Company: Actiontec Electronics Inc.

Test of: WCB5000, WEB5000

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Report No.: ATEC07-U5 Rev A

CONDUCTED TEST REPORT

Test of: Actiontec Electronics Inc. WCB5000, WEB5000 to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Test Report Serial No.: ATEC07-U5 Rev A

This report supersedes: NONE

- Applicant: Actiontec Electronics Inc. 760 N Mary Avenue Sunnyvale, California 94085 USA
- Product Function: 11ac Wireless Ethernet Bridge with MoCA 2.0

Issue Date: 18th August 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
3 of 176

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	.10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	.11
5.1. Technical Details	.11
5.2. Scope Of Test Program	.12
5.3. Equipment Model(s) and Serial Number(s)	.13
5.4. Antenna Details	.13
5.5. Cabling and I/O Ports	.13
5.6. Test Configurations	.14
5.7. Equipment Modifications	.14
5.8. Deviations from the Test Standard	.14
6. TEST SUMMARY	.15
7. TEST EQUIPMENT CONFIGURATION(S)	.16
7.1. Conducted	.16
7.2. Radiated Emissions - 3m Chamber	.18
7.3. ac Wireline Emission Test Set-up	.20
8. MEASUREMENT AND PRESENTATION OF TEST DATA	.21
9. TEST RESULTS	.22
9.1. 6 dB & 99% Bandwidth	.22
9.2. Conducted Output Power	.27
9.3. Conducted Emissions	.33
9.3.1. Conducted Emissions	.33
9.3.2. Conducted Band-Edge Emissions	.38
9.4. Power Spectral Density	.40
9.5. Radialed Spurious Emissions.	.51
9.5.1. Radiated Spurious Ethissions	.34
9.5.2. Radiated Restricted Band-Edge Spunous Emissions	.57
9.0. Raulaleu Digital Emissions ($0.03 - 1 \text{ GHz}$)	.00
	.00
A A FENDIA - GRAFTICAL IMAGES	./ 1
A.I. U UD & 33 /0 Dahuwiuun	.12
A.2. EIIII001010	.90
A.2.1. Conducted Sourious Emissions	.90
A.2.1. Conducted Band Edge Emissions	.90
A 2 Dower Spectral Density	140
A.S. FUWER Specific Density	140

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
4 of 176

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
5 of 176

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
6 of 176

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:7 of 176

2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	9 th August 2015				
Draft #2	13 th August 2015				
Rev A	18 th August 2015	Initial Release			

In the above table the latest report revision will replace all earlier versions.

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015 8 of 176

3. TEST RESULT CERTIFICATE

Manufacturer: Actiontec Electronics Inc. 760 N Mary Avenue Sunnyvale 94085 USA

Model: WC5000, WEB5000

Type Of Equipment: Wireless Ethernet Bridge with MoCA 2.0

S/N's: SB325280000030(#30)

Test Date(s): 31st July – 3rd August 2015

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304 Fax: +1 925 462 0306

TEST RESULTS

EQUIPMENT COMPLIES

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
9 of 176

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v03r03	9th June 2015	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
ш	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
v	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2014	Radio Frequency Devices; Subpart C – Intentional Radiators
іх	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
x	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
10 of 176

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
11 of 176

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Actiontec Electronics Inc. WCB5000 and WEB5000 to
	FCC CFR 47 Part 15 Subpart C 15.247 (DTS).
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	Actiontec Electronics Inc.
	760 N Mary Avenue
	Sunnyvale California 94085 USA
Manufacturer:	As Applicant
Laboratory performing the tests:	MICOM Labs, Inc.
	575 Boulder Court
Test report reference number:	
Date ELIT received:	30th July 2015
Standard(s) applied:	ECC CEP 47 Part 15 Subpart C 15 247 (DTS)
Dates of test (from to):	31st July 3rd August 2015
No of Units Tested:	1
Type of Equipment:	Wireless Ethernet Bridge with MoCA 2.0
Product Family Name:	Wireless Ethernet Bridge
Model(s):	WCB5000, WEB5000
Location for use:	Indoor
Declared Frequency Range(s):	2400 - 2483.5 MHz
Primary function of equipment:	11ac Wireless Ethernet Bridge with MoCA 2.0
Secondary function of equipment:	MoCA Router
Type of Modulation:	OFDM
EUT Modes of Operation:	2400 - 2483.5 MHz:
	802.11b; 802.11g; 802.11n HT-20; 802.11n HT-40;
Declared Nominal Output Power (Ave):	+25 dBm
Transmit/Receive Operation:	Transceiver - Half Duplex
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 12Vdc / 1.5A
Operating Temperature Range:	Declared Range 0°C to 40°C
ITU Emission Designator:	2400 – 2483.5 MHz 802.11b 15M1G1D
	2400 – 2483.5 MHz 802.11g 16M6D1D
	2400 – 2483.5 MHz 802.11n – HT-20 17M8D1D
Equipment Dimensioner	2400 – 2483.5 MHZ 802.11n – H1-40_36M1D1D
	1.3 (T) X 1.75 (W) X 5.75 (D)
Weight:	U.95 ID.
Hardware Rev:	AM3
Software Rev:	2.2.1.2ac

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
12 of 176

5.2. Scope Of Test Program

The scope of the test program was to test the Actiontec Electronics Inc. WCB5000, 802.11a/b/g/n/ac configuration in the frequency ranges 2400 - 2483.5 MHz for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C - Intentional Radiators

Manufacturers Declaration of Similarity

Re: FCC ID: LNQWCB5000 Actiontec Models: WCB5000, WEB5000

To whom it may concern:

We, Actiontec Electronics, Inc., hereby declare the above mentioned 2 models have electrically identical wireless circuitry with the same electromagnetic emissions and electromagnetic compatibility characteristics.

The differences among these two models are as follows – WCB5000 – fully loaded with MoCA, device tested for compliance – deemed worst test case WEB5000 – fully loaded without MoCA

Actiontec Electronics Inc. WCB5000

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
13 of 176

5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manufacturer	Model	Serial no.	Delivery Date
EUT	Wireless Ethernet Bridge with MoCA	Actiontec	WCB5000	SB325280000030 (#30)	30 th July 2015
EUT	Power Adapter 100 - 120Vac 50/60Hz 0.6A 12 Vdc 1.5 A	Actiontec	KSASB0241200150HU	Unknown	30 th July 2015
Support Equipment	Laptop Computer with EUT RF Software	ACER	MS2265	LXPAW0X203923 1969520000	30 th July 2015

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Galtronics	Custom Cabled U.FL	Dipole	2.3	-	360	-	2400 - 2483.5
integral	Galtronics	Custom Cabled U.FL	Dipole	1.3	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain								
X-Pol - Cr	Dir BW - Directional BeamWidth X-Pol - Cross Polarization							

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100m	2	Ν	RJ-45	Packet Data

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:14 of 176

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power				
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High	
2400 - 2483.5 MHz					
802.11b	1.00	2412.00	2437.00	2462.00	
802.11g	6.00	2412.00	2437.00	2462.00	
802.11n HT-20	6.50	2412.00	2437.00	2462.00	
802.11n HT-40	13.50	2422.00	2437.00	2452.00	

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
15 of 176

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
Conducted Test Results		
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Conducted Emissions	-	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
Power Spectral Density	Complies	View Data
Radiated Test Results		
Radiated Restricted Band Emissions	Complies	View Data
Radiated Restricted Band-Edge Emissions	Complies	View Data
Digital Emissions (0.03 – 1 GHz)	Complies	View Data
ac Wireline Emissions		
ac Wireline Emissions	Complies	View Data

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
16 of 176

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 6 dB & 99% Bandwidth
- 2. Conducted Output Power
- 3. Conducted Spurious Emissions
- 4. Conducted Band-Edge Emissions
- 5. Power Spectral Density

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
17 of 176

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Aug 2015
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	28 Oct 2015
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	20 Dec 2015
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Aug 2015
440	USB Wideband Power Sensor	Boonton	55006	9178	25 Sep 2015
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2015
442	USB Wideband Power Sensor	Boonton	55006	9181	25 Sep 2015
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber	Tenney	TTC	12808-1	30 Sep 2015
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Dec 2015
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Dec 2015
RF#2 SMA#4	EUT to Mitest box port 3	Flexco	SMA Cable port4	None	20 Dec 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Dec 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
18 of 176

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Spurious Emissions
- 2. Restricted Band-Edge Emissions
- 3. Radiated Digital Emissions (0.03 1 GHz)

Radiated Emission Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
19 of 176

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2016
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	08 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Aug 2015
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Aug 2015
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Aug 2015
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	25 Aug 2015
468	Low pass filter	Mini Circuits	SLP-550	None	30 Sep 2015
469	Low pass filter	Mini Circuit	SLP-1000	None	30 Sep 2015
470	High Pass filter	Mini Circuits	SHP-700	None	30 Sep 2015
CC05	Confidence Check	MiCOM	CC05	None	1 Aug 2015

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: A To: F Serial #: A Issue Date: 1 Page: 2

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
20 of 176

7.3. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. ac Wireline Conducted Emissions

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Traceability of Test Equipment Utilized for ac Wireline Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V- network)	Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2016
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
21 of 176

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
22 of 176

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C):					
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:23 of 176

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Band	width (MU-)	Limit	Lowest
Frequency		Ροι	t(s)		6 UB Balluv		Linin	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2412.0	<u>10.000</u>	<u>10.000</u>			10.000	10.000	≥500.0	-9.50
2437.0	<u>10.000</u>	<u>9.930</u>			10.000	9.930	≥500.0	-9.43
2462.0	<u>10.000</u>	<u>9.930</u>			10.000	9.930	≥500.0	-9.43

Test Frequency		Measured 99% E Por	Bandwidth (MHz) t(s)	Maximum 99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2412.0	<u>15.140</u>	<u>15.117</u>			15.140	
2437.0	<u>15.145</u>	<u>15.110</u>			15.145	
2462.0	<u>15.129</u>	<u>15.104</u>			15.129	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title: To: Serial #: Issue Date: 24 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11g	Duty Cycle (%):	90
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandwidth (MHz)		Limit	Lowest Margin	
MH ₇	2	P U		d	Highost	Lowest	KH-2	MH-7
	d	J	Ľ	ŭ	Highest	Lowest	KH2	
2412.0	<u>16.270</u>	<u>16.270</u>			16.270	16.270	≥500.0	-15.77
2437.0	<u>16.270</u>	<u>16.270</u>			16.270	16.270	≥500.0	-15.77
2462.0	<u>16.270</u>	<u>16.270</u>			16.270	16.270	≥500.0	-15.77

Test Frequency		Measured 99% E Por	Bandwidth (MHz) t(s)	Maximum 99%		
MHz	а	b	с	d	Bandwidth (MHz)	
2412.0	<u>16.482</u>	<u>16.569</u>			16.569	
2437.0	<u>16.495</u>	<u>16.577</u>			16.577	
2462.0	<u>16.490</u>	<u>16.577</u>			16.577	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:ActionTo:FCC CSerial #:ATECIssue Date:18th ActionPage:25 of 2

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
25 of 176

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	93
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bond	width (MU-)	Limit	Lowest
Frequency		Por	t(s)		6 UB Balluv		Linin	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2412.0	<u>17.470</u>	<u>17.470</u>			17.470	17.470	≥500.0	-16.97
2437.0	<u>17.470</u>	<u>17.470</u>			17.470	17.470	≥500.0	-16.97
2462.0	<u>17.470</u>	<u>17.470</u>			17.470	17.470	≥500.0	-16.97

Test Frequency		Measured 99% E Por	Bandwidth (MHz) t(s)	Maximum 99%		
MHz	а	b	c	d	(MHz)	
2412.0	<u>17.741</u>	<u>17.815</u>			17.815	
2437.0	<u>17.728</u>	<u>17.806</u>			17.806	
2462.0	17.737	<u>17.800</u>			17.800	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:ActionTo:FCC CSerial #:ATECCIssue Date:18th AuPage:26 of 1

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
26 of 176

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	85
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bond	width (MU-)	Limit	Lowest
Frequency		Por	t(s)		6 UB Balluv		Linin	Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
2422.0	<u>35.200</u>	<u>34.930</u>			35.200	34.930	≥500.0	-34.43
2437.0	<u>35.600</u>	<u>34.930</u>			35.600	34.930	≥500.0	-34.43
2452.0	<u>35.200</u>	<u>34.930</u>			35.200	34.930	≥500.0	-34.43

Test Frequency		Measured 99% E Por	Bandwidth (MHz) t(s)	Maximum 99%		
MHz	а	b	С	d	(MHz)	
2422.0	<u>36.032</u>	<u>36.110</u>			36.110	
2437.0	<u>36.027</u>	<u>36.119</u>			36.119	
2452.0	36.017	<u>36.128</u>			36.128	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:27 of 176

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power								
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (b) & (c)	5.247 (b) & (c) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References							
Test Procedure for Fundamental In the case of average power me	Emission Output Power Measurer asurements an average power ser	nent nsor was utilized.						
For peak power measurements the bandwidth.	he spectrum analyzer built-in powe	er function was used to integrate p	eak power over the 20 dB					
Testing was performed under am MIMO device, each port was mea	bient conditions at nominal voltag asured, summed (Σ) and reported.	e only. Where the device operate	d with multiple antenna ports i.e.					
Test configuration and setup use Supporting Information Calculated Power = A + G + Y+ 1	d for the measurement was per the	e Conducted Test Set-up specified	l in this document.					
A = Total Power [10*Log10 (10 ^{a/1} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power m	⁰ + 10 ^{b/10} + 10 ^{c/10} + 10 ^{d/10})] neasurements only)							
Limits for Fundamental Emissi (b) The maximum peak conducte systems:	on Output Power d output power of the intentional r	adiator shall not exceed the follow	ng for non-frequency hopping					
(3) For systems using digita power measurement, comp power. Maximum Conducte elements averaged across level. Power must be summ during which the transmitte alternative modulation meth mode.	(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any							
(4) The conducted output p gains that do not exceed 6 greater than 6 dBi are used in paragraphs (b)(3) of this	(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.							
 (c) Operation with directional antenna gains greater than 6 dBi. (1) Fixed point-to-point operation: (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. 								
(iii) Fixed, point-to-poi multipoint systems, or information. The oper professionally installe operations. The instru	nt operation, as used in paragraph mnidirectional applications, and mu ator of the spread spectrum or dig d, the installer is responsible for en iction manual furnished with the in	ns (c)(1)(i) and (c)(1)(ii) of this sect ultiple co-located intentional radiat- itally modulated intentional radiato nsuring that the system is used ex- tentional radiator shall contain lang	ion, excludes the use of point-to- ors transmitting the same r or, if the equipment is clusively for fixed, point-to-point guage in the installation					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:28 of 176

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Maximum Transmit (Conducted) Power Limits

EUT: Indoor operation - Wireless Ethernet Bridge Antenna gain: < 6 dBi (3.8 dBi) Beamforming Gain: Not Applicable Limit: +30 dBm (1W) (+36 dBm/EIRP, 6 dBi antenna)

Modified Conducted Power Levels

During radiated emission testing (spurious and restricted band-edge) the power setting may have been reduced. Any reduction in output power (together with power settings) that was required to bring the EUT into compliance is reflected in the following tables.

 Title:
 Ad

 To:
 F0

 Serial #:
 A⁻

 Issue Date:
 18

 Page:
 29

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
29 of 176

Equipment Configuration for Average Output Power

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)			Calculated Total Power Σ Port(s) + DCCF (+0.04 dB)	Limit	Margin	EUT Power	
MHz	а	b	c	d	dBm	dBm	dB	Setting
2412.0	16.45	16.96			19.77	30.00	-10.23	39/39
2437.0	21.98	22.84			25.49	30.00	-4.51	54/54
2462.0	22.88	23.53			26.27	30.00	-3.73	55/55

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Equipment Configuration for Average Output Power

Variant:	802.11g	Duty Cycle (%):	90.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s) + DCCF (+0.46 dB)	Limit	Margin	EUT Power
MHz	а	b	С	d	dBm	dBm	dB	Setting
2412.0	19.17	20.45			23.32	30.00	-6.68	56/56
2437.0	21.66	23.03			25.87	30.00	-4.13	62/62
2462.0	17.53	18.85			21.71	30.00	-8.29	54/54

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-01 MEASURING RF OUTPUT POWER Measurement Uncertainty: ±1.33 dB

DCCF - Duty Cycle Correction Factor

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:31 of 176

Equipment Configuration for Average Output Power

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated Total Power S	Limit	Margin	
Frequency		Port(s)		Port(s) + DCCF (+0.32 dB)	Liiiii	margin	EUI Power Setting
MHz	а	b	С	d	dBm	dBm	dB	eeg
2412.0	18.61	19.86			22.61	30.00	-7.39	55/55
2437.0	21.65	22.96			25.68	30.00	-4.32	62/62
2462.0	15.92	17.42			20.06	30.00	-9.94	52/52

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:32 of 176

Equipment Configuration for Average Output Power

Variant:	802.11n HT-40	Duty Cycle (%):	85.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated Total Power S	Limit	Margin	
Frequency		Port	(s)		Port(s) + DCCF (+0.71 dB)	Linit	Margin	EUI Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2422.0	12.30	13.22			16.50	30.00	-13.50	45/45
2437.0	20.83	22.15			25.26	30.00	-4.74	62/62
2452.0	11.89	13.10			16.25	30.00	-13.75	45/45

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

DCCF - Duty Cycle Correction Factor

9.3. Conducted Emissions

9.3.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions									
Standard:	FCC CFR 47:15.247	C CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45						
Standard Section(s):	15.247 (d)	Pressure (mBars):	999 - 1001						
Reference Document(s):	See Normative References								

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:34 of 176

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)								
Frequency	Range	Port a		Port b		Port c		Port d			
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit		
2412.0	30.0 - 26000.0	<u>-66.480</u>	-33.77	<u>-66.063</u>	-32.97						
2437.0	30.0 - 26000.0	<u>-65.474</u>	-34.41	<u>-65.061</u>	-33.49						
2462.0	30.0 - 26000.0	<u>-64.945</u>	-34.76	<u>-65.071</u>	-33.76						

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:35 of 176

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11g	Duty Cycle (%):	90
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency	Transmitter Conducted Spurious Emissions (dBm)								
Frequency	Range	Port a		Port b		Port c		Port d		
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
2412.0	30.0 - 26000.0	<u>-66.470</u>	-34.08	<u>-65.903</u>	-33.20					
2437.0	30.0 - 26000.0	<u>-65.301</u>	-35.32	<u>-65.167</u>	-34.20					
2462.0	30.0 - 26000.0	<u>-65.105</u>	-34.94	<u>-65.286</u>	-33.49					

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:36 of 176

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11n HT-20	Duty Cycle (%):	93
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency	Transmitter Conducted Spurious Emissions (dBm)								
Frequency	Range	Port a		Port b		Port c		Port d		
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
2412.0	30.0 - 26000.0	<u>-66.475</u>	-34.65	<u>-66.113</u>	-32.53					
2437.0	30.0 - 26000.0	<u>-65.326</u>	-35.49	<u>-65.159</u>	-34.13					
2462.0	30.0 - 26000.0	<u>-65.171</u>	-34.94	<u>-65.263</u>	-33.42					

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:37 of 176

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11n HT-40	Duty Cycle (%):	85
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2422.0	30.0 - 26000.0	<u>-66.408</u>	-35.95	<u>-66.454</u>	-34.61				
2437.0	30.0 - 26000.0	<u>-66.514</u>	-37.26	<u>-66.448</u>	-35.86				
2452.0	30.0 - 26000.0	-66.375	-35.52	<u>-66.532</u>	-34.10				

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:38 of 176

9.3.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz				
Band-Edge Frequency:	2400.0 MHz					
Test Frequency Range:	2350.0 - 2422.0	350.0 - 2422.0 MHz				
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-31.77</u>	-25.40	2402.10			-2.100
b	<u>-31.68</u>	-24.57	2402.10			-2.100

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
39 of 176

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11g	Duty Cycle (%):	90.0		
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1.3		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	СС		
Engineering Test Notes:	Revised Limit: Initial test @ 30 dBc failed. Limit adjusted using maximum limit found, operational mode 802.11b channel 2412 MHz				

Test Measurement Results

Channel Frequency:	2412.0 MHz						
Band-Edge Frequency:	2400.0 MHz						
Test Frequency Range:	2350.0 - 2422.0 N	2350.0 - 2422.0 MHz					
	Band-Ec	Band-Edge Markers and Limit Revised Limit Margin				Margin	
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	Plot Limit (dBm)	M2A Frequency (MHz	(MHz)
а	<u>-31.03</u>	-28.57	2400.50				-0.500
b	<u>-26.70</u>	-27.33	2398.40	<u>-26.70</u>	-24.57	2400.40	-0.400

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

M2: Spectrum analyzer marker

M2A: Amended marker frequency with new limit

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
40 of 176

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0		
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1.3		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	СС		
Engineering Test Notes:	Revised Limit: Initial test @ 30 dBc failed. Limit adjusted using maximum limit found, operational mode 802.11b channel 2412 MHz				

Test Measurement Results

Channel Frequency:	2412.0 MHz	112.0 MHz					
Band-Edge Frequency:	2400.0 MHz						
Test Frequency Range:	2350.0 - 2422.0	350.0 - 2422.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised Limit				imit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	Plot Limit (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-29.92</u>	-28.70	2400.00				0.000
b	<u>-24.59</u>	-27.51	2396.20	<u>-24.59</u>	-24.57	2400.40	-0.400

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

M2: Spectrum analyzer marker

M2A: Amended marker frequency with new limit

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
41 of 176

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	85.0	
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1.3	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable	
TPC:	Not Applicable	Tested By:	СС	
Engineering Test Notes:	Revised Limit: Initial test @ 30 dBc failed. Limit adjusted using maximum limit found, operational mode 802.11b channel 2412 MHz			

Test Measurement Results

Channel Frequency:	2422.0 MHz						
Band-Edge Frequency:	2400.0 MHz	400.0 MHz					
Test Frequency Range:	2292.0 - 2442.0	2292.0 - 2442.0 MHz					
	Band-Edg	e Markers ar	nd Limit		Revised Limit		Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	Plot Limit (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-31.69</u>	-32.94	2399.80	<u>-31.69</u>	-24.57	2402.80	-2.800
b	<u>-28.38</u>	-31.68	2396.80	<u>-28.38</u>	-24.57	2402.30	-2.300

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

M2: Spectrum analyzer marker

M2A: Amended marker frequency with new limit

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
42 of 176

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz						
Band-Edge Frequency:	2483.5 MHz	483.5 MHz					
Test Frequency Range:	2452.0 - 2524.0	MHz					
	Band-E	Band-Edge Markers and Limit			Revised Limit		
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-57.93</u>	-26.15	2471.80			-11.700	
b	<u>-57.29</u>	-25.08	2471.80			-11.700	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
43 of 176

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11g	Duty Cycle (%):	90.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz	483.5 MHz				
Test Frequency Range:	2452.0 - 2524.0	2452.0 - 2524.0 MHz				
	Band-E	Band-Edge Markers and Limit			Revised Limit	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-41.67</u>	-29.29	2473.50			-10.000
b	<u>-36.98</u>	-27.87	2477.00			-6.500

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
44 of 176

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz	183.5 MHz				
Test Frequency Range:	2452.0 - 2524.0 MHz					
	Band-Edge Markers and Limit		Revised Limit		Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-39.79</u>	-29.29	2473.50			-10.000
b	<u>-34.78</u>	-28.10	2477.60			-5.900

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
45 of 176

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	85.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1.3
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2452.0 MHz						
Band-Edge Frequency:	2483.5 MHz						
Test Frequency Range:	2432.0 - 2582.0	2432.0 - 2582.0 MHz					
	Band-E	Band-Edge Markers and Limit			Revised Limit		
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-40.30</u>	-33.40	2473.80			-9.700	
b	<u>-35.21</u>	-32.01	2476.00			-7.500	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

 Title:
 Ad

 To:
 F0

 Serial #:
 A⁻

 Issue Date:
 18

 Page:
 46

9.4. Power Spectral Density

Conducted Test Conditions for Power Spectral Density					
Standard:	FCC CFR 47:15.247	24.0 - 27.5			
Test Heading:	Power Spectral Density	32 - 45			
Standard Section(s):	15.247 (e)	999 - 1001			
Reference Document(s):	See Normative References				

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:47 of 176

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.34
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density Port(s) (dBm/3KHz)				Amplitude Summation + DCCF (+0.04	Limit	Margin
MHz	а	b	с	d	dB) dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-5.940</u>	<u>-4.724</u>			<u>-4.024</u>	8.0	-12.0
2437.0	<u>-9.397</u>	<u>-9.677</u>			<u>-6.755</u>	8.0	-14.8
2462.0	-11.009	<u>-9.950</u>			<u>-7.532</u>	8.0	-15.5

Traceability to Industry Recognized Test Methodologies Work Instruction: WI-03 MEASURING RF SPECTRUM MASK Measurement Uncertainty: ±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:48 of 176

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11g	Duty Cycle (%):	90.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	1.34
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Measured Power Spectral Density					Amplitude		
Test Frequency		Port(s) (dBm/3KHz)			Summation + DCCF (+0.46 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-13.017</u>	<u>-11.816</u>			<u>-8.911</u>	8.0	-16.9
2437.0	<u>-13.263</u>	<u>-11.967</u>			<u>-9.148</u>	8.0	-17.2
2462.0	<u>-13.569</u>	<u>-12.136</u>			<u>-9.347</u>	8.0	-17.4

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	1.34
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Measured Power Spectral Density					Amplitude		
Test Frequency		Port(s) (dBm/3KHz)			Summation + DCCF (+0.32 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-12.807</u>	<u>-11.714</u>			<u>-8.926</u>	8.0	-16.9
2437.0	<u>-13.248</u>	<u>-11.882</u>			<u>-9.294</u>	8.0	-17.3
2462.0	<u>-13.584</u>	<u>-12.198</u>			<u>-9.511</u>	8.0	-17.5

Traceability to Industry Recognized Test Methodologies WI-03 MEASURING RF SPECTRUM MASK Work Instruction: Measurement Uncertainty: ±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:50 of 176

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-40	Duty Cycle (%):	85.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	1.34
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	N	leasured Power Port(s) (d	Spectral Densit Bm/3KHz)	Amplitude Summation + DCCF (+0.71 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2422.0	<u>-16.984</u>	<u>-15.503</u>			<u>-12.531</u>	8.0	-20.5
2437.0	<u>-17.124</u>	<u>-15.790</u>			<u>-12.716</u>	8.0	-20.7
2452.0	<u>-17.446</u>	<u>-16.092</u>			<u>-13.032</u>	8.0	-21.0

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
51 of 176

9.5. Radiated Spurious Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)									
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	20.0 - 24.5						
Test Heading:	Radiated Spurious and Band- Edge Emissions	ed Spurious and Band- missions Rel. Humidity (%): 3							
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001						
Reference Document(s):	See Normative References								
Reference Document(s): Test Procedure for Radiated Sp Radiated emissions for restricted in both horizontal and vertical pol 360° with a spectrum analyzer in used to remove the fundamental Measurements on any restricted employing peak and average det Test configuration and setup for f document. Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m Average emission: 54 dBuV/m Field Strength Calculation The field strength is calculated by reading. All factors are included i FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyze AF = Antenna Factor CORR = Correction Factor = CL - CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Wave Example:	See Normative References Durious and Band-Edge Emission bands above 1 GHz are measured arities. The emissions are record peak hold mode. Depending on the frequency. The highest emissions band frequency or frequencies above ctors. All measurements were p Radiated Spurious and Band-Edge v adding the Antenna Factor and C n the reported data. r Input Amplitude - AG + NFL guide Loss	ns (Restricted Bands) d in the anechoic chamber at a 3-r ed and maximized as a function of e frequency band spanned a notcl relative to the limit are listed for e ove 1 GHz are based on the use o erformed using a resolution bandw Measurement were per the Radia	neter distance on every azimuth f azimuth by rotation through h filter and waveguide filter was ach frequency spanned. f measurement instrumentation width of 1 MHz. ated Test Set-up specified in this er Gain from the measured						
Given receiver input reading of 5 of 26 dB and Notch Filter Loss of	1.5 dBmV; Antenna Factor of 8.5 c 1 dB. The Field Strength (FS) of	IB; Cable Loss of 1.3 dB; Falloff Fa the measured emission is:	actor of 0 dB, an Amplifier Gain						
FS = 51.5 + 8.5 + 1.3 - 26.0 +1 =	36.3 dBmV/m								
Conversion between dBmV/m (or Level (dBmV/m) = 20 * Log (level	dBmV) and mV/m (or mV) are as l (mV/m))	follows:							
40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m Restricted Bands of Operation (a) Except as shown in paragraph below:	(15.205) n (d) of this section, only spurious (emissions are permitted in any of t	he frequency bands listed						

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:52 of 176

Frequency Band									
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	Above 38.6						
13.36-13.41									

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 Title:
 Act

 To:
 FC

 Serial #:
 ATI

 Issue Date:
 18th

 Page:
 53

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
53 of 176

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

Test Candidate for Radiated Spurious Emissions

Operational mode(s) tested for spurious emissions were the modes which delivered maximum spectral density 802.11b.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:54 of 176

9.5.1. Radiated Spurious Emissions

Equipment Configuration for Radiated Spurious - Restricted Band Emissions								
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11b					
Antenna Gain (dBi):	1.34	Modulation:	CCK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s					
Power Setting:	54/54	Tested By:	SB					

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2279.96	34.96	3.91	-12.15	26.72	Max Avg	Horizontal	100	354	54.0	-27.3	Pass
2	2279.96	51.81	3.91	-12.15	43.57	Max Peak	Horizontal	100	354	74.0	-30.4	Pass
3	4823.94	53.98	5.83	-11.15	48.66	Max Avg	Vertical	111	68	54.0	-5.3	Pass
4	4823.94	56.98	5.83	-11.15	51.66	Max Peak	Vertical	111	68	74.0	-22.3	Pass
5	7236.82	38.86	7.43	-7.34	38.95	Max Avg	Horizontal	100	45	54.0	-15.1	Pass
6	7236.82	48.77	7.43	-7.34	48.86	Max Peak	Horizontal	100	45	74.0	-25.1	Pass
7	9647.90	46.16	8.71	-6.08	48.79	Max Avg	Horizontal	126	155	54.0	-5.2	Pass
8	9647.90	48.83	8.71	-6.08	51.46	Max Peak	Horizontal	126	155	74.0	-22.5	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:ActiontTo:FCC CSerial #:ATECOIssue Date:18th AuPage:55 of 1

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
55 of 176

Equipment Configuration for Radiated Spurious - Restricted Band Emissions							
		-					
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11b				
Antenna Gain (dBi):	1.34	Modulation:	CCK				
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99				
Channel Frequency (MHz):	2437.00	Data Rate:	1.00 MBit/s				
Power Setting:	54/54	Tested By:	SB				

Frequency Cable AF Level Measurement Limit Raw Azt Margin Pass Hgt Num Pol MHz dBµV Loss dB dBµV/m Туре Deg dBµV/m dB /Fail cm 2248.18 -12.12 1 33.41 3.89 25.18 Max Avg Vertical 100 4 54.0 -28.8 Pass 2248.18 48.08 3.89 Max Peak Vertical 4 74.0 -34.2 2 -12.12 39.85 100 Pass 4 4874.08 30.03 5.82 -11.24 Max Avg 100 141 54.0 -29.4 24.61 Vertical Pass 5 4874.08 42.96 5.82 -11.24 37.54 Max Peak Vertical 100 141 74.0 -36.5 Pass 6 7309.86 38.24 7.39 -7.29 38.34 Max Avg Horizontal 117 43 54.0 -15.7 Pass 7 7309.86 49.48 7.39 -7.29 49.58 Max Peak Horizontal 117 43 74.0 -24.4 Pass -6.23 -2.0 8 9747.89 49.62 8.65 52.04 Max Avg Horizontal 105 71 54.0 Pass 71 9 9747.89 52.16 8.65 -6.23 54.58 Max Peak Horizontal 105 74.0 -19.4 Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED SPURIOUS - RESTRICTED BAND EMISSIONS

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:56 of 176

Equipment Configuration for Radiated Spurious - Restricted Band Emissions								
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11b					
Antenna Gain (dBi):	1.34	Modulation:	CCK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s					
Power Setting:	54/54	Tested By:	SB					

Variant: 802.11b, Test Freq: 2462.00 MHz, Antenna: Galtronics Custom Cabled U.FL, Power Setting: 54/54, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 80 70 60 wantownow 7 50 dBuV 40 × 8 30 × 4 × 1 20 10 0. ©MiCOM abs 2015 × 3 - Trace 1 Horizontal 🛛 Trace 2 Vertical 🗙 Formal 🛁 Limit Tested by: SB -10-Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

AF Cable Measurement Frequency Raw Level Hgt Azt Limit Margin Pass Num Pol МНz dBµV dB dBµV/m dBµV/m dB Loss Type cm Deg /Fail 1 2301.24 3.94 -12.19 24.73 8 54.0 32.98 Max Avg Horizontal 100 -29.3 Pass 2 2301.24 44.79 3.94 -12.19 36.54 Max Peak Horizontal 100 8 74.0 -37.5 Pass 4 4923.72 30.45 5.90 -11.38 24.97 Max Avg Vertical 133 74 54.0 -29.0 Pass 5 4923.72 46.57 5.90 -11.38 41.09 Max Peak 133 74 74.0 -32.9 Vertical Pass 6 7385.01 41.04 7.42 -7.17 41.29 Max Avg Horizontal 125 38 54.0 -12.7 Pass 7 7385.01 49.98 7.42 -7.17 50.23 Max Peak Horizontal 125 38 74.0 -23.8 Pass 8 9847.94 35.36 8.90 -5.94 38.32 Max Avg Horizontal 100 154 54.0 -15.7 Pass 9 9847.94 42.70 8.90 -5.94 45.66 Max Peak Horizontal 100 154 74.0 -28.3 Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED SPURIOUS - RESTRICTED BAND EMISSIONS

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:57 of 176

9.5.2. Radiated Restricted Band-Edge Spurious Emissions

Galtronics Cust	om Cabled U.FL	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Fower Setting
802.11b	2412.00	2390.00	73.70	45.92	39/39
802.11b	2462.00	2483.50	73.86	52.19	55/55
802.11g	2412.00	2390.00	73.62	53.22	56/56
802.11g	2462.00	2483.50	72.61	50.76	54/54
802.11n HT-20	2412.00	2390.00	70.96	52.96	55/55
802.11n HT-20	2462.00	2483.50	72.07	50.68	52/52
802.11n HT-40	2422.00	2390.00	73.85	44.27	45/45
802.11n HT-40	2452.00	2483.50	73.21	50.54	45/45

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
58 of 176

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions							
		-					
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11b				
Antenna Gain (dBi):	1.34	Modulation:	CCK				
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99				
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s				
Power Setting:	39/39	Tested By:	SB				

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2386.39	53.82	4.05	-11.95	45.92	Max Avg	Vertical	114	8	54.0	-8.1	Pass
2	2387.66	81.59	4.04	-11.93	73.70	Max Peak	Vertical	114	8	74.0	-0.3	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
59 of 176

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions								
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11g					
Antenna Gain (dBi):	1.34	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	2412.00	Data Rate:	6.00 MBit/s					
Power Setting:	56/56	Tested By:	SB					

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2388.74	81.50	4.04	-11.92	73.62	Max Peak	Vertical	114	8	74.0	-0.4	Pass
2	2390.00	61.10	4.04	-11.92	53.22	Max Avg	Vertical	114	8	54.0	-0.8	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
60 of 176

Equipmen	Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions									
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11n HT-20							
Antenna Gain (dBi): 1.34 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	2412.00	Data Rate:	6.50 MBit/s							
Power Setting:	55/55	Tested By:	SB							

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2390.00	60.84	4.04	-11.92	52.96	Max Avg	Vertical	114	8	54.0	-1.0	Pass
2	2390.00	78.84	4.04	-11.92	70.96	Max Peak	Vertical	114	8	74.0	-3.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
61 of 176

Equipmen	Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions										
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11n HT-40								
Antenna Gain (dBi): 1.34 Modulation: OFDM											
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	2422.00	Data Rate:	13.50 MBit/s								
Power Setting:	45/45	Tested By:	SB								

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF B	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2385.85	81.75	4.05	-11.95	73.85	Max Peak	Vertical	114	8	74.0	-0.2	Pass
2	2388.02	52.16	4.04	-11.93	44.27	Max Avg	Vertical	114	8	54.0	-9.7	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
62 of 176

Equipmen	Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions										
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11b								
Antenna Gain (dBi): 1.34 Modulation: CCK											
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s								
Power Setting:	55/55	Tested By:	SB								

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	59.73	4.10	-11.64	52.19	Max Avg	Vertical	114	8	54.0	-1.8	Pass
2	2483.77	81.40	4.10	-11.64	73.86	Max Peak	Vertical	114	8	74.0	-0.1	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
63 of 176

Equipmen	Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions									
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11g							
Antenna Gain (dBi): 1.34 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	2462.00	Data Rate:	6.00 MBit/s							
Power Setting:	54/54	Tested By:	SB							

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	58.30	4.10	-11.64	50.76	Max Avg	Vertical	114	8	54.0	-3.2	Pass
2	2483.77	80.15	4.10	-11.64	72.61	Max Peak	Vertical	114	8	74.0	-1.4	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015 64 of 176

Equipmen	t Configuration for Radiated - Up	per Restricted Band-Edge Emission	าร							
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11n HT-20							
Antenna Gain (dBi): 1.34 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	2462.00	Data Rate:	6.50 MBit/s							
Power Setting:	52/52	Tested By:	SB							

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	79.61	4.10	-11.64	72.07	Max Peak	Vertical	114	8	74.0	-1.9	Pass
2	2500.03	58.17	4.12	-11.61	50.68	Max Avg	Vertical	114	8	54.0	-3.3	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
65 of 176

Equipmen	t Configuration for Radiated - Up	Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions										
Antenna:	Galtronics Custom Cabled U.FL	Variant:	802.11n HT-40									
Antenna Gain (dBi): 1.34 Modulation: OFDM												
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99									
Channel Frequency (MHz):	2452.00	Data Rate:	13.50 MBit/s									
Power Setting:	45/45	Tested By:	SB									

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2484.70	80.75	4.10	-11.64	73.21	Max Peak	Vertical	114	8	74.0	-0.8	Pass
2	2500.03	58.03	4.12	-11.61	50.54	Max Avg	Vertical	114	8	54.0	-3.5	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
66 of 176

9.6. Radiated Digital Emissions (0.03 - 1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3dBµV/m

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
67 of 176

Test	Freq.	Not Applicable					Engineer				GMH		
V	ariant	Digital Emissions					Temp (°C)			25			
Freq. F	Range	30 MHz - 1000 MHz					Rel. Hum.(%)			28			
Power Se	etting	Not Applicabl	е					Press	. (mBars)	1004			
An	tenna	Integral											
Test No	otes 1	S/N: SB325220600009 EUT on table ping through F-cable to second laptop connected to E-Net 0, stream video											
Test No	otes 2	M/N: KSASB0241200150HU Both laptops outside chamber, streaming movie Ktec ac Adaptor											
With the second													
Formally m	easur	ed emissio	on pea	ks	Masauramant		Hat	A-4	Limit	Margin	Dees		
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments	
37.812	49.1	3.5	-15.6	37.0	Quasi Max	V	132	206	40.5	-3.5	Pass		
72.730	56.7	3.7	-22.8	37.6	Quasi Max	V	193	165	40.5	-2.9	Pass		
176.278	41.6	4.2	-19.6	26.3	Quasi Max	V	191	142	40.5	-14.3	Pass		
48.071	54.9	3.6	-22.0	36.4	Quasi Max	V	99	291	40.5	-4.1	Pass		
192.102	49.4	4.3	-19.0	34.7	Quasi Max	V	118	144	40.5	-5.9	Pass		
874.978	48.7	6.3	-7.5	47.4	Quasi Max	Н	100	53	47.2	-0.2	Pass		
624.986	51.7	5.7	-10.6	46.7	Quasi Max	V	105	222	47.5	-0.8	Pass		
249.952	59.4	4.5	-18.8	45.1	Quasi Max	Н	105	104	47.5	-2.5	Pass		
124.972	52.3	4.0	-17.0	39.4	Quasi Max	Н	246	172	40.5	-1.1	Pass		
104.266	47.5	3.9	-19.7	31.7	Quasi Max	V	99	313	40.5	-8.8	Pass		
Legend:	Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:68 of 176

9.7. ac Wireline Emissions

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:69 of 176

Measurement Results for ac Wireline Conducted Emissions (150 kHz – 30 MHz)

Tes	st Freq.	eq. N/A			Engineer		GMH			
Variant AC Line Emissions							Temp (°C)	25		
Freq. Range 0.150 MHz - 30 MHz					Re	I. Hum.(%)	28			
Power Setting Not Applicable					Press. (mBars) 1004					
Antenna Integral										
Test N	lotes 1	EUT on table ping via F-cable to 2nd laptop conn to E-Net, laptops outside chamber, stream movie							eam movie	
Test N	t Notes 2 Ktec ac Adaptor M/N: KSASB0241200150HU S/N: SB325220600009									
MiCOMLa	WiceMubs dBuv Vasona by EMISoft 30 Jul 15 21:30 11) Live 21 Neutral 20k Lmt 20k Lm									
Formally m	neasur	ed em	ission p	eaks						
Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.182	35.7	9.9	0.1	45.7	Max Qpeak	Live	64.39	-18.7	Pass	
0.182	17.7	9.9	0.1	27.7	Max Qpeak	Live	54.39	-26.7	Pass	
0.243	29.1	9.9	0.1	39.1	Max Ave	Live	61.99	-22.9	Pass	
0.243	16.6	9.9	0.1	26.5	Max Ave	Live	51.99	-25.5	Pass	
Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
70 of 176

Specification

Limits

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:71 of 176

A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:72 of 176

A.1. 6 dB & 99% Bandwidth

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2406.930 MHz : 8.118 dBm	Measured 6 dB Bandwidth: 10.000 MHz
Sweep Count = 0	M2 : 2412.470 MHz : 13.078 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 10.000 MHz : -0.397 dB	Margin: -9.50 MHz
Trace Mode = MAXH	T1 : 2404.400 MHz : -0.666 dBm	-
	T2 : 2419.533 MHz : -1.118 dBm	
	OBW : 15.140 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:73 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2406.930 MHz : 8.436 dBm M2 : 2412.470 MHz : 13.944 dBm Delta1 : 10.000 MHz : 0.388 dB T1 : 2404.400 MHz : 0.128 dBm T2 : 2419.533 MHz : -0.314 dBm OBW : 15.117 MHz	Measured 6 dB Bandwidth: 10.000 MHz Limit: ≥500.0 kHz Margin: -9.50 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:74 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2431.930 MHz : 7.130 dBm	Measured 6 dB Bandwidth: 10.000 MHz
Sweep Count = 0	M2 : 2436.470 MHz : 12.778 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 10.000 MHz : -0.221 dB	Margin: -9.50 MHz
Trace Mode = MAXH	T1 : 2429.400 MHz : -0.982 dBm	-
	T2 : 2444.533 MHz : -1.470 dBm	
	OBW : 15.145 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:75 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2431.930 MHz : 8.277 dBm M2 : 2436.470 MHz : 13.661 dBm Delta1 : 9.930 MHz : -2.188 dB T1 : 2429.400 MHz : -0.098 dBm T2 : 2444.533 MHz : -0.903 dBm OBW : 15.110 MHz	Measured 6 dB Bandwidth: 9.930 MHz Limit: ≥500.0 kHz Margin: -9.43 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:76 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2456.930 MHz : 6.611 dBm	Measured 6 dB Bandwidth: 10.000 MHz
Sweep Count = 0	M2 : 2461.470 MHz : 12.214 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 10.000 MHz : 0.183 dB	Margin: -9.50 MHz
Trace Mode = MAXH	T1 : 2454.400 MHz : -1.247 dBm	-
	T2 : 2469.533 MHz : -1.979 dBm	
	OBW : 15.129 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:77 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2456.930 MHz : 7.767 dBm M2 : 2461.470 MHz : 13.348 dBm Delta1 : 9.930 MHz : -1.970 dB T1 : 2454.400 MHz : -0.279 dBm T2 : 2469.533 MHz : -1.069 dBm OBW : 15.104 MHz	Measured 6 dB Bandwidth: 9.930 MHz Limit: ≥500.0 kHz Margin: -9.43 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:78 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2403.800 MHz : 6.667 dBm	Measured 6 dB Bandwidth: 16.270 MHz
Sweep Count = 0	M2 : 2419.470 MHz : 11.576 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 16.270 MHz : 0.165 dB	Margin: -15.77 MHz
Trace Mode = MAXH	T1 : 2403.667 MHz : 2.994 dBm	
	T2 : 2420.200 MHz : 3.415 dBm	
	OBW : 16.482 MHz	

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:79 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2403.800 MHz : 7.881 dBm M2 : 2419.470 MHz : 13.135 dBm Delta1 : 16.270 MHz : 0.610 dB T1 : 2403.667 MHz : 4.347 dBm T2 : 2420.267 MHz : 4.685 dBm OBW : 16.569 MHz	Measured 6 dB Bandwidth: 16.270 MHz Limit: ≥500.0 kHz Margin: -15.77 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:80 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2428.800 MHz : 6.594 dBm	Measured 6 dB Bandwidth: 16.270 MHz
Sweep Count = 0	M2 : 2430.730 MHz : 11.426 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 16.270 MHz : 0.030 dB	Margin: -15.77 MHz
Trace Mode = MAXH	T1 : 2428.667 MHz : 3.002 dBm	
	T2 : 2445.200 MHz : 3.045 dBm	
	OBW : 16.495 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:81 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2428.800 MHz : 8.067 dBm M2 : 2430.730 MHz : 12.744 dBm Delta1 : 16.270 MHz : 0.041 dB T1 : 2428.667 MHz : 4.435 dBm T2 : 2445.267 MHz : 4.251 dBm OBW : 16.577 MHz	Measured 6 dB Bandwidth: 16.270 MHz Limit: ≥500.0 kHz Margin: -15.77 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:82 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2453.800 MHz : 6.447 dBm	Measured 6 dB Bandwidth
Sweep Count = 0	M2 : 2455.730 MHz : 11.076 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 16.270 MHz : -0.507 dB	Margin: -15.77 MHz
Trace Mode = MAXH	T1 : 2453.667 MHz : 2.691 dBm	
	T2 : 2470.200 MHz : 2.490 dBm	
	OBW : 16.490 MHz	
		1

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:83 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2453.800 MHz : 7.739 dBm	Measured 6 dB Bandwidth: 16.270 MHz
Sweep Count = 0	M2 : 2455.730 MHz : 12.532 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 16.270 MHz : 0.112 dB	Margin: -15.77 MHz
Trace Mode = MAXH	T1 : 2453.667 MHz : 4.252 dBm	
	T2 : 2470.267 MHz : 4.077 dBm	
	OBW : 16.577 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:84 of 176

6 dB & 99% BANDWIDTH

Analyser Setup Marker:Frequency:Amplitude **Test Results** Detector = POS M1 : 2403.200 MHz : 6.434 dBm Measured 6 dB Bandwidth: 17.470 MHz Sweep Count = 0 M2 : 2414.470 MHz : 11.966 dBm Limit: ≥500.0 kHz Margin: -16.97 MHz RF Atten (dB) = 20Delta1: 17.470 MHz: -0.128 dB T1 : 2403.067 MHz : 3.342 dBm Trace Mode = MAXH T2: 2420.867 MHz: 3.458 dBm OBW : 17.741 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:85 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2403.200 MHz : 7.761 dBm M2 : 2405.730 MHz : 13.343 dBm Delta1 : 17.470 MHz : 0.075 dB T1 : 2403.067 MHz : 4.518 dBm T2 : 2420.867 MHz : 5.010 dBm OBW : 17.815 MHz	Measured 6 dB Bandwidth: 17.470 MHz Limit: ≥500.0 kHz Margin: -16.97 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:86 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2428.200 MHz : 6.122 dBm M2 : 2430.730 MHz : 11.532 dBm Delta1 : 17.470 MHz : -0.194 dB T1 : 2428.067 MHz : 2.803 dBm T2 : 2445.867 MHz : 3.129 dBm OBW : 17.728 MHz	Measured 6 dB Bandwidth: 17.470 MHz Limit: ≥500.0 kHz Margin: -16.97 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:87 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0	M1 : 2428.200 MHz : 7.550 dBm M2 : 2441.930 MHz : 12.814 dBm	Measured 6 dB Bandwidth: 17.470 MHz Limit: ≥500.0 kHz
RF Atten (dB) = 20 Trace Mode = MAXH	Delta1 : 17.470 MHz : 0.466 dB T1 : 2428.067 MHz : 4.565 dBm T2 : 2445.867 MHz : 4.363 dBm OBW : 17.806 MHz	Margin: -16.97 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:88 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2453.200 MHz : 5.821 dBm M2 : 2455.730 MHz : 11.125 dBm Delta1 : 17.470 MHz : -0.550 dB T1 : 2453.067 MHz : 2.571 dBm T2 : 2470.800 MHz : 2.870 dBm OBW : 17.737 MHz	Measured 6 dB Bandwidth: 17.470 MHz Limit: ≥500.0 kHz Margin: -16.97 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:89 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 2453.200 MHz : 7.187 dBm M2 : 2469.470 MHz : 12.626 dBm Delta1 : 17.470 MHz : -0.449 dB T1 : 2453.067 MHz : 3.900 dBm T2 : 2470.867 MHz : 4.041 dBm OBW : 17.800 MHz	Measured 6 dB Bandwidth: 17.470 MHz Limit: ≥500.0 kHz Margin: -16.97 MHz

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:90 of 176

OBW : 36.032 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:91 of 176

T2 : 2440.000 MHz : 1.994 dBm

OBW : 36.110 MHz

6 dB & 99% BANDWIDTH

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:92 of 176

6 dB & 99% BANDWIDTH

Analyser Setup Marker:Frequency:Amplitude Test Results Detector = POS M1 : 2419.000 MHz : 2.099 dBm Measured 6 dB Bandwidth: 35.600 MHz Sweep Count = 0 M2 : 2431.930 MHz : 8.090 dBm Limit: ≥500.0 kHz RF Atten (dB) = 20 Delta1 : 35.600 MHz : -0.510 dB Margin: -35.10 MHz Trace Mode = MAXH T1 : 2418.867 MHz : 1.190 dBm Margin: -35.10 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:93 of 176

T1 : 2418.867 MHz : 2.598 dBm

T2 : 2455.000 MHz : 1.939 dBm

OBW : 36.119 MHz

6 dB	8 99%	BANDWIDTH

back to matrix

Trace Mode = MAXH

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:94 of 176

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 2434.130 MHz : 2.050 dBm	Measured 6 dB Bandwidth: 35.200 MHz
Sweep Count = 0	M2 : 2446.930 MHz : 7.962 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 35.200 MHz : 1.157 dB	Margin: -34.70 MHz
Trace Mode = MAXH	T1 : 2433.867 MHz : 1.003 dBm	-
	T2 : 2470.000 MHz : -0.102 dBm	
	OBW : 36.017 MHz	

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:95 of 176

T1 : 2433.867 MHz : 2.489 dBm

T2 : 2470.000 MHz : 1.455 dBm

OBW : 36.128 MHz

6 dB & 99% BANDWIDTH

back to matrix

Trace Mode = MAXH

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:96 of 176

A.2. Emissions

A.2.1. Conducted Emissions

A.2.1.1. Conducted Spurious Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -3.766 dBm	Limit: -33.77 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.480 dBm	Margin: -32.71 dB
RF Atten (dB) = 10		-
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:97 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -2.967 dBm	Limit: -32.97 dBm
Sweep Count = 0	M2 : 2540.000 MHz : -66.063 dBm	Margin: -33.09 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:98 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.410 dBm	Limit: -34.41 dBm
Sweep Count = 0	M2 : 2280.000 MHz : -65.474 dBm	Margin: -31.06 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:99 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -3.486 dBm	Limit: -33.49 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -65.061 dBm	Margin: -31.57 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title: To: Serial #: Issue Date: Page: 100 of 176

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.763 dBm	Limit: -34.76 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -64.945 dBm	Margin: -30.18 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:101 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -3.765 dBm	Limit: -33.76 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -65.071 dBm	Margin: -31.31 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:102 of 176

CONDUCTED SPURIOUS EMISSIONS - AVERAGE Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc Ref Level: +1.000E+01 dBm Sweep Time: 30.0 s RBW: 100 KHz 20.1 dB Offset VBW: 300 KHz 10-Date: 2015,7,31 -M1 0-D1: -4.077 dBm -10--20 --30-D2: -34.080 dBm dBm -40--50 --60 -M2 X -70 -80 ©MiCOM Labs 2015 Tested by: CC -90 -Start 30.000 MHz Stop 26.000 GHz Step 2597.000 MHz Span 25.970 GHz

Analyser SetupMarker:Frequency:AmplitudeTest ResultsDetector = AVERM1 : 2410.000 MHz : -4.077 dBmLimit: -34.08 dBmSweep Count = 0M2 : 13.620 GHz : -66.470 dBmMargin: -32.39 dBRF Atten (dB) = 10Trace Mode = VIEWVIEW

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:103 of 176

CONDUCTED SPURIOUS EMISSIONS - AVERAGE MiT Variant: 802.11g, Channel: 2412.00 MHz, Chain b, Temp: Ambient, Voltage: 12 Vdc Ref Level: +1.000E+01 dBm Sweep Time: 30.0 s RBW: 100 KHz 20.0 dB Offset VBW: 300 KHz 10-Date: 2015,7,31 -M1 0-D1: -3.203 dBm -10--20 --30-D2: -33.200 dBm dBm -40--50 --60 -70 -80 ©MiCOM Labs 2015 Tested by: CC -90 -Start 30.000 MHz Stop 26.000 GHz Step 2597.000 MHz Span 25.970 GHz

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -3.203 dBm	Limit: -33.20 dBm
Sweep Count = 0	M2 : 2540.000 MHz : -65.903 dBm	Margin: -32.70 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:ActionteTo:FCC CFSerial #:ATEC0Issue Date:18th AugPage:104 of 2000

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
104 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -5.322 dBm	Limit: -35.32 dBm
Sweep Count = 0	M2 : 2280.000 MHz : -65.301 dBm	Margin: -29.98 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:105 of 176

CONDUCTED SPURIOUS EMISSIONS - AVERAGE M Variant: 802.11g, Channel: 2437.00 MHz, Chain b, Temp: Ambient, Voltage: 12 Vdc Ref Level: +1.000E+01 dBm Sweep Time: 30.0 s RBW: 100 KHz 20.0 dB Offset VBW: 300 KHz 10-Date: 2015,7,31 -M1 0-D1: -4.200 dBm -10--20 --30-D2: -34.200 dBm dBm -40--50 --60 -MC -70 -80 ©MiCOM Labs 2015 Tested by: CC -90 -Start 30.000 MHz Stop 26.000 GHz Step 2597.000 MHz Span 25.970 GHz

M1 : 2450.000 MHz : -4.200 dBm Limit: -34.20 dBm M2 : 2320.000 MHz : -65.167 dBm Margin: -30.97 dB
M2 : 2320.000 MHz : -65.167 dBm Margin:

back to matrix

Title:ActiontTo:FCC CSerial #:ATEC0Issue Date:18th AuPage:106 of

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
106 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.944 dBm	Limit: -34.94 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -65.105 dBm	Margin: -30.17 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:107 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2450.000 MHz : -3.487 dBm M2 : 2320.000 MHz : -65.286 dBm	Limit: -33.49 dBm Margin: -31.80 dB
RF Atten (dB) = 10 Trace Mode = VIEW		, and the second s

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:108 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -4.654 dBm	Limit: -34.65 dBm Marcin: -31 82 dB
RF Atten (dB) = 10	1912 - 15.020 GHz00.475 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:109 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -2.535 dBm	Limit: -32.53 dBm
Sweep Count = 0	M2 : 2540.000 MHz : -66.113 dBm	Margin: -33.58 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:110 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -5.487 dBm	Limit: -35.49 dBm
Sweep Count = 0	M2 : 2280.000 MHz : -65.326 dBm	Margin: -29.84 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:111 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.126 dBm	Limit: -34.13 dBm
Sweep Count = 0	M2 : 2540.000 MHz : -65.159 dBm	Margin: -31.03 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:112 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.936 dBm	Limit: -34.94 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -65.171 dBm	Margin: -30.23 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:113 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -3.420 dBm	Limit: -33.42 dBm
Sweep Count = 0	M2 : 2320.000 MHz : -65.263 dBm	Margin: -31.84 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:114 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -5.951 dBm	Limit: -35.95 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.408 dBm	Margin: -30.46 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:115 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -4.608 dBm	Limit: -34.61 dBm
RF Atten (dB) = 10	M2 . 13.620 GH266.454 dBm	Margin51.64 dB
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:116 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -7.259 dBm	Limit: -37.26 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.514 dBm	Margin: -29.25 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:117 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -5.863 dBm	Limit: -35.86 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.448 dBm	Margin: -30.59 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:118 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -5.523 dBm	Limit: -35.52 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.375 dBm	Margin: -30.85 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:119 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -4.102 dBm	Limit: -34.10 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.532 dBm	Margin: -32.43 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

Title: Ac To: FC Serial #: AT Issue Date: 18 Page: 12

Actiontec Electronics Inc. WCB5000, WEB5000
FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
ATEC07-Rev A
18th August 2015
120 of 176

A.2.1.2. Conducted Band-Edge Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2400.000 MHz : -31.771 dBm M2 : 2402.080 MHz : -25.747 dBm M3 : 2411.200 MHz : 4.604 dBm	Channel Frequency: 2412.00 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:121 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -31.678 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2402.080 MHz : -25.007 dBm	
RF Atten (dB) = 10	M3 : 2411.200 MHz : 5.435 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:122 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2400.000 MHz : -31.026 dBm M2 : 2400.520 MHz : -30.501 dBm M3 : 2404.480 MHz : 1.433 dBm	Channel Frequency: 2412.00 MHz

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:123 of 176

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE Mil Variant: 802.11g, Channel: 2412.00 MHz, Chain b, Temp: Ambient, Voltage: 12 Vdc Ref Level: +2.000E+01 dBm Sweep Time: 5.0 s RBW: 100 KHz 20.0 dB Offset VBW: 300 KHz 20 Date: 2015,7,31 -10-M3 D1: 2.671 dBm Manunum hundred hundred 0 -10--20-M21 M2^{M1} -30 D2: -27.330 dBm dBm -40 -50 -60 -70 -©MiCOM Labs 2015 Tested by: CC -80 -Start 2350.000 MHz Stop 2422.000 MHz Step 7.200 MHz Span 72.000 MHz

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -26.697 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	MZ : 2398.360 MHZ : -28.236 dBm	
RF Atten (dB) = 10	M3 : 2404.480 MHz : 2.671 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:124 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -26.697 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2400.400 MHz : -24.870 dBm	
RF Atten (dB) = 10	M3 : 2404.480 MHz : 2.671 dBm	
Trace Mode = VIEW		

back to matrix

Title: To: Serial #: Issue Date: 125 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -29.924 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2400.040 MHz : -29.924 dBm	
RF Atten (dB) = 10	M3 : 2416.960 MHz : 1.302 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: To: Serial #: Issue Date: 126 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -24.590 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2396.200 MHz : -29.942 dBm	
RF Atten (dB) = 10	M3 : 2419.480 MHz : 2.491 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:127 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -24.590 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2400.040 MHz : -24.510 dBm	
RF Atten (dB) = 10	M3 : 2419.480 MHz : 2.491 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:128 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -31.692 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2399.750 MHz : -34.004 dBm	
RF Atten (dB) = 10	M3 : 2419.500 MHz : -2.938 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:129 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -31.692 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2402.750 MHz : -26.409 dBm	
RF Atten (dB) = 10	M3 : 2419.500 MHz : -2.938 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:130 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2400.000 MHz : -28.378 dBm M2 : 2396.750 MHz : -32.196 dBm	Channel Frequency: 2422.00 MHz
RF Atten (dB) = 10 Trace Mode = V [EW]	M3 : 2429.500 MHz : -1.680 dBm	

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:131 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -28.378 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2402.250 MHz : -25.940 dBm	
RF Atten (dB) = 10	M3 : 2429.500 MHz : -1.680 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:132 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2461.240 MHz : 3.846 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2471.800 MHz : -25.931 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -57.931 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:133 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2462.680 MHz : 4.922 dBm M2 : 2471.800 MHz : -24.816 dBm	Channel Frequency: 2462.00 MHz
RF Atten (dB) = 10 Trace Mode = VIEW	M3 : 2483.500 MHz : -57.292 dBm	

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:134 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.120 MHz : 0.712 dBm M2 : 2473 480 MHz : -29 184 dBm	Channel Frequency: 2462.00 MHz
RF Atten (dB) = 10	M3 : 2483.500 MHz : -41.665 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:135 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2459.800 MHz : 2.130 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2476.960 MHz : -27.458 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -36.976 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:136 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.720 MHz : 0.714 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2473.480 MHz : -28.910 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -39.790 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:137 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2455.720 MHz : 1.896 dBm M2 : 2477 560 MHz : -28 103 dBm	Channel Frequency: 2462.00 MHz
RF Atten (dB) = 10	M3 : 2483.500 MHz : -34.782 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:138 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2449.500 MHz : -3.405 dBm	Channel Frequency: 2452.00 MHz
Sweep Count = 0	M2 : 2473.750 MHz : -31.421 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -40.300 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:139 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2447.000 MHz : -2.006 dBm M2 : 2476 000 MHz : -31 731 dBm	Channel Frequency: 2452.00 MHz
RF Atten (dB) = 10	M3 : 2483.500 MHz : -35.205 dBm	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:140 of 176

A.3. Power Spectral Density

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2414.750 MHz : -5.940 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:141 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2414.150 MHz : -4.724 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title: To: Serial #: Issue Date: Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015 142 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2414.200 MHz : -4.068 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2414.200 MHz : -4.024 dBm	Margin: -12.0 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:143 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2437.650 MHz : -9.397 dBm	Limit: ≤ 4.990 dBm

back to matrix

Title: To: Serial #: ATEC07-Rev A Issue Date: 18th August 2015 144 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2437.750 MHz : -9.677 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: To: Serial #: Issue Date: Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015 145 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2437.700 MHz : -6.799 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2437.700 MHz : -6.755 dBm	Margin: -14.8 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: To: Serial #: ATEC07-Rev A Issue Date: 146 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) 18th August 2015

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2461.200 MHz : -11.009 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:147 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2466.000 MHz : -9.950 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:148 of 176

POWER SPECTRAL DENSITY - AVERAGE MiTe Variant: 802.11b, Channel: 2462.00 MHz, SUM, Temp: Ambient, Voltage: 12 Vdc Ref Level: +2.500E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.0 dB Offset VBW: 10 KHz Date: 2015,7,31 -20-10 0-M1 -10 --20dBm -30--40 -50 -60 -70 ©MiCOM Labs 2015 Tested by: CC Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2462.800 MHz : -7.576 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2462.800 MHz : -7.532 dBm	Margin: -15.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:149 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.700 MHz : -13.017 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:150 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2411.050 MHz : -11.816 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:151 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.700 MHz : -9.369 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2410.700 MHz : -8.911 dBm	Margin: -16.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:152 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2435.400 MHz : -13.263 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:153 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2444.450 MHz : -11.967 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:154 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2435.400 MHz : -9.606 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2435.400 MHz : -9.148 dBm	Margin: -17.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:155 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2454.500 MHz : -13.569 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:156 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2460.700 MHz : -12.136 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:157 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2460.700 MHz : -9.805 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2460.700 MHz : -9.347 dBm	Margin: -17.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:158 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2416.950 MHz : -12.807 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:159 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2419.450 MHz : -11.714 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: To: Serial #: ATEC07-Rev A Issue Date: 18th August 2015 160 of 176 Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2405.700 MHz : -9.241 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2405.700 MHz : -8.926 dBm	Margin: -16.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.32 dB	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:161 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2429.150 MHz : -13.248 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:162 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2431.950 MHz : -11.882 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:163 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2432.000 MHz : -9.609 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2432.000 MHz : -9.294 dBm	Margin: -17.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.32 dB	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:164 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 2455.700 MHz : -13.584 dBm	Limit: ≤ 4.990 dBm
RF Atten (dB) = 20 Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:165 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.700 MHz : -12.198 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: To: Serial #: Issue Date: Page:

Actiontec Electronics Inc. WCB5000, WEB5000 FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ATEC07-Rev A 18th August 2015 166 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.700 MHz : -9.826 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2455.700 MHz : -9.511 dBm	Margin: -17.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.32 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:167 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2415.400 MHz : -16.984 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:168 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2425.700 MHz : -15.503 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:169 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2425.700 MHz : -13.237 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2425.700 MHz : -12.531 dBm	Margin: -20.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.71 dB	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:170 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2443.200 MHz : -17.124 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:171 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2432.300 MHz : -15.790 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:172 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2443.200 MHz : -13.422 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2443.200 MHz : -12.716 dBm	Margin: -20.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.71 dB	
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:173 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2445.400 MHz : -17.446 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:174 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.700 MHz : -16.092 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Actiontec Electronics Inc. WCB5000, WEB5000To:FCC CFR 47 Part 15 Subpart C 15.247 (DTS)Serial #:ATEC07-Rev AIssue Date:18th August 2015Page:175 of 176

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2455.700 MHz : -13.738 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2455.700 MHz : -13.032 dBm	Margin: -21.0 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.71 dB	
Trace Mode = VIEW		

back to matrix

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com