : 17.715 MHz

6 dB & 99% BANDWIDTH

back to matrix

Trace Mode = MAX HOLD

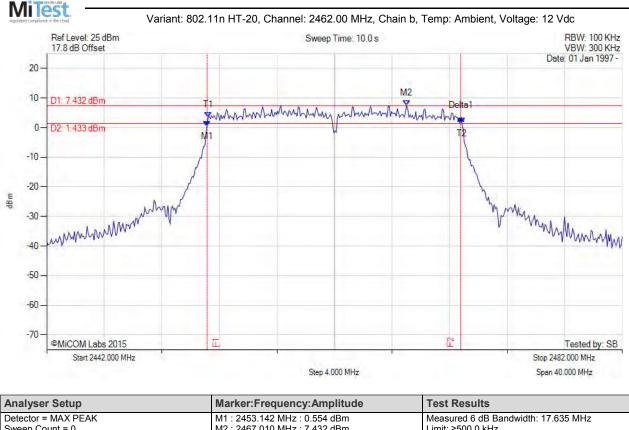


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2428.142 MHz : 1.171 dBm M2 : 2433.273 MHz : 7.685 dBm Delta1 : 17.555 MHz : 0.214 dB T1 : 2428.142 MHz : 1.171 dBm T2 : 2445.858 MHz : 1.103 dBm OBW : 17.715 MHz	Measured 6 dB Bandwidth: 17.555 MHz Limit: ≥500.0 kHz Margin: -17.06 MHz

back to matrix

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:67 of 152

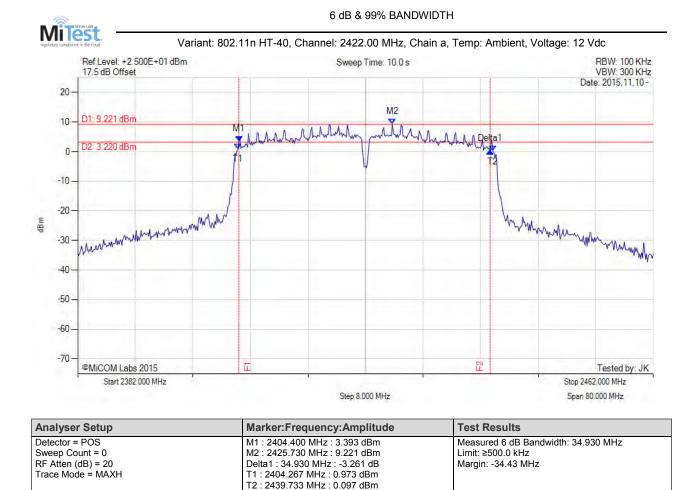
6 dB & 99% BANDWIDTH


Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2453.142 MHz : 0.833 dBm M2 : 2464.525 MHz : 8.268 dBm Delta1 : 17.555 MHz : 1.180 dB T1 : 2453.142 MHz : 0.833 dBm T2 : 2470.858 MHz : 1.543 dBm OBW : 17.715 MHz	Measured 6 dB Bandwidth: 17.555 MHz Limit: ≥500.0 kHz Margin: -17.06 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

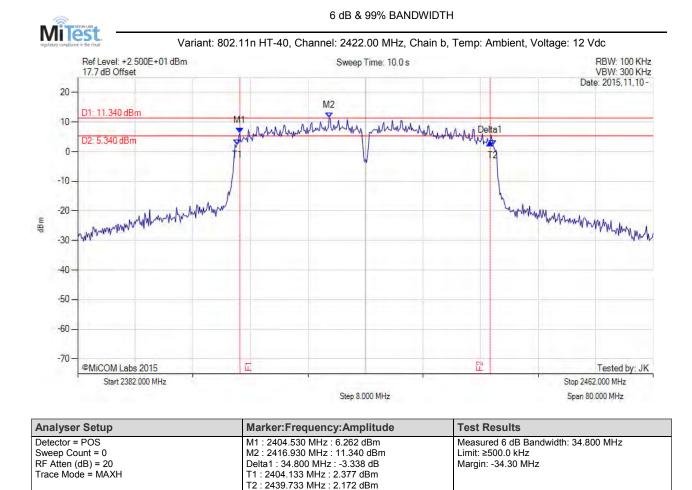
Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:68 of 152


6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2467.010 MHz : 7.432 dBm	Measured 6 dB Bandwidth: 17.635 MHz Limit: ≥500.0 kHz Margin: -17.14 MHz

back to matrix

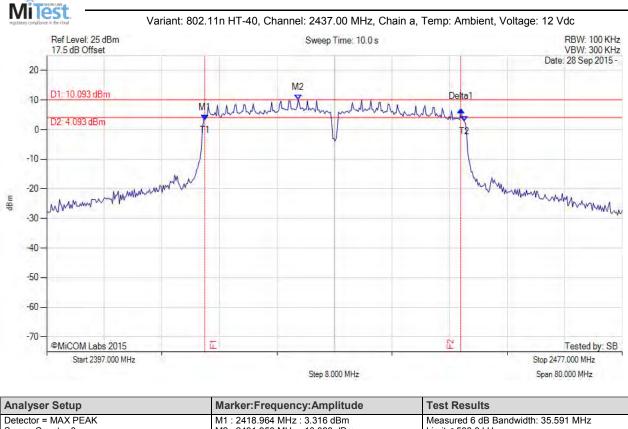
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



OBW : 35.419 MHz

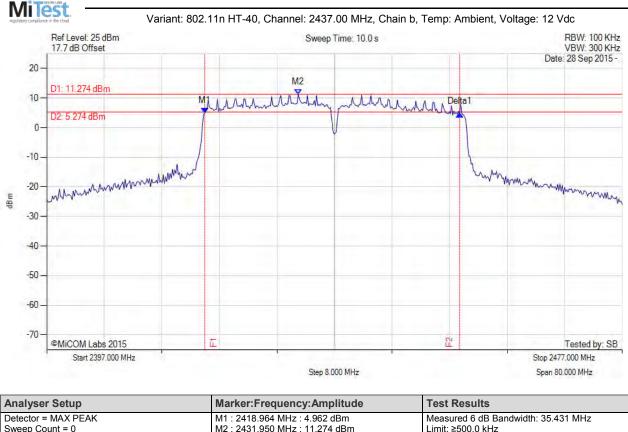
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



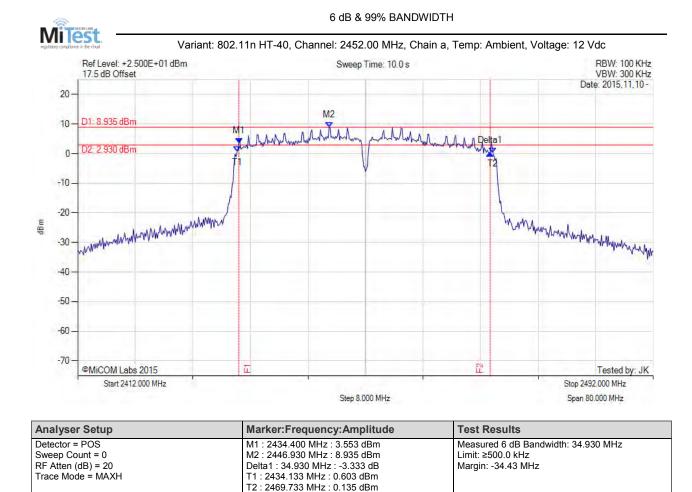
OBW : 35.491 MHz

back to matrix



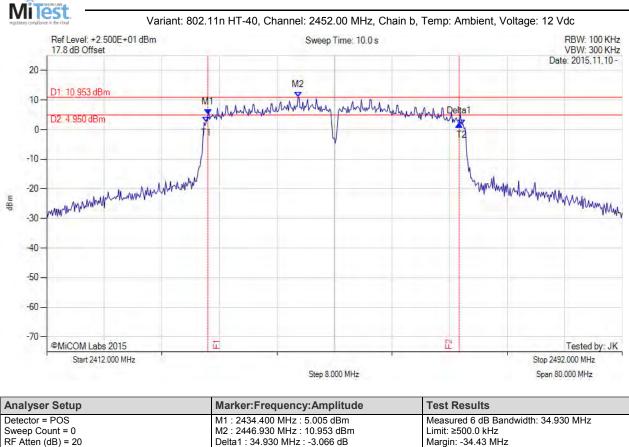
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2418.964 MHz : 3.316 dBm M2 : 2431.950 MHz : 10.093 dBm Delta1 : 35.591 MHz : 3.533 dB T1 : 2418.964 MHz : 3.316 dBm T2 : 2455.036 MHz : 2.869 dBm OBW : 36.072 MHz	Measured 6 dB Bandwidth: 35.591 MHz Limit: ≥500.0 kHz Margin: -35.09 MHz

back to matrix



Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2418.964 MHz : 4.962 dBm M2 : 2431.950 MHz : 11.274 dBm Delta1 : 35.431 MHz : -0.244 dB T1 : 0 Hz : 500.000 dBm T2 : 0 Hz : 500.000 dBm OBW : 36.232 MHz	Measured 6 dB Bandwidth: 35.431 MHz Limit: ≥500.0 kHz Margin: -34.93 MHz

back to matrix



OBW : 35.475 MHz

back to matrix

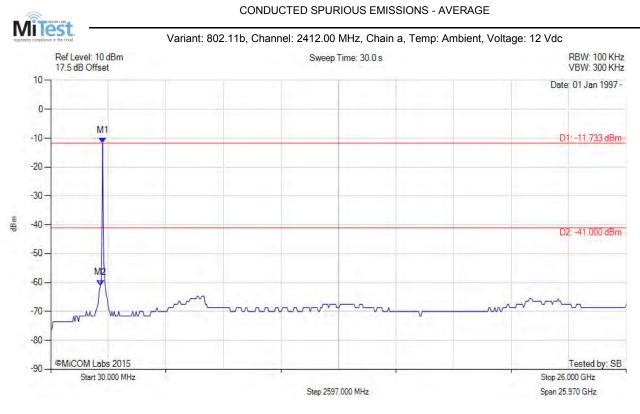
T1 : 2434.133 MHz : 2.514 dBm

T2: 2469.733 MHz: 1.707 dBm

OBW : 35.602 MHz

6 dB & 99% BANDWIDTH

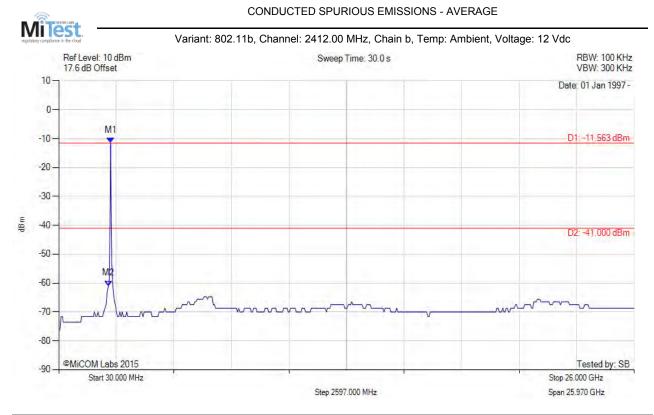
back to matrix


Trace Mode = MAXH

A.2. Emissions

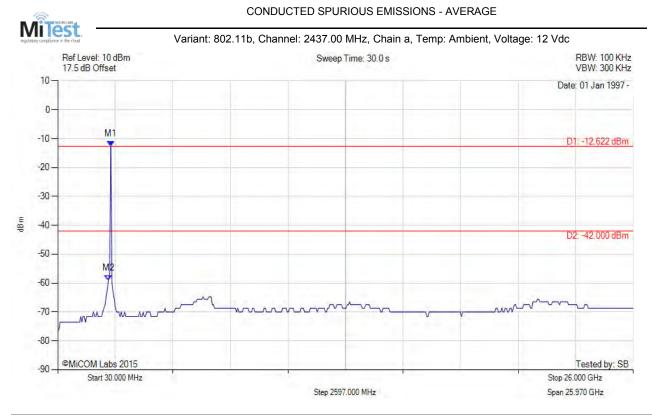
A.2.1. Conducted Emissions

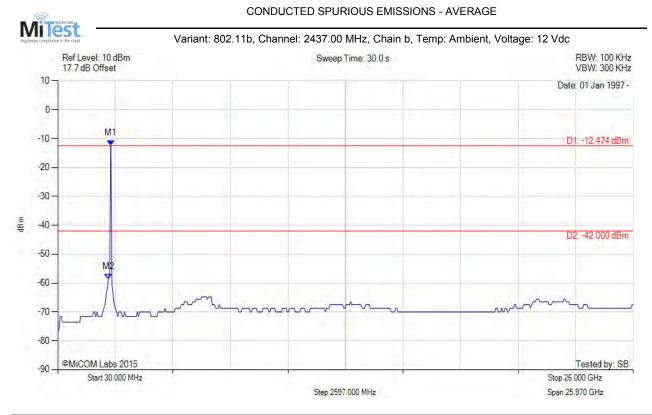
A.2.1.1. Conducted Spurious Emissions

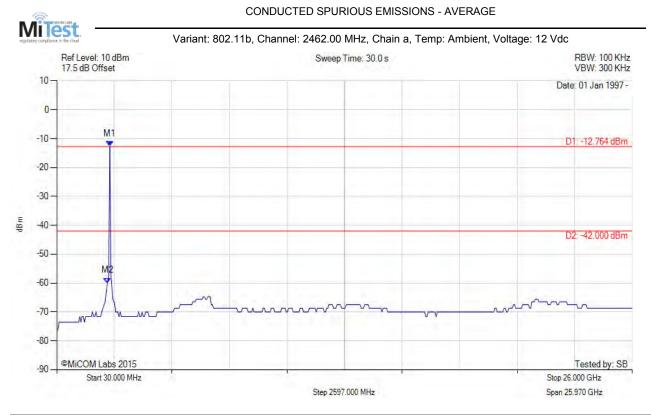

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2371.984 MHz : -11.733 dBm	Limit: -41.00 dBm
Sweep Count = 0	M2 : 2267.896 MHz : -60.956 dBm	Margin: -19.96 dB
RF Atten (dB) = 10		-
Trace Mode = VIEW		

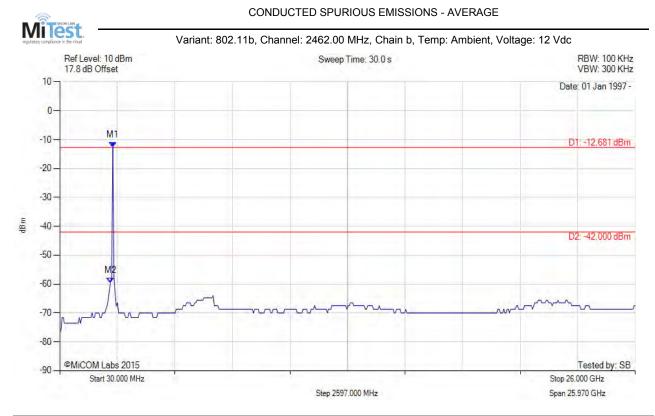
back to matrix

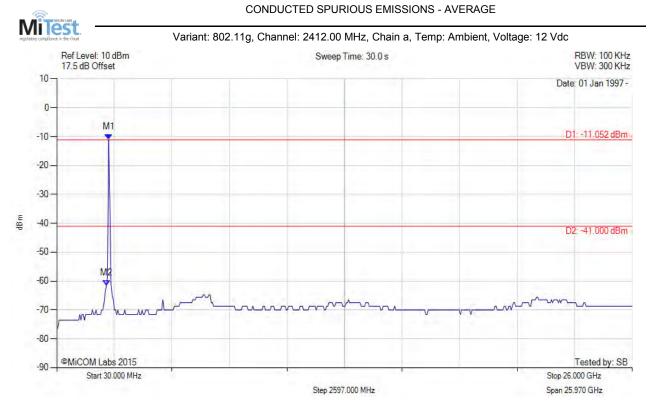
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

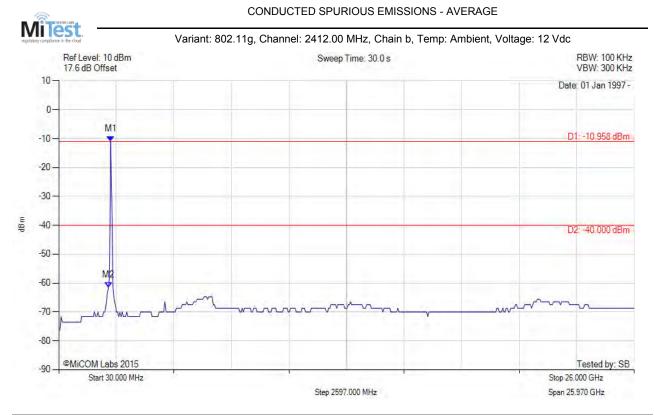

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

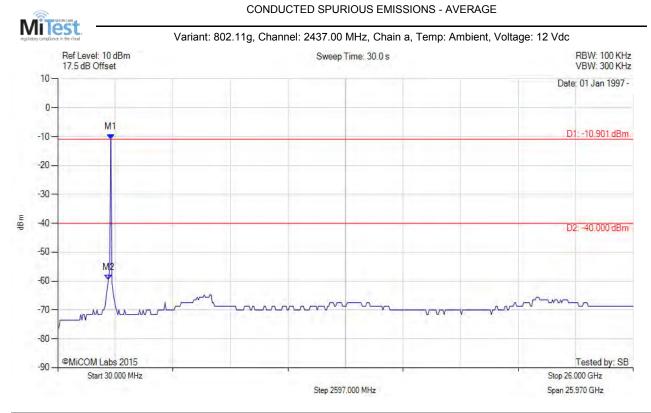

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2371.984 MHz : -11.563 dBm	Limit: -41.00 dBm
Sweep Count = 0	M2 : 2267.896 MHz : -60.956 dBm	Margin: -19.96 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

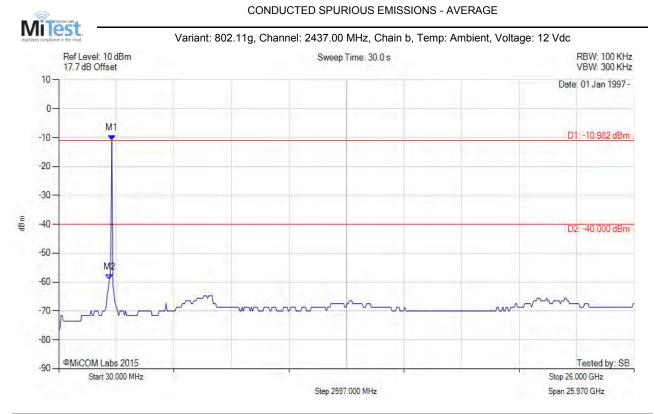

Analyser Setup	Marker:Frequency:Amplitude	Test Results
		Limit: -42.00 dBm Margin: -17.12 dB
RF Atten (dB) = 10 Trace Mode = VIEW		

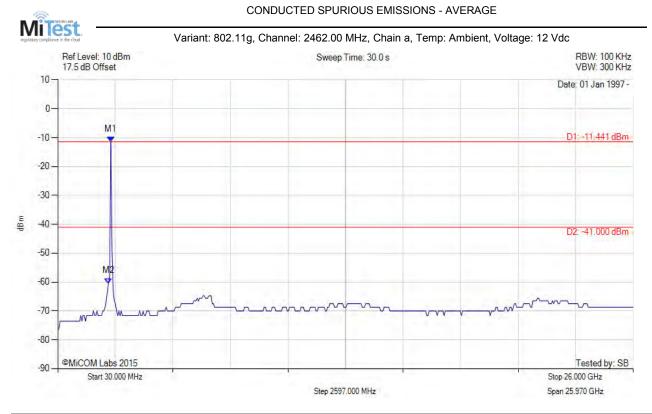

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2424.028 MHz : -12.474 dBm M2 : 2319.940 MHz : -58.717 dBm	Limit: -42.00 dBm Margin: -16.72 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

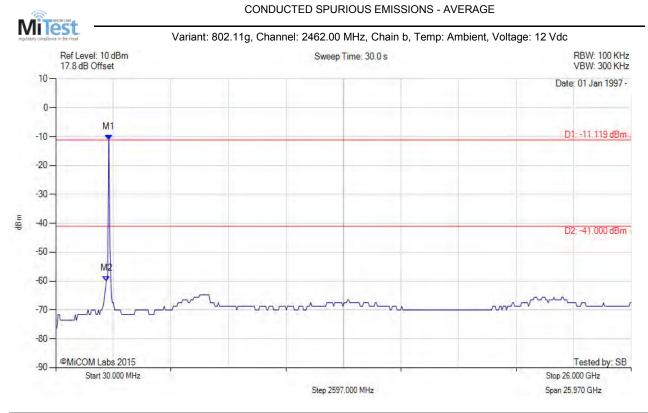

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2424.028 MHz : -12.764 dBm M2 : 2319.940 MHz : -59.990 dBm	Limit: -42.00 dBm Margin: -17.99 dB
RF Atten (dB) = 10 Trace Mode = VIEW		5

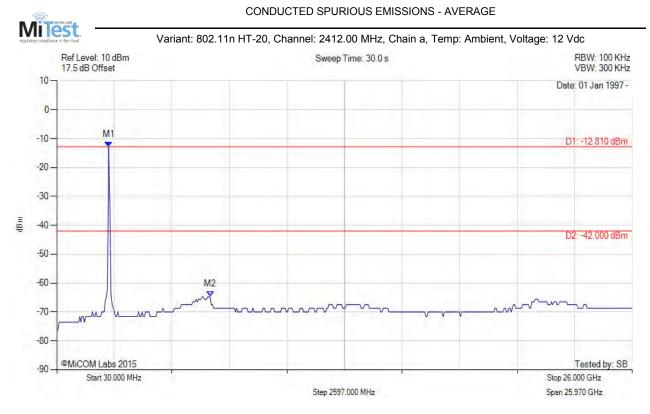

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -12.681 dBm	Limit: -42.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -59.545 dBm	Margin: -17.55 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

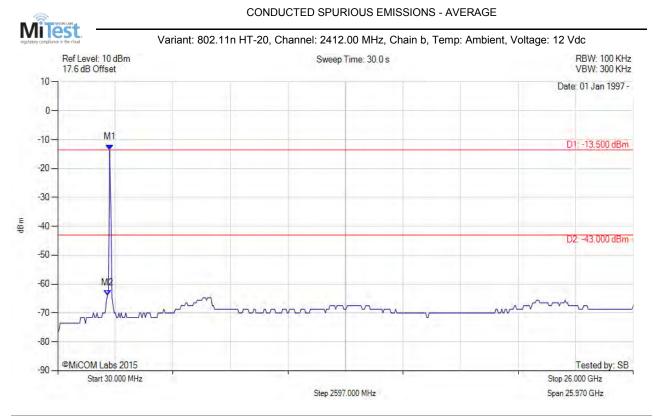

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE		Limit: -41.00 dBm
Sweep Count = 0	M2 : 2267.896 MHz : -61.483 dBm	Margin: -20.48 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

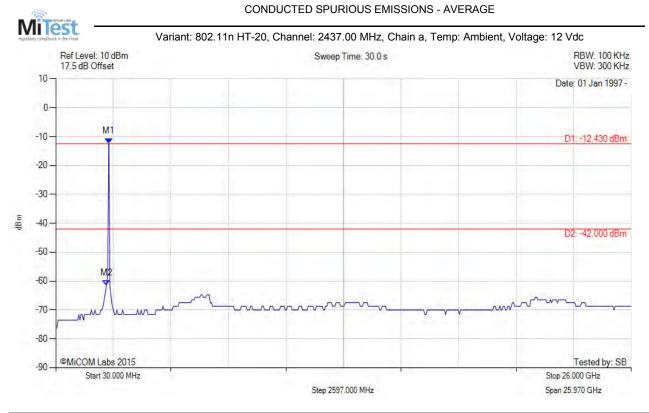

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2371.984 MHz : -10.958 dBm M2 : 2267.896 MHz : -61.483 dBm	Limit: -40.00 dBm Margin: -21.48 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

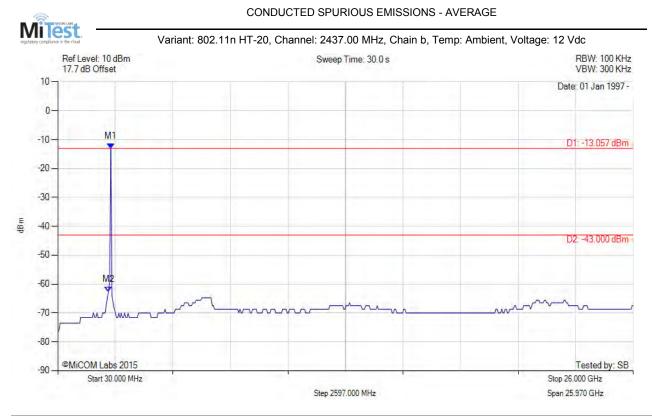

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -10.901 dBm	Limit: -40.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -59.545 dBm	Margin: -19.55 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

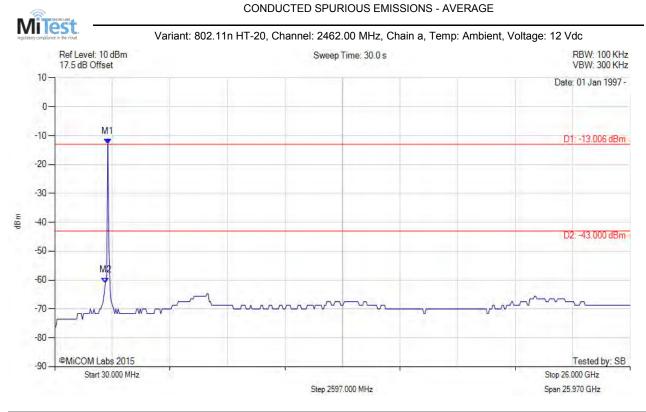

Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVERAGE	M1 : 2424.028 MHz : -10.982 dBm	Limit: -40.00 dBm	
Sweep Count = 0	M2 : 2319.940 MHz : -59.121 dBm	Margin: -19.12 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			

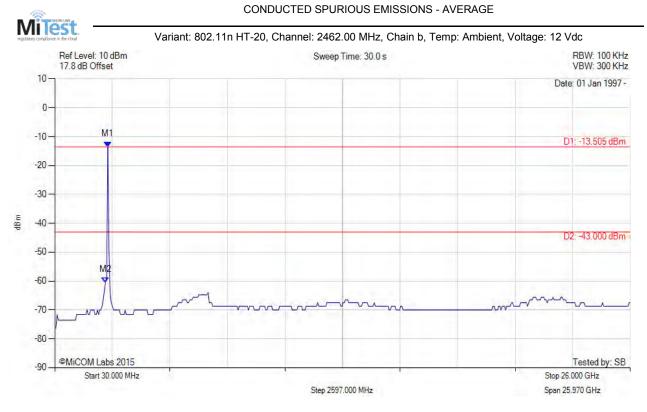

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -11.441 dBm	Limit: -41.00 dBm
Sweep Count = 0 RF Atten (dB) = 10	M2 : 2319.940 MHz : -60.460 dBm	Margin: -19.46 dB
Trace Mode = VIEW		

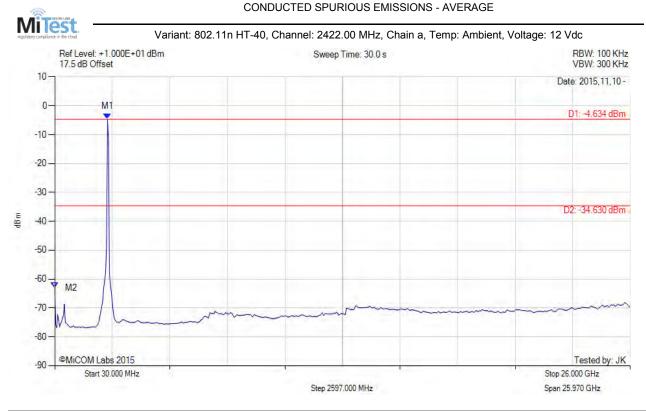

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -11.119 dBm	Limit: -41.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -59.990 dBm	Margin: -18.99 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

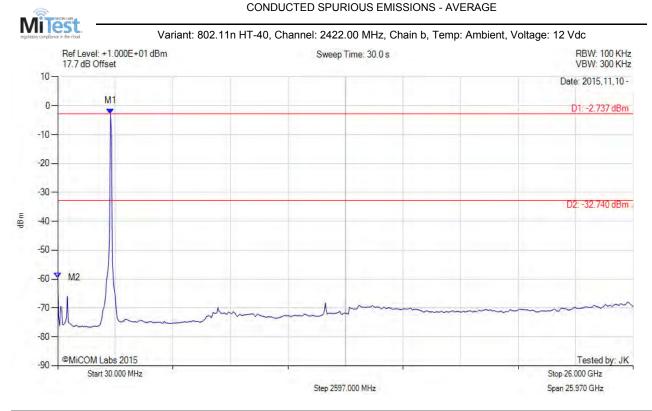

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE		Limit: -42.00 dBm
Sweep Count = 0 RF Atten (dB) = 10	M2 : 6951.864 MHz : -64.737 dBm	Margin: -22.74 dB
Trace Mode = VIEW		

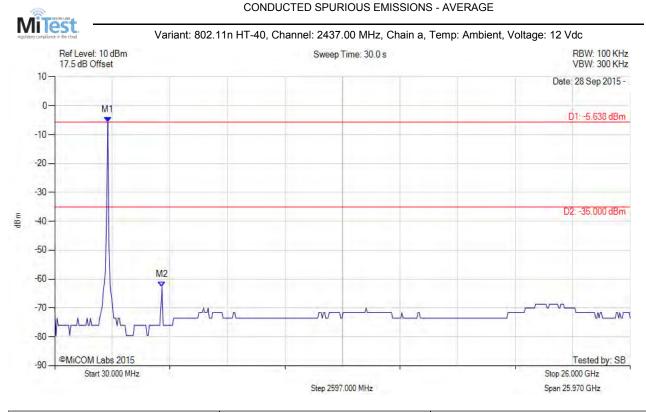

Analyser Setup	Marker:Frequency:Amplitude	Test Results
		Limit: -43.00 dBm
Sweep Count = 0 RF Atten (dB) = 10	M2 : 2267.896 MHz : -63.982 dBm	Margin: -20.98 dB
Trace Mode = VIEW		

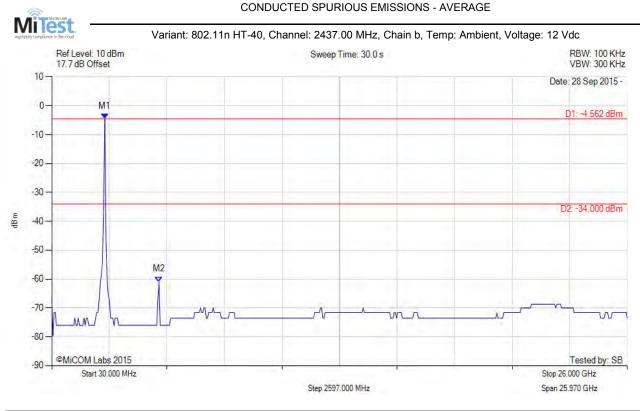

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE		Limit: -42.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -61.483 dBm	Margin: -19.48 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

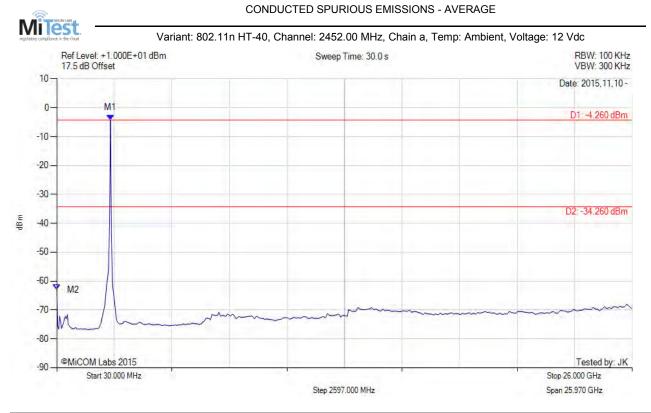

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -13.057 dBm	Limit: -43.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -62.643 dBm	Margin: -19.64 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

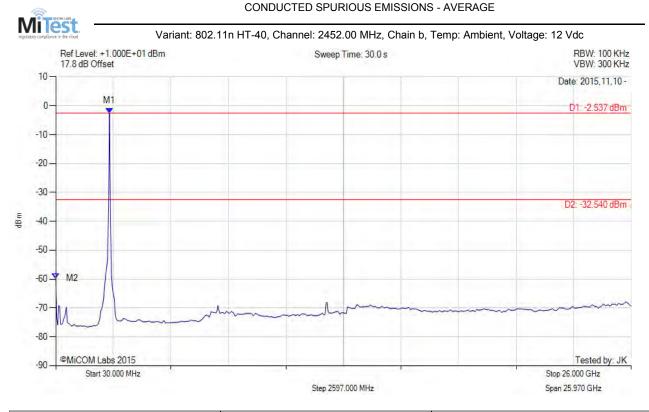

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -13.006 dBm	Limit: -43.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -60.956 dBm	Margin: -17.96 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -13.505 dBm	Limit: -43.00 dBm
Sweep Count = 0	M2 : 2319.940 MHz : -60.460 dBm	Margin: -17.46 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

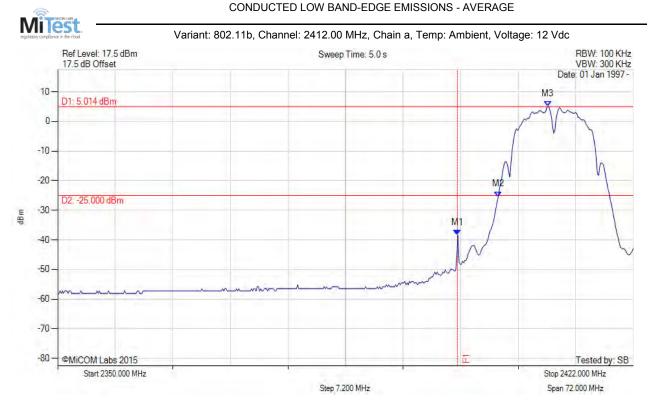

Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2410.000 MHz : -4.634 dBm	Limit: -34.63 dBm	
Sweep Count = 0	M2 : 30.000 MHz : -63.061 dBm	Margin: -28.43 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2410.000 MHz : -2.737 dBm	Limit: -32.74 dBm	
Sweep Count = 0	M2 : 30.000 MHz : -59.499 dBm	Margin: -26.76 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			

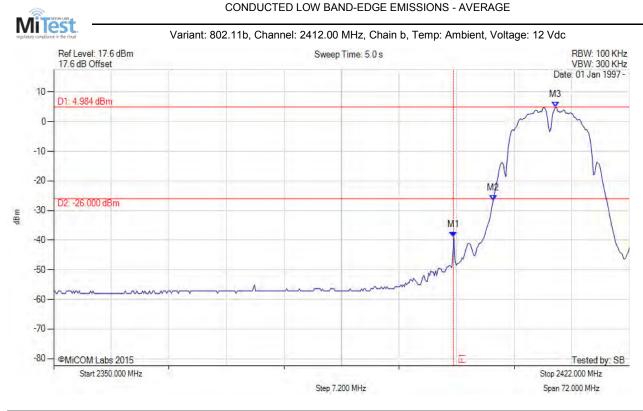

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -5.638 dBm	Limit: -35.00 dBm
Sweep Count = 0	M2 : 4870.100 MHz : -62.643 dBm	Margin: -27.64 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2424.028 MHz : -4.562 dBm	Limit: -34.00 dBm
Sweep Count = 0	M2 : 4870.100 MHz : -60.956 dBm	Margin: -26.96 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -4.260 dBm	Limit: -34.26 dBm	
Sweep Count = 0	M2 : 30.000 MHz : -62.940 dBm	Margin: -28.68 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			



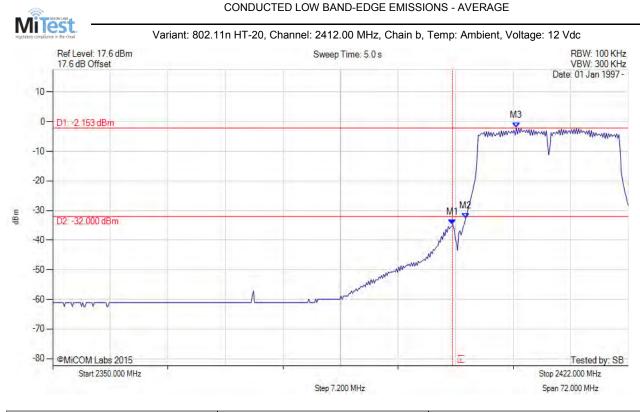
Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -2.537 dBm	Limit: -32.54 dBm	
Sweep Count = 0	M2 : 30.000 MHz : -59.763 dBm	Margin: -27.22 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


A.2.1.2. Conducted Band-Edge Emissions

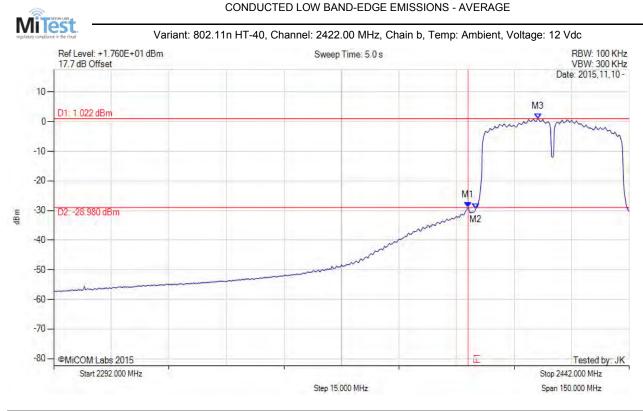
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2400.000 MHz : -38.420 dBm M2 : 2405.118 MHz : -25.416 dBm M3 : 2411.323 MHz : 5.014 dBm	Channel Frequency: 2412.00 MHz

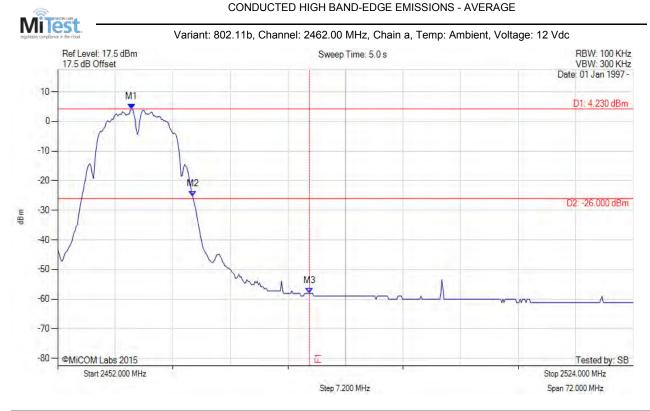
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2400.000 MHz : -39.076 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2404.974 MHz : -26.696 dBm	
RF Atten (dB) = 10	M3 : 2412.766 MHz : 4.984 dBm	
Trace Mode = VIEW		

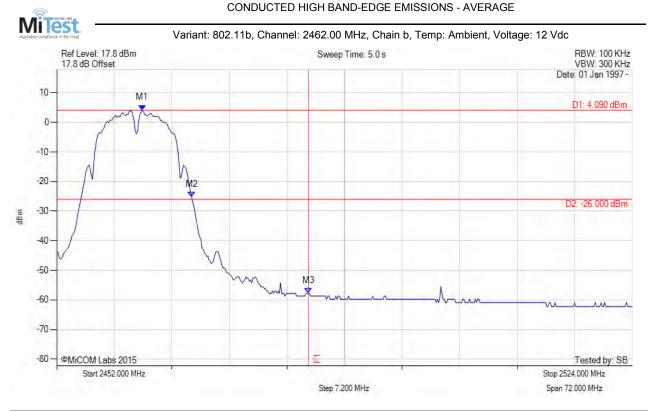
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2400.000 MHz : -32.912 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2401.655 MHz : -31.958 dBm	
RF Atten (dB) = 10	M3 : 2408.293 MHz : 0.640 dBm	
Trace Mode = VIEW		

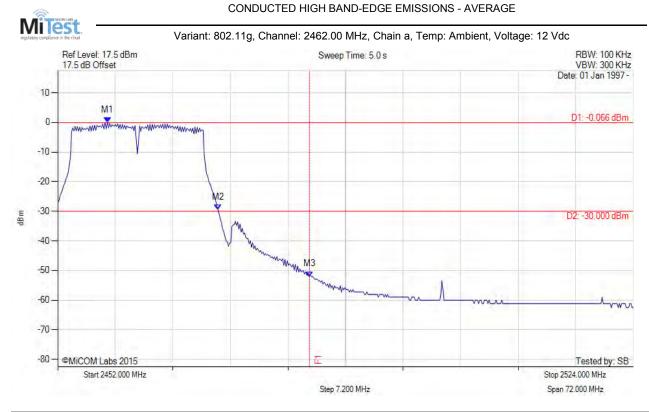

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M2 : 2401.655 MHz : -31.480 dBm	Channel Frequency: 2412.00 MHz
RF Atten (dB) = 10 Trace Mode = VIEW	M3 : 2415.796 MHz : 0.773 dBm	

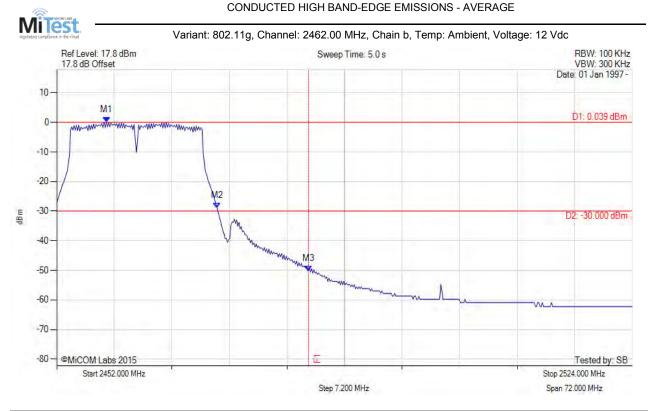

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2400.000 MHz : -34.372 dBm M2 : 2401.655 MHz : -31.958 dBm	Channel Frequency: 2412.00 MHz
RF Atten (dB) = 10 Trace Mode = VIEW	M3 : 2415.796 MHz : -1.490 dBm	

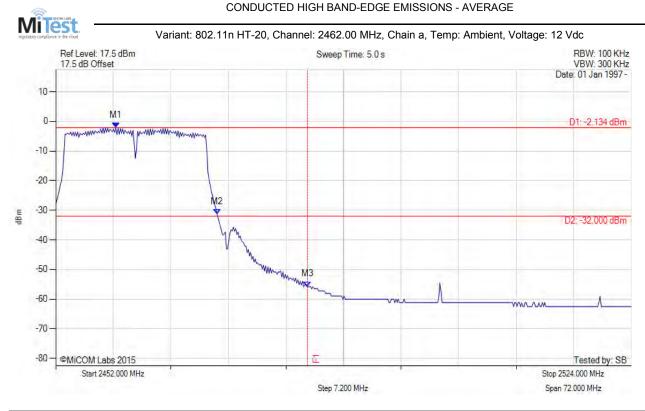

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2400.000 MHz : -34.678 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2401.655 MHz : -32.716 dBm	
RF Atten (dB) = 10	M3 : 2408.004 MHz : -2.153 dBm	
Trace Mode = VIEW		

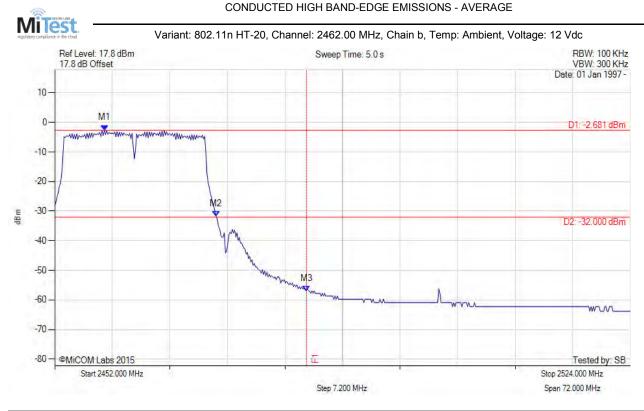

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -32.204 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2402.500 MHz : -31.721 dBm	
RF Atten (dB) = 10	M3 : 2418.250 MHz : -0.766 dBm	
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -29.039 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2402.000 MHz : -29.434 dBm	
RF Atten (dB) = 10	M3 : 2418.250 MHz : 1.022 dBm	
Trace Mode = VIEW		

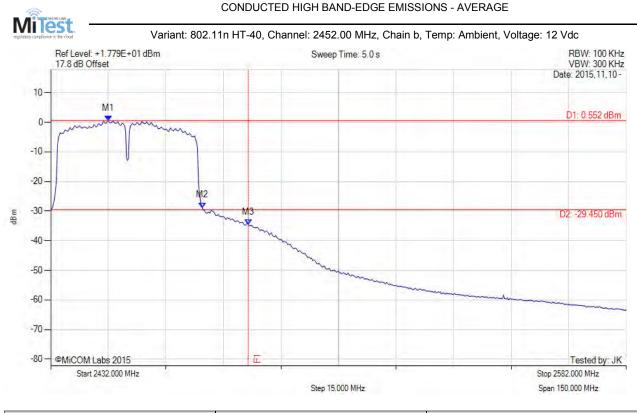

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M2 : 2468.882 MHz : -25.236 dBm	Channel Frequency: 2462.00 MHz
RF Atten (dB) = 10 Trace Mode = VIEW	M3 : 2483.500 MHz : -58.065 dBm	


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2462.677 MHz : 4.090 dBm M2 : 2468.882 MHz : -25.239 dBm M3 : 2483.500 MHz : -57.765 dBm	Channel Frequency: 2462.00 MHz

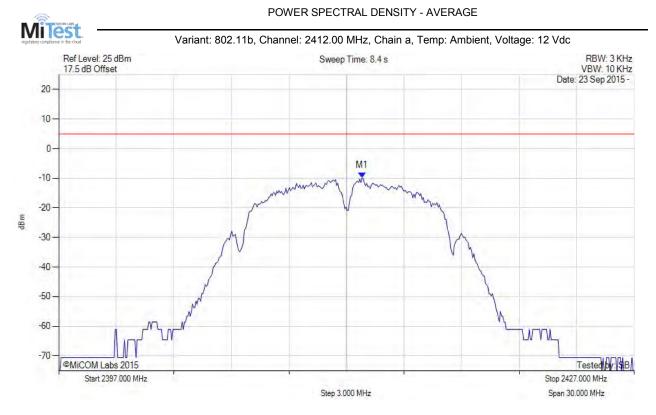

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2458.204 MHz : -0.066 dBm M2 : 2472.056 MHz : -29.568 dBm M3 : 2483.500 MHz : -52.045 dBm	Channel Frequency: 2462.00 MHz


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2458.204 MHz : 0.039 dBm M2 : 2472.056 MHz : -28.884 dBm M3 : 2483.500 MHz : -50.161 dBm	Channel Frequency: 2462.00 MHz

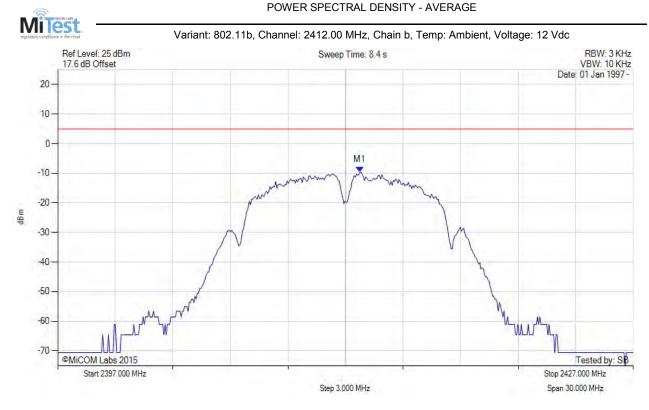
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2459.503 MHz : -2.134 dBm M2 : 2472.200 MHz : -31.457 dBm M3 : 2483.500 MHz : -55.786 dBm	Channel Frequency: 2462.00 MHz


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2458.204 MHz : -2.681 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2472.200 MHz : -31.701 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -56.937 dBm	
Trace Mode = VIEW		

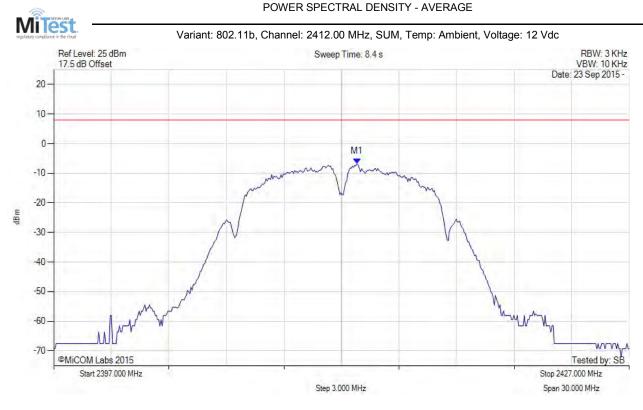
Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2448.250 MHz : -1.229 dBm M2 : 2471.000 MHz : -29.028 dBm	Channel Frequency: 2452.00 MHz
	M3 : 2483.500 MHz : -40.156 dBm	

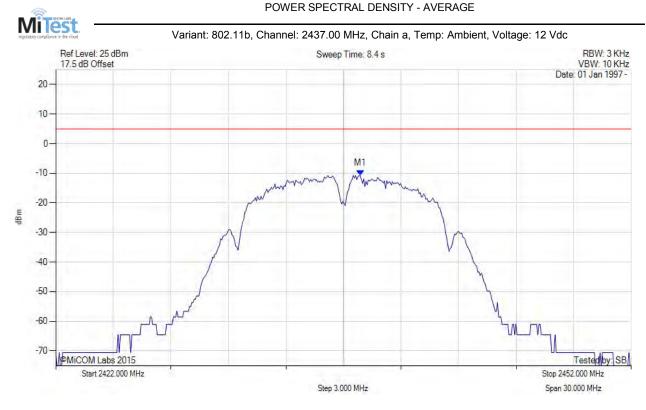


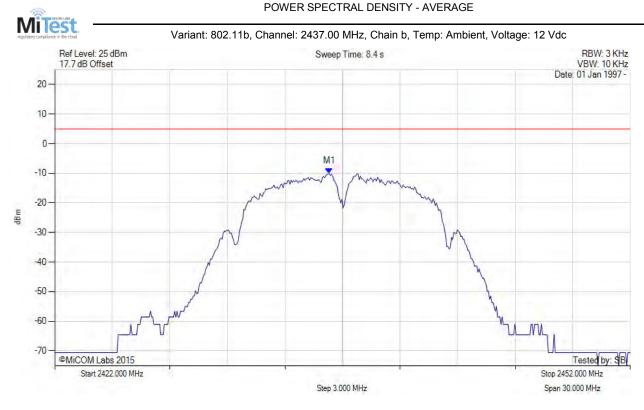
Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2447.000 MHz : 0.552 dBm	Channel Frequency: 2452.00 MHz	
Sweep Count = 0	M2 : 2471.500 MHz : -28.867 dBm		
RF Atten (dB) = 10	M3 : 2483.500 MHz : -34.587 dBm		
Trace Mode = VIEW			

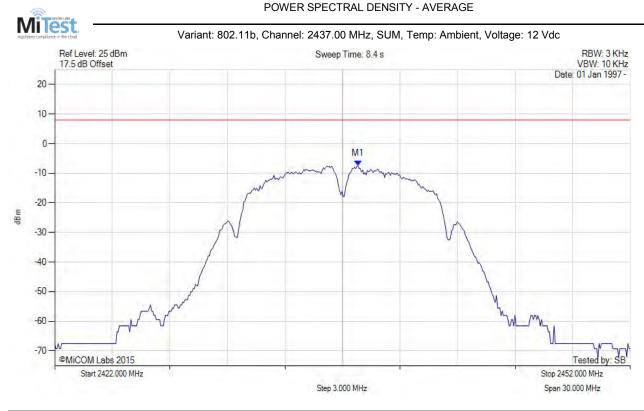

A.3. Power Spectral Density

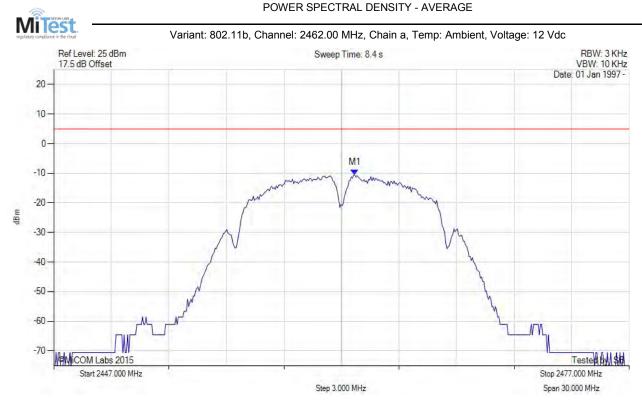
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2412.812 MHz : -9.817 dBm	Limit: ≤ 4.990 dBm

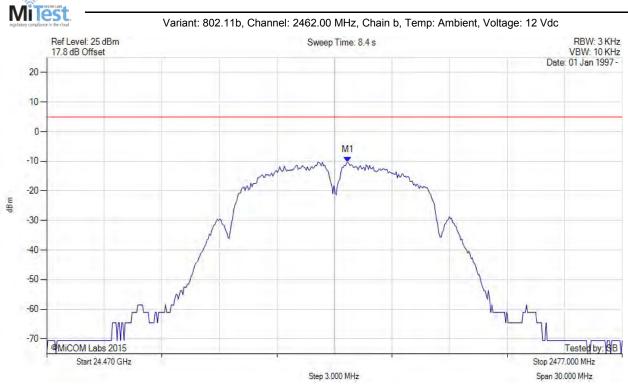

back to matrix


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2412.752 MHz : -9.651 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

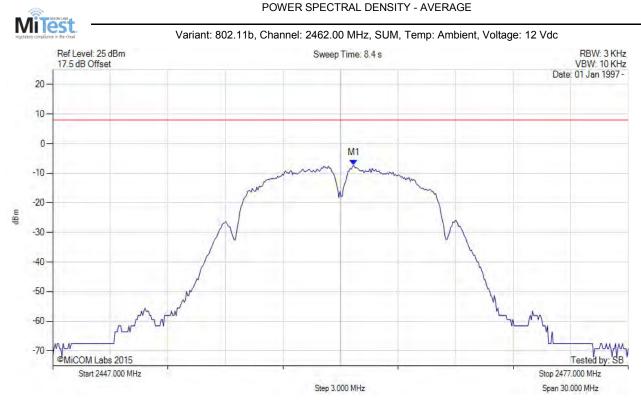

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2412.800 MHz : -6.731 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2412.800 MHz : -6.687 dBm	Margin: -14.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2437.872 MHz : -10.741 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2436.309 MHz : -10.133 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

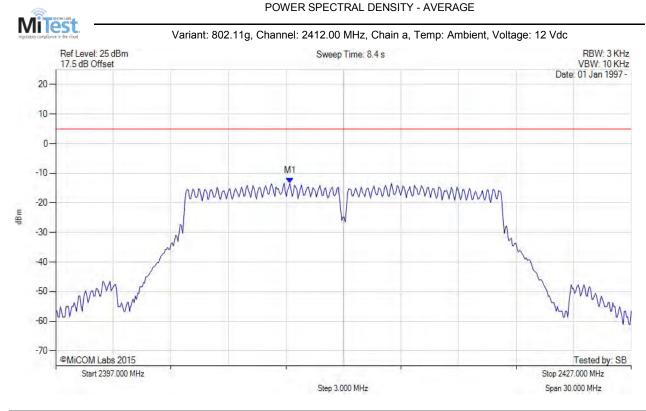

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2437.800 MHz : -7.479 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2437.800 MHz : -7.435 dBm	Margin: -15.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

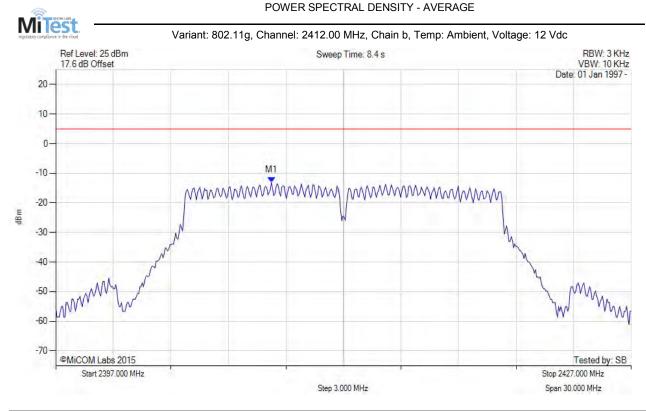
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2462.691 MHz : -10.496 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

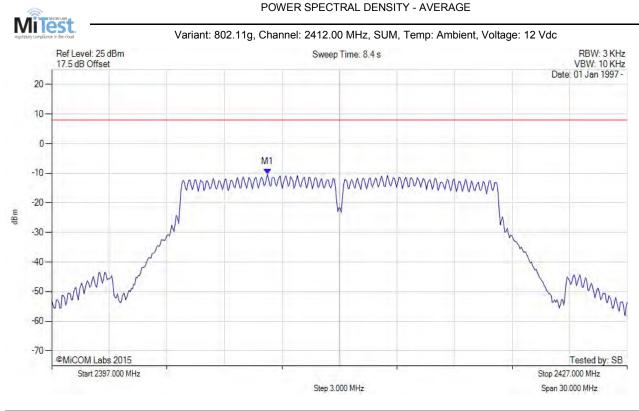


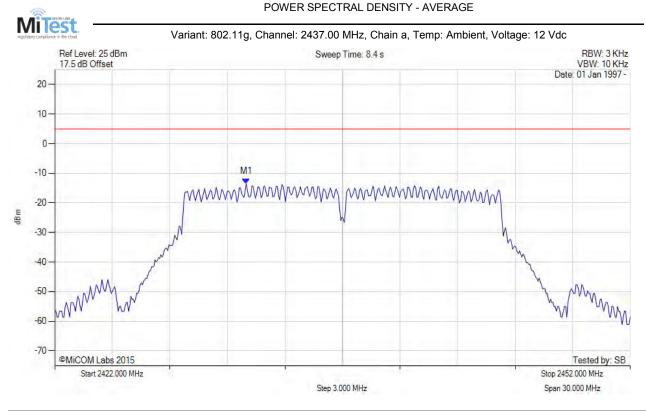
POWER SPECTRAL DENSITY - AVERAGE

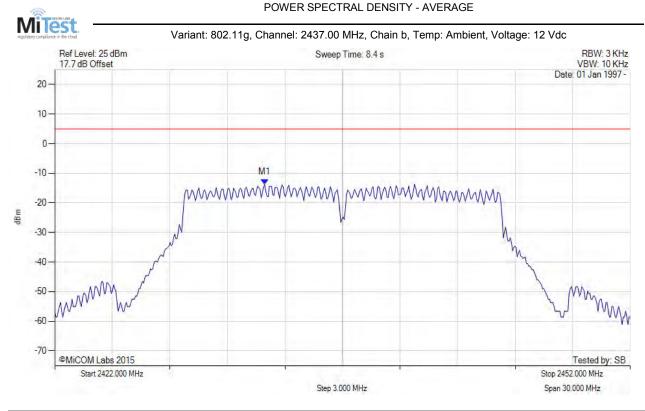
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2462.691 MHz : -10.258 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

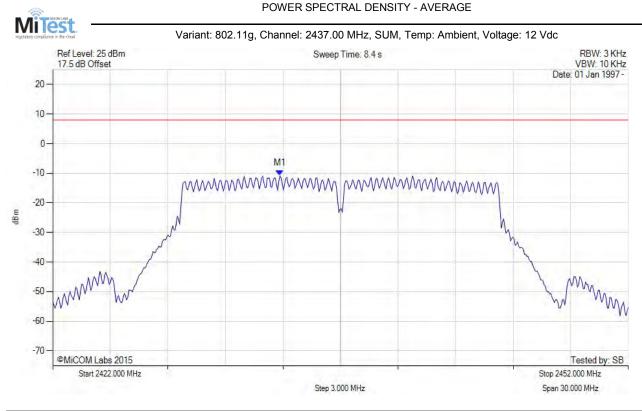

back to matrix

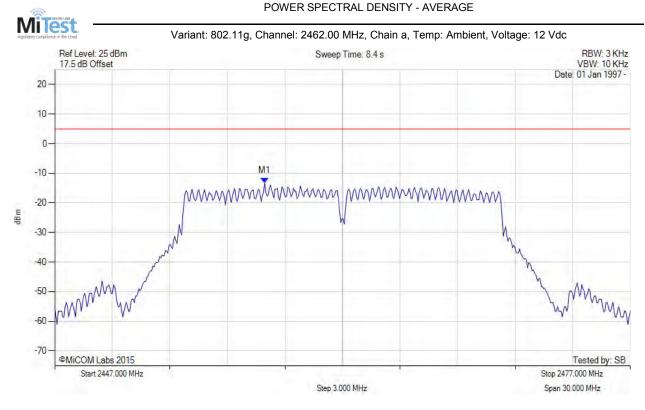

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2462.700 MHz : -7.365 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2462.700 MHz : -7.321 dBm	Margin: -15.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

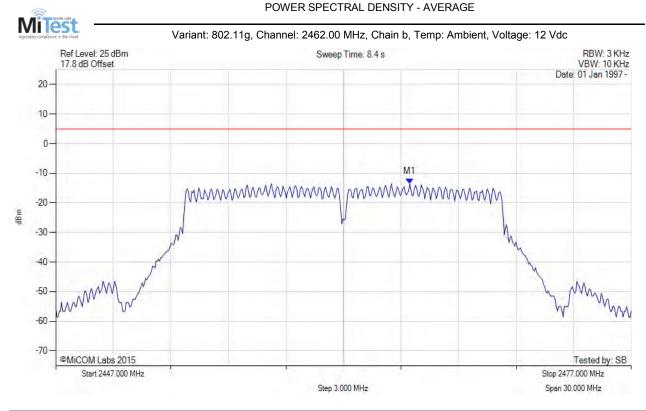

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2409.204 MHz : -13.359 dBm	Limit: ≤ 4.990 dBm

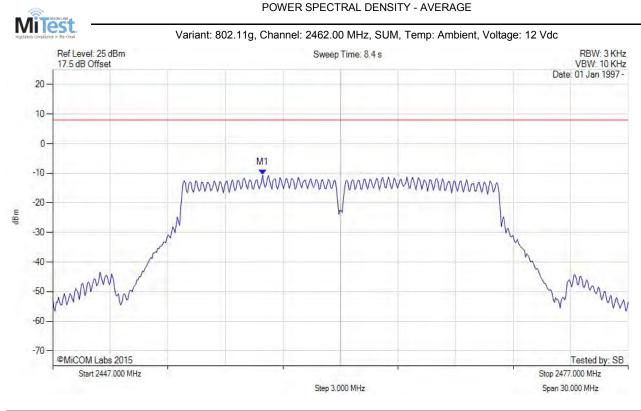

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2408.242 MHz : -13.157 dBm	Limit: ≤ 4.990 dBm

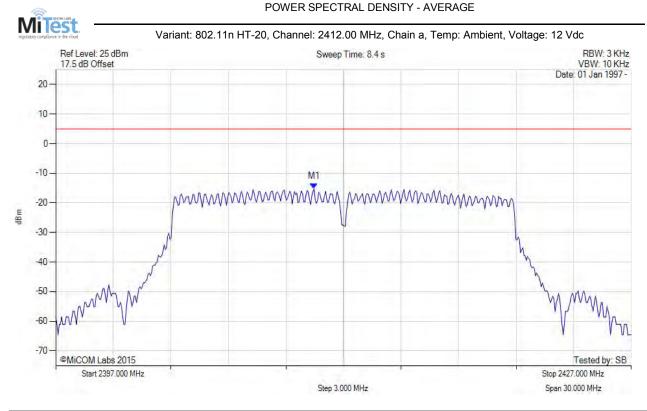

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2408.200 MHz : -10.358 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2408.200 MHz : -10.266 dBm	Margin: -18.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

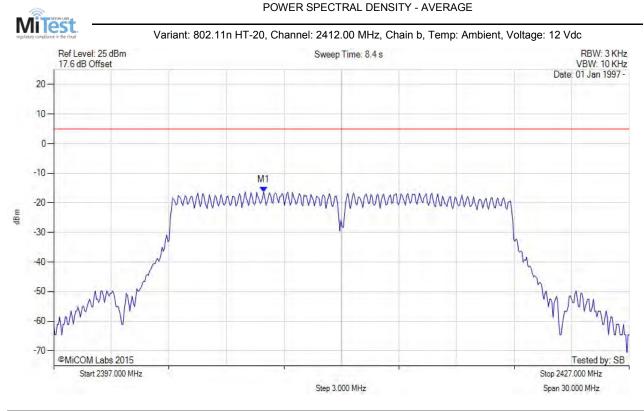

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2431.980 MHz : -13.540 dBm	Limit: ≤ 4.990 dBm

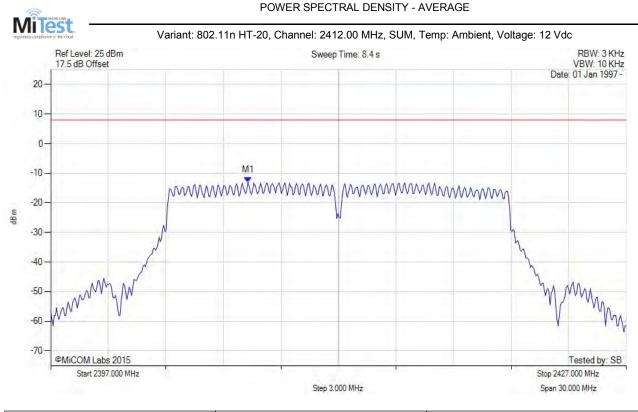

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2432.942 MHz : -13.726 dBm	Limit: ≤ 4.990 dBm

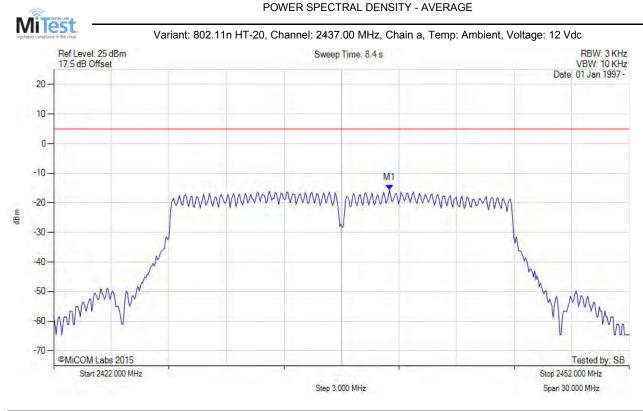

Analyser Setup	Marker:Frequency:Amplitude	Test Results
		Limit: ≤ 8.0 dBm Margin: -18.7 dB
RF Atten (dB) = 20 Trace Mode = VIEW	Duty Cycle Correction Factor : +0.09 dB	

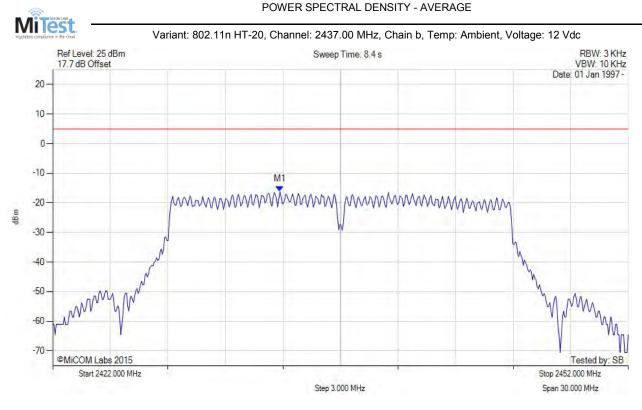

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2457.942 MHz : -13.371 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2465.457 MHz : -13.565 dBm	Limit: ≤ 4.990 dBm

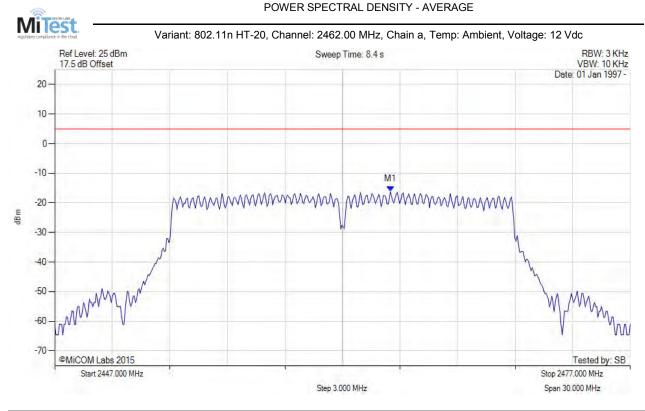

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2457.900 MHz : -10.654 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0 RF Atten (dB) = 20	M1 + DCCF : 2457.900 MHz : -10.562 dBm Duty Cycle Correction Factor : +0.09 dB	Margin: -18.6 dB
Trace Mode = VIEW		

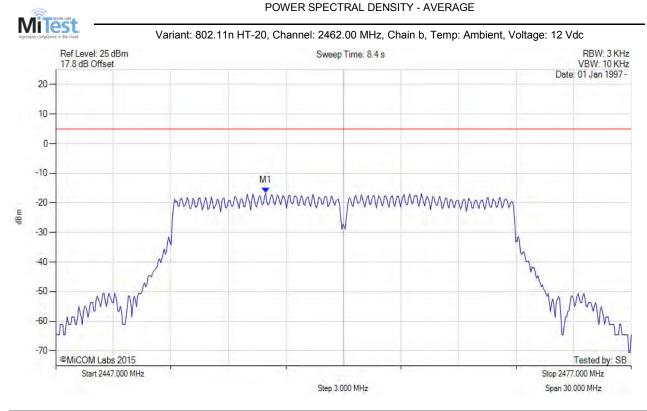

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2410.467 MHz : -15.134 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

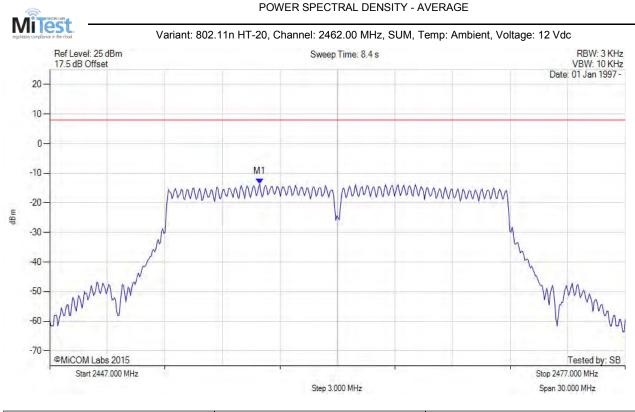

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2407.942 MHz : -16.346 dBm	Limit: ≤ 4.990 dBm


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2407.300 MHz : -13.021 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2407.300 MHz : -12.853 dBm	Margin: -20.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.17 dB	
Trace Mode = VIEW		

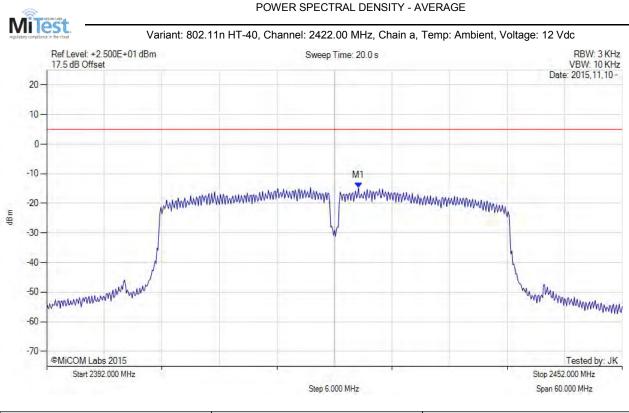

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1:2439.495 MHz:-15.695 dBm	Limit: ≤ 4.990 dBm


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2433.844 MHz : -16.179 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

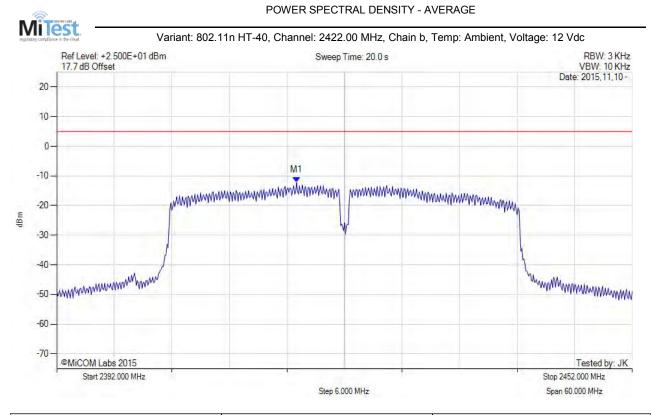

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2439.500 MHz : -13.100 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2439.500 MHz : -12.932 dBm	Margin: -20.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.17 dB	
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 2464.495 MHz : -16.229 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

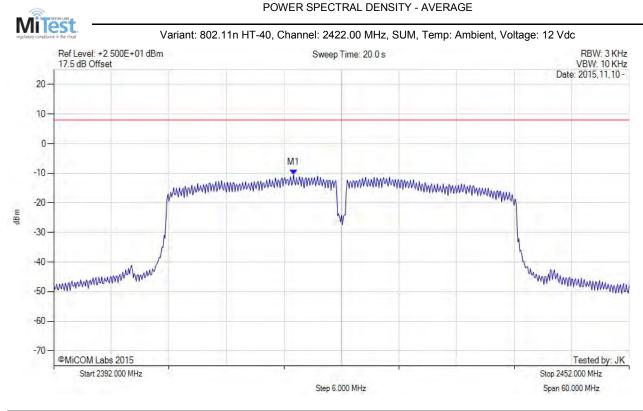
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2457.942 MHz : -16.656 dBm	Limit: ≤ 4.990 dBm

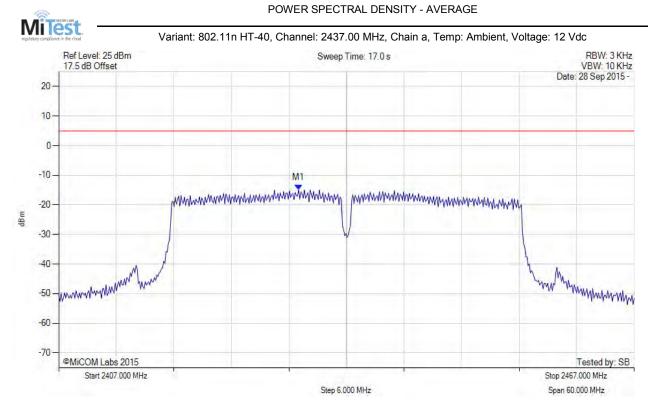


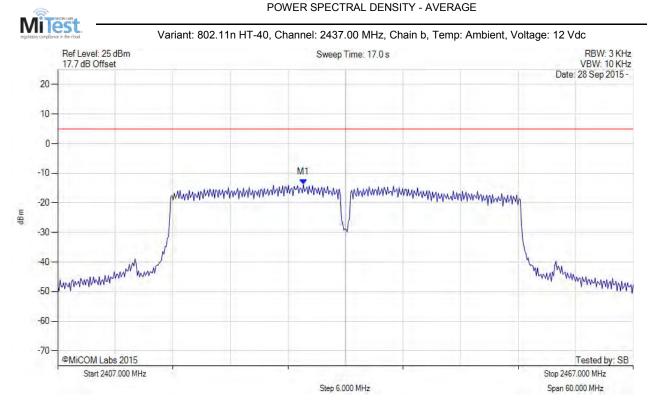
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2457.900 MHz : -13.628 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2457.900 MHz : -13.460 dBm	Margin: -21.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.17 dB	
Trace Mode = VIEW		

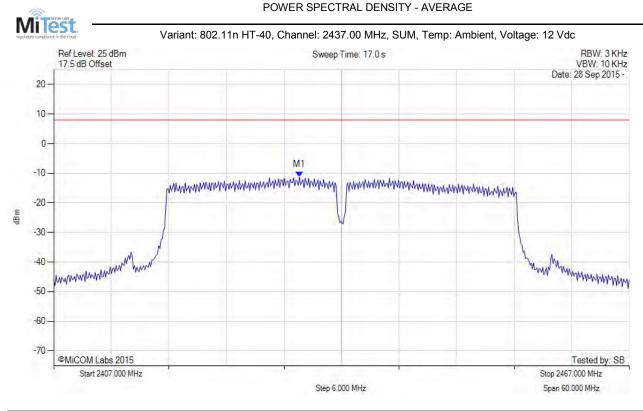

Title:Actiontec Electronics Inc WCB6240QTo:FCC 15.247 (DTS) + IC RSS-247 Issue 1Serial #:ATEC09-U5a Conducted Rev CIssue Date:24th November 2015Page:143 of 152

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2424.500 MHz : -14.770 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

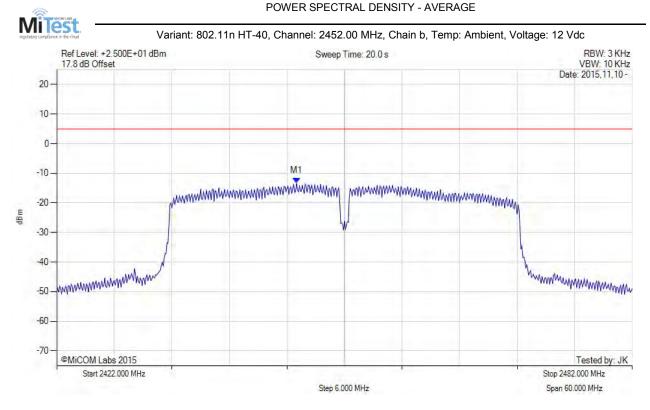

back to matrix

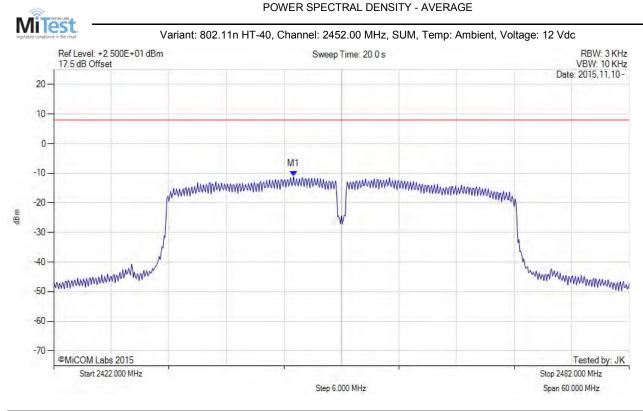

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2417.000 MHz : -12.174 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2417.000 MHz : -10.580 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2417.000 MHz : -10.269 dBm	Margin: -18.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.31 dB	
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2432.010 MHz : -14.959 dBm	Limit: ≤ 4.990 dBm


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2432.611 MHz : -13.814 dBm	Limit: ≤ 4.990 dBm


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2432.600 MHz : -11.345 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2432.600 MHz : -10.887 dBm	Margin: -18.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.31 dB	
Trace Mode = VIEW		


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2447.000 MHz : -14.999 dBm	Limit: ≤ 4.990 dBm

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2447.000 MHz : -13.398 dBm	Limit: ≤ 4.990 dBm

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2447.000 MHz : -11.115 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2447.000 MHz : -10.804 dBm	Margin: -18.8 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.31 dB	
Trace Mode = VIEW		

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com