

FCC Part 15.407 TEST REPORT

For

Actiontec Electronics Inc.

3301 Olcott St. Santa Clara, CA 95054

Report Type	Original Report
FCC ID:	FCC ID: LNQT3280
Product Name:	WiFi 6 Gateway Router with Bonded VDSL
Model Name:	T3280
Report Number :	RLK200729001-00C
Report Date :	2020/10/06
Reviewed By :	Zeus Chen Zeus Chen

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)

No. 6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.)

Tel: +886 (3)3961072; Fax: +886 (3) 3961027

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Revision History

Revision	Report Number	Issue Date	Description
1.0	RLK200729001-00C	2020/10/06	Original Report

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.3 1.3 1.4 1.5 1.6	2 OPERATION CONDITION OF EUT 3 OBJECTIVE	
2	SYSTEM TEST CONFIGURATION	7
2.2 2.2 2.4	SUPPORT EQUIPMENT AND EXTERNAL CABLE LIST	9 9
3	SUMMARY OF TEST RESULTS	12
4	FCC §1.1310, §2.1091, §15.407(F) - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	13
4.2 4.2		
5	FCC §15.203 – ANTENNA REQUIREMENTS	15
5.2 5.2		
6	FCC §15.207 - AC LINE CONDUCTED EMISSIONS	_
6.3 6.3 6.4	2 EUT SETUP AND TEST PROCEDURE	16 17
7	FCC §15.209, §15.205 & §15.407(B) – UNWANTED EMISSION	18
7.2 7.2 7.2 7.4	2 EUT SETUP AND TEST PROCEDURE 3 TEST EQUIPMENT LIST AND DETAILS 4 TEST DATA AND TEST PLOT.	20 21 22
	FCC §15.407(A)(E) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
8.2 8.3 8.4	TEST PROCEDURE	30 31
9	FCC §15.407(A)(1) – MAXIMUM OUTPUT POWER	47
9.2 9.2 9.3 9.4	TEST PROCEDURE	47 48
10	FCC §15.407(A) – POWER SPECTRAL DENSITY	50
10 10	D.1 APPLICABLE STANDARD	50 51

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	Actiontec Electronics Inc.	
Терисон	3301 Olcott St. Santa Clara, CA 95054	
Manufacturer	Actiontec Electronics Inc.	
	3301 Olcott St. Santa Clara, CA 95054	
Product (Equipment)	WiFi 6 Gateway Router with Bonded VDSL	
Model Name	T3280	
Frequency Range	UNII-1: 5150 MHz - 5250 MHz;UNII-3: 5745 MHz - 5850 MHz	
	For UNII-1:	
	IEEE 802.11a/n HT20/ac VHT20/ax HE20: 4 Channels	
	IEEE 802.11n HT40/ac VHT40/ax HE40: 2 Channels	
Number of Channels	IEEE 802.11ac VHT80/ax HE80: 1 Channels	
Number of Chamies	For UNII-3:	
	IEEE 802.11a/n HT20/ac VHT20/ax HE20: 5 Channels	
	IEEE 802.11n HT40/ac VHT40/ax HE40: 2 Channels	
	IEEE 802.11ac VHT80/ax HE80: 1 Channels	
	For UNII-1:	
	IEEE 802.11a Mode: 26.35 dBm (0.4315 W)	
	IEEE 802.11n HT20 Mode: 26.34 dBm (0.4305 W)	
	IEEE 802.11n HT40 Mode: 27.17 dBm (0.5212 W)	
	IEEE 802.11ac VHT20 Mode: 26.49 dBm (0.4457 W)	
	IEEE 802.11ac VHT40 Mode: 27.40 dBm (0.5495 W)	
	IEEE 802.11ac VHT80 Mode: 22.47 dBm (0.1766 W)	
	IEEE 802.11ax HE20 Mode: 26.64 dBm (0.4613 W)	
	IEEE 802.11ax HE40 Mode: 27.50 dBm (0.5623 W)	
Output Bower	IEEE 802.11ax HE80 Mode: 21.55 dBm (0.1429 W)	
Output Power	For UNII-3:	
	IEEE 802.11a Mode: 27.82 dBm (0.6053W)	
	IEEE 802.11n HT20 Mode: 27.56 dBm (0.5702 W)	
	IEEE 802.11n HT40 Mode: 28.85 dBm (0.7674 W)	
	IEEE 802.11ac VHT20 Mode: 27.73 dBm (0.5929 W)	
	IEEE 802.11ac VHT40 Mode: 28.99 dBm (0.7925 W)	
	IEEE 802.11ac VHT80 Mode: 26.77 dBm (0.4753 W)	
	IEEE 802.11ax HE20 Mode: 27.93 dBm (0.6209 W)	
	IEEE 802.11ax HE40 Mode: 29.13 dBm (0.8185 W)	
	IEEE 802.11ax HE80 Mode: 26.90 dBm (0.4898 W)	
Modulation Type	OFDM	
Received Date	2020/08/19	
Date of Test	2020/10/13 - 2020/10/28	
Related Submittal(s)/Grant(s)	FCC Part 15.247 DTS with FCC ID: LNQT3280	

^{*}All measurement and test data in this report was gathered from production sample serial number: 200729001 Assigned by BACL, Linkou Laboratory).

Page 4 of 66

1.2 Operation Condition of EUT

Power Operation (Voltage Range)	 AC 120 V/60 Hz Adapter Brand Name: Actiontec Model: CSD024T-W120U I/P: 120Vac, 50/60Hz, 0.58A O/P: 12Vdc, 2A By Power Cord. 	
	☐ DC Type ☐ DC Power ☐ Battery ☐ External from USB Cable ☐ External DC Adapter	
	☐ Host System	

Report No.: RLK200729001-00C

1.3 Objective

The Objective of this Test Report was to document the compliance of the Actiontec Electronics Inc. Appliance (Model:T3280) to the requirements of the following Standards:

- -Part 2, Subpart J, Part 15 Subparts A and E of the Federal Communication Commission's rules.
- -KDB 662911 D01 Multiple Transmitter Output v02r01
- -KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
- ANSI C63.10-2013 of t American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
RF output power	± 1.488 dB
Occupied Channel Bandwidth	± 453.927 Hz
RF Conducted Emission test	± 2.77 dB
AC Power Line Conducted Emission	± 2.66 dB
Radiated Below 1G	± 3.57 dB
Radiated Above 1G	± 5.32 dB

The test results with statement of conformity, the decision rules are based on the specifications and standards. The test results will not take the measurement uncertainty into account.

1.5 Environmental Conditions and Test Date

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	Test Engineer
Conduction (Con-01)	2020/10/20	24.4	52	Brian Chang
Radiated (966A)	2020/10/13 - 2020/10/16	21.1 - 22.1	54 - 57	Leo Cheng
Conducted (TH-02)	2020/10/15 - 2020/10/28	22.5 - 22.9	55 - 57	Blake Wang

Report No.: RLK200729001-00C

1.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou Laboratory) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) by Mutual Recognition Agreement (MRA). The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW1119. The Test Firm Registration No.: 311381. ISED#: 25102 and CAB identifier is TW3546.

Page 6 of 66

2 System Test Configuration

2.1 Description of Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

IEEE 802.11 a/n HT20/ac VHT20/ax HE20				
Channel	Frequency (MHz) Channel Frequency (MHz)			
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
-	-	165	5825	

For UNII-1: Channel 36, 40 and 48 were tested. For UNII-3: Channel 149, 157 and 165 were tested.

IEEE 802.11 n HT40/ac VHT40/ax HE40			
Channel Frequency (MHz) Channel Frequency (MHz)			
38	5190	151	5755
46 5230		159	5795

For UNII-1: Channel 38 and 46 were tested. For UNII-3: Channel 151 and 159 were tested.

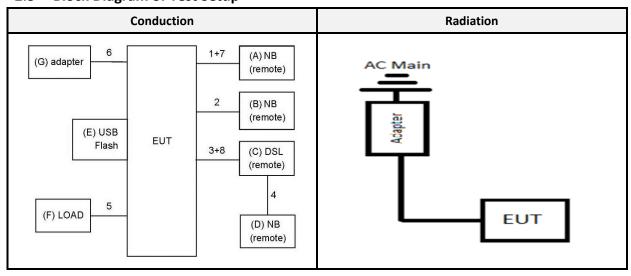
IEEE 802.11 ac VHT80/ax HE80			
Channel Frequency (MHz) Channel Frequency (MHz)			
42	5210	155	5775

For UNII-1: Channel 42 was tested. For UNII-3: Channel 155 was tested.

Modulation Used for Conformance Test			
Configuration	N _{TX}	Data Rate	Worst Data Rate
802.11a mode	4	6-54 Mbps	6 Mbps
802.11n HT20 mode	4	MCS 0-7	MCS 0
802.11n HT40 mode	4	MCS 0-7	MCS 0
802.11ac VHT20 mode	4	MCS 0-8 NSS4	MCS 0
802.11ac VHT40 mode	4	MCS 0-9 NSS4	MCS 0
802.11ac VHT80 mode	4	MCS 0-9 NSS4	MCS 0
802.11ax HE20 mode	4	MCS 0-11 NSS4	MCS 0
802.11ax HE40 mode	4	MCS 0-11 NSS4	MCS 0
802.11ax HE80 mode	4	MCS 0-11 NSS4	MCS 0

- The worst-case data rates are determined to be as follows for each mode based upon investigation by
 measuring the Peak power and PSD across all date rates bandwidths, and modulations. Radiated below 1G
 were tested worst output power mode.
- Due to 802.11n HT20/n HT40/ac VHT20/ac VHT40/ac VHT80 mode output power are less than 802.11ax HE20/ax HE40/ax HE80. Therefore, 802.11ax HE20/ax HE40/ax HE80 cover 802.11n HT20/n HT40/ac VHT20/ac VHT40/ac VHT80 in the test, Include conducted and radiated, except power test.

2.2 Support Equipment and External Cable List

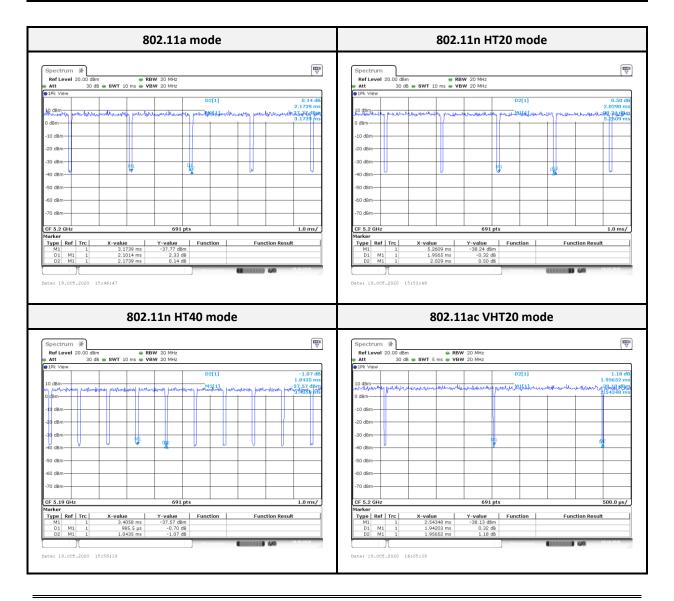

Equipment List:

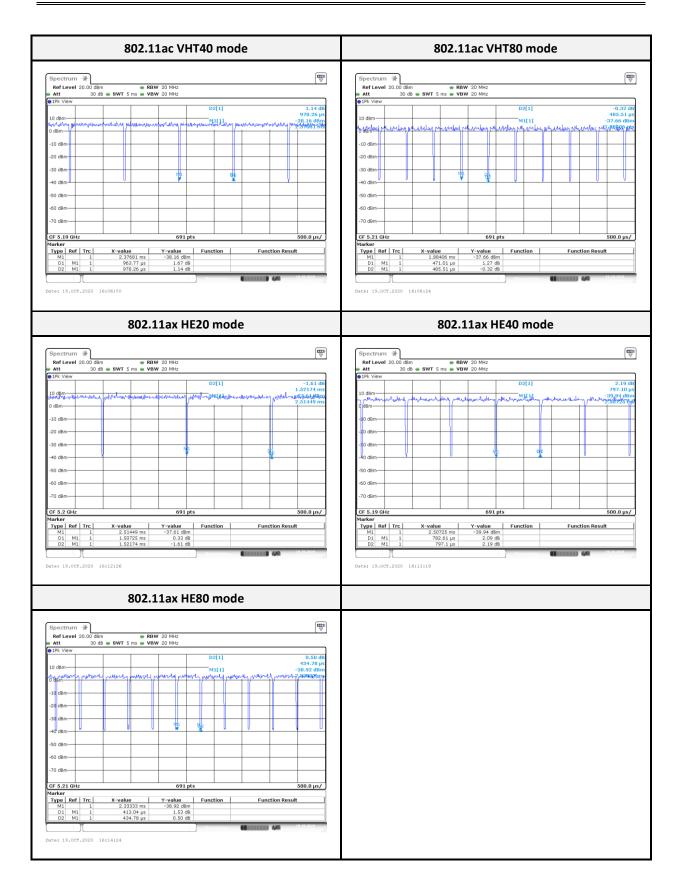
No.	Description	Manufacturer	Model Number
Α	Notebook	DELL	Latitude E6410
В	NB	DELL	Latitude E5470
С	DSL	Broadcom	BCM96358MG-CO
D	NB	DELL	Latitude E5470
Е	USB Flash	Kingston	16GB
F	LAN LOAD	NA	NA
G	ADAPTER	Actiontec	CDS024T-W120U

Cable List:

Cabic List.					
No.	Description	Shielded Type	Ferrite Core	Length (M)	Remark
1	LAN Cable	Non-Shielded	NA	1.8	EUT
2	LAN Cable	Non-Shielded	NA	10	
3	RJ-11 Cable	Non-Shielded	NA	3.6	EUT
4	LAN Cable	Non-Shielded	NA	1.8	
5	LAN Cable*3	Non-Shielded	NA	1.5	
6	DC Cable	Non-Shielded	NA	1.8	
7	LAN Cable	Non-Shielded	NA	10	
8	RJ-11 Cable	Non-Shielded	NA	10	

2.3 Block Diagram of Test Setup




2.4 Duty Cycle

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum power transmission duration, T, are required for each tested mode of operation.

Configuration	Duty Cycle (%)	On Time (ms)	Period (ms)	Duty Factor (dB)
802.11a mode	96.66	2.10	2.17	0.15
802.11n HT20 mode	96.43	1.96	2.03	0.16
802.11n HT40 mode	94.44	0.99	1.04	0.25
802.11ac VHT20 mode	99.26	1.94	1.96	0.03
802.11ac VHT40 mode	98.52	0.96	0.98	0.06
802.11ac VHT80 mode	97.01	0.47	0.49	0.13
802.11ax HE20 mode	99.05	1.51	1.52	0.04
802.11ax HE40 mode	98.18	0.78	0.80	0.08
802.11ax HE80 mode	95.00	0.41	0.43	0.22

3 Summary of Test Results

FCC Rules	Description of Test	Result
§1.1310, §2.1091, §15.407 (f)	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a), §15.407(b)(6)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.407(b)	Spurious Emissions	Compliance
§15.407(a)(e)	Emission Bandwidth	Compliance
§15.407(a)(1)	Maximum Peak Output Power	Compliance
§15.407(a)(1)(5)	Power Spectral Density	Compliance

Report No.: RLK200729001-00C

Page 12 of 66

4 FCC §1.1310, §2.1091, §15.407(f) - Maximum Permissible Exposure (MPE)

Report No.: RLK200729001-00C

4.1 Applicable Standard

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in § 1.1307(b), and 2.1091 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request

<u>Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)</u>

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)							
0.3-1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f²)	30			
30–300	27.5	0.073	0.2	30			
300–1500	/	/	f/1500	30			
1500–100,000	/	/	1.0	30			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary: Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm); $\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$ For simultaneously transmit system, the calculated power density should comply with:

4.2 RF Exposure Evaluation Result

MPE Evaluation:

Mada	Frequency		Antenna Gain		get Power	Evaluation	Power Density	MPE Limit
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	(mW/cm²)	(mW/cm²)
Wi-Fi 2.4G	2412-2462	3.93	2.4717	28.50	707.9458	20	0.3483	1.0
UNII-1	5150-5250	4.12	2.5823	28.00	630.9573	20	0.3243	1.0
UNII-2a	5250-5350	4.49	2.8119	23.00	199.5262	20	0.1117	1.0
UNII-2c	5470-5725	4.95	3.1261	23.00	199.5262	20	0.1242	1.0
UNII-3	5745-5850	4.95	3.1261	29.50	891.2509	20	0.5546	1.0

Report No.: RLK200729001-00C

Note: Wi-Fi 2.4G and Wi-Fi 5G can't simultaneously.

Result: MPE evaluation of single and simultaneous transmission meet the requirement of standard.

Page 14 of 66

5 FCC §15.203 – Antenna Requirements

5.1 Applicable Standard

According to § 15.203 and § 15.407(a)(3),

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

Report No.: RLK200729001-00C

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2 Antenna List and Details

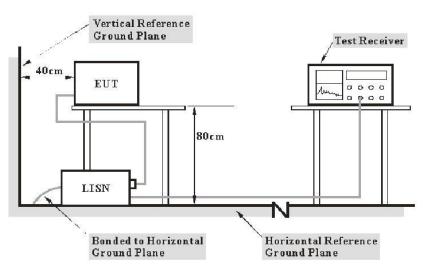
Configuration	Antenna Type	Brand	Model	Antenna Gain (dBi)	Result
	Internal Antenna	CALTRONICS	HB1	3.85	Compliance
UNII-1:	Internal Antenna	CALTRONICS	HB2	4.12	Compliance
OINII-1.	Internal Antenna	CALTRONICS	HB3	-10.43	Compliance
	Internal Antenna	CALTRONICS	HB3	-4.18	Compliance
	Internal Antenna	CALTRONICS	HB1	2.70	Compliance
LINII 2.	Internal Antenna	CALTRONICS	HB2	4.95	Compliance
	Internal Antenna	CALTRONICS	HB3	-4.73	Compliance
	Internal Antenna	CALTRONICS	НВ3	-2.63	Compliance

The EUT has an internal dedicated antennas arrangement, fulfill the requirement of this section.

6 FCC §15.207 - AC Line Conducted Emissions

6.1 **Applicable Standard**

According to FCC §15.207 and §15.407(b)(6),


For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Report No.: RLK200729001-00C

Frague and (BALLE)	Conducted	Limit (dBuV)
Frequency (MHz)	Quasi-Peak	Average
0.15-0.5	66 to 56 ^{Note 1}	56 to 46 Note 2
0.5-5	56	46
5-30	60	50

Note 1: Decreases with the logarithm of the frequency. Note 2: A linear average detector is required

6.2 **EUT Setup and Test Procedure**

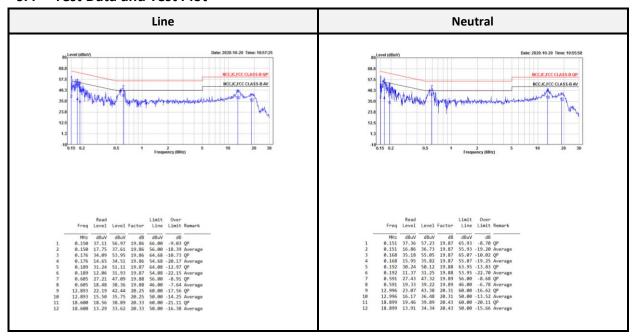
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	Receiver RBW
150 kHz - 30 MHz	9 kHz


During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

6.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.	
Conduction Room						
LISN	Rohde & Schwarz	ENV216	100010	2020/09/14	2021/09/13	
EMI Test Receiver	Rohde & Schwarz	ESR3	102430	2020/05/07	2021/05/06	
Pulse Limiter	SCHWARZBECK	VSTD 9561-F	00432	2020/09/11	2021/09/10	
RF Cable	EMCI	EMCCFD300-BM- BM-8000	180526	2020/08/18	2021/08/17	
Software	Audix	e3 v9	E3LK-03	N.C.R	N.C.R	

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be
traceable to the International System of Units (SI).

6.4 Test Data and Test Plot

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

 $Factor = (LISN, ISN, PLC \ or \ current \ probe) \ Factor + Cable \ Loss + Attenuator$

7 FCC §15.209, §15.205 & §15.407(b) – Unwanted Emission

7.1 Applicable Standard

According to FCC §15.407(b),

Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

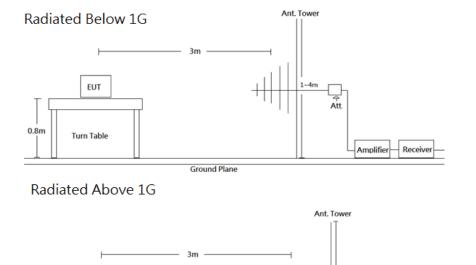
Report No.: RLK200729001-00C

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further.
- (7) The provisions of $\S15.205$ apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6


As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Turn Table

7.2 EUT Setup and Test Procedure

Report No.: RLK200729001-00C

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.407 Limits.

The system was investigated from 30 MHz to 40 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10-2013.

Frequency Range	RBW	VBW	Detector	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	QP	1	QP
	1 MHz	3 MHz	PK	1	PK
Above 1 GHz	1 MHz	10 MHz	PK	>98%	Ave
	1 MHz	1/T	PK	<98%	Ave

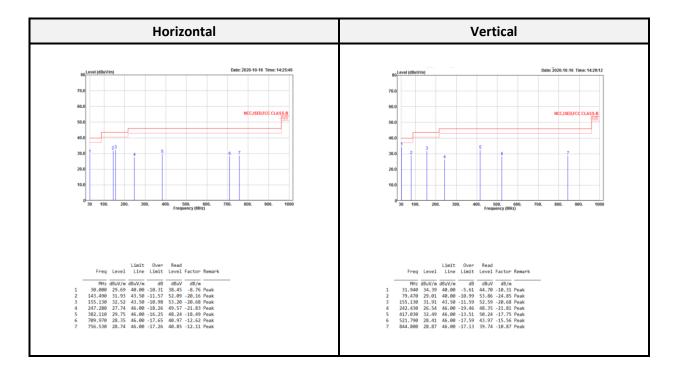
Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

7.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		966A	Room		
Active Loop Antenna	EMCO	6502	0001-3322	2020/03/16	2021/03/15
Bilog Antenna/6 dB Attenuator	SUNOL SCIENCES & EMEC /EMCI	JB3/N-6-06	A111513/AT- N0668	2020/03/19	2021/03/18
Horn Antenna	ETS-Lindgren	3115	00109141	2020/07/15	2021/07/14
Horn Antenna	ETS-Lindgren	3160-09	00123852	2020/07/07	2021/07/06
Horn Antenna	ETS-Lindgren	3160-10	00123855	2020/07/07	2021/07/06
Preamplifier	A.H. Systems	PAM-0118P	478	2020/05/05	2021/05/04
Preamplifier	A.H. Systems	PAM-1840VH	174	2020/03/25	2021/03/24
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06
Microflex Cable (1m)	EMCI	EMC106-SM-SM- 2000	180515	2020/08/06	2021/08/05
Microflex Cable (2m)	MTJ	H0919	00000-MT28A- 100	2020/08/06	2021/08/05
Microflex Cable (8m)	UTIFLEX	UFA210A-1-3149- 300300	MFR 64639 232490-001	2020/08/06	2021/08/05
Turn Table	Chaintek	T-200-S-1	003501	N.C.R	N.C.R
Antenna Tower	Chaintek	MBD-400-1	003504	N.C.R	N.C.R
Controller	Chaintek	3000-1	003507	N.C.R	N.C.R
Software	Audix	e3 v9	E3LK-01	N.C.R	N.C.R

Report No.: RLK200729001-00C

Page 21 of 66


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be
traceable to the International System of Units (SI).

Test Data and Test Plot

Wi-Fi 5G Mode:

Transmitting mode (Pre-scan with three orthogonal axis, and worse case as Y axis)

Below 1G (30 MHz-1 GHz) test the output power worst mode

Report No.: RLK200729001-00C

Level = Read Level + Factor

Over Limit = Level - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

Above 1G (1 GHz-40 GHz) in UNII-1:

802.11a mode:

						Lo	v CH							
	Horizontal									Ve	ertica			
Freq	Level	Limit Line		Read Level	Factor	Remark		Freq	Level	Limit Line				Remark
		dBuV/m						MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1 ! 5144.800						Average		! 5149.000		54.00				Average
2 ! 5144.800			-5.02	71.36			_	! 5149.000		74.00	-5.02	71.35		
3 * 5182.750				108.50		Average		* 5181.850				107.87		Average
4 * 5182.750	115.73			118.08	-2.35	Peak	4	* 5181.850	114.66			117.01	-2.35	Peak
1 !10360.000	59.56	68.20	-8.64	52.86		Peak	1	!10360.000	59.10	68.20	-9.10	52.40	6.70	Peak
2 !15540.000	50.09	54.00	-3.91	40.53	9.56	Average	2	!15540.000	43.97	54.00	-10.03	34.41	9.56	Average
3 145540 000	65.02	74.00	-8.98	55.46	9.56	Peak	3	!15540.000	56.20	74.00	-17.80	46.64	9.56	Peak

		Hor	izont	al						Ve	rtica	l		
	Level		Over Limit	Level		Remark			Level		Over Limit	Level		Remark
	dBuV/m				dB/m				dBuV/m					
1 ! 5098.000		54.00				Average		! 5084.400		54.00				Average
1 5098.000		74.00	-11.89				2			74.00	-11./3	64.70		
* 5201.200				109.30		Average		* 5195.600				112.36		Average
* 5201.200				118.91			4			F4 00	4 70	121.63		
1 5403.600				50.90		Average	5	! 5359.600 ! 5359.600	61.88		-4.72	51.28 63.88		Average
110400.000			-11.14		-1.87		_							
!10400.000				53.64	6.80		_	!10400.000	59.29		-8.91	52.49	6.80	
115600.000		54.00		43.93		Average	_	!15600.000		54.00				Average
!15600.000	67.63	74.00	-6.37	58.00	9.63	Peak	3	115600.000	62.32	74.00	-11.68	52.69	9.63	Peak

		High CH
	Horizontal	Vertical
Freq Level MHz dBuV/m dE 1 ! 5061.200 48.47 5 2 ! 5061.200 62.80 7 3 * 5241.600 107.05 4 * 5241.600 116.89 5 ! 5448.000 49.39 5 6 ! 5448.000 63.79 7 1 !10480.000 63.87 6	Limit Over Read Line Limit Level Factor F BUV/m dB dBuV dB/m 54.00 -5.53 50.91 -2.44 A 74.00 -11.20 65.24 -2.44 F 109.36 -2.31 A 119.20 -2.31 F 54.00 -4.61 51.13 -1.74 A 74.00 -10.21 65.53 -1.74 F 58.20 -4.33 56.85 7.02 F	MHz dBuV/m dB uV/m dB dBuV dB/m verage 1 ! 5104.800 48.89 54.00 -5.11 51.30 -2.41 Average eak 2 ! 5104.800 62.13 74.00 -11.87 64.54 -2.41 Peak verage 3 * 5235.200 110.10 112.42 -2.32 Average eak 4 * 5235.200 119.55 121.87 -2.32 Peak verage 5 ! 5446.800 49.15 54.00 -4.85 50.90 -1.75 Average eak 6 ! 5446.800 62.55 74.00 -11.45 64.30 -1.75 Peak eak 1 !10480.000 62.12 68.20 -6.08 55.10 7.02 Peak
	54.00 -0.14 44.15 9.71 A 74.00 -3.97 60.32 9.71 F	verage 2 !15720.000 48.21 54.00 -5.79 38.50 9.71 Average eak 3 !15720.000 62.58 74.00 -11.42 52.87 9.71 Peak

802.11ax HE20 mode:

Horizontal	Vertical
Limit Over Read Limit Level Factor Remark Limit Level Factor Remark Limit Level Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m Limit Level Factor Remark Limit Level Remark Limit Level	Limit Over Read Level Line Limit Level Factor Remark

		Hor	izont	:al						Ve	ertica			
	62.23 105.76 116.61 49.06 63.19	dBuV/m 54.00 74.00	Limit dB -4.04 -11.77 -4.94 -10.81	dBuV 52.34 64.61 108.10 118.95 50.86 64.99	dB/m -2.38 -2.38 -2.34 -2.34 -1.80 -1.80	Average Peak Average Peak Average	2 3 4 5	MHz ! 5146.800 ! 5146.800 * 5201.200 * 5201.200	63.13 107.52 119.97 48.92	dBuV/m 54.00 74.00	dB -3.95 -10.87 -5.08 -11.43	dBuV 52.43 65.51 109.86 122.31 50.67	dB/m -2.38 -2.38 -2.34 -2.34 -1.75	Average Peak Average Peak Average Peak
2 !15600.000		54.00 74.00		43.63 56.96		Average Peak	_	!15600.000 !15600.000		54.00 74.00		37.40 51.76	9.63 9.63	Average

	Hi	gh CH
	Horizontal	Vertical
2 ! 5078.000 61.93 3 * 5245.200 105.53 4 * 5245.200 116.76 5 ! 5412.400 49.02 6 ! 5412.400 62.20 1 !10480.000 63.45 2 !15720.000 53.61	the state of the s	Limit Over Read Level Limit Level Factor Remark Level Level Factor Remark Level Factor Remark Level Factor Remark Level Level Factor Remark Level Level

802.11ax HE40 mode:

		Hor	izont	al						Ve	ertica	l		
		Limit	Over	Read						Limit	0ver	Read		
Freq	Level	Line	Limit	Level	Factor	Remark		Freq	Level	Line	Limit	Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m			MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1 ! 5149.680	51.68	54.00	-2.32	54.05	-2.37	Average	1	! 5149.040	53.05	54.00	-0.95	55.42	-2.37	Average
2 ! 5149.680	69.69	74.00	-4.31	72.06	-2.37	Peak	2	! 5149.040	70.50	74.00	-3.50	72.87	-2.37	Peak
3 * 5200.080	98.26			100.60	-2.34	Average	3	* 5189.520	104.29			106.63	-2.34	Average
4 * 5200.080	110.84			113.18	-2.34		4	* 5189.520	112.65			114.99	-2.34	Peak
1 !10380.000	56.10	68.20	-12.10	49.35	6.75	Peak	1	!10380.000	52.15	68.20	-16.05	45.40	6.75	Peak
2 !15570.000	42.38	54.00	-11.62	32.80	9.58	Average	2	!15570.000			-12.90			Average
115570.000	55.30	74.00	-18.70	45.72	9.58	Peak		15570.000			-20.36			Peak

Report No.: RLK200729001-00C

							High CH							
		Hor	izont	:al						Ve	rtica			
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line			Factor	Remark
	dBuV/m	dBuV/m	dB	dBuV	dB/m		_	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1 ! 5150.000		54.00				Average	1	! 5146.000	53.35	54.00	-0.65	55.73	-2.38	Average
2 ! 5150.000		74.00	-6.83	69.54			2	! 5146.000	66.97	74.00	-7.03	69.35	-2.38	Peak
3 * 5215.200						Average	3	* 5222.000	106.18			108.51	-2.33	Average
4 * 5215.200	115.96			118.29	-2.33	Peak	4	* 5222.000	116.53			118.86	-2.33	Peak
5 ! 5354.400	49.79	54.00	-4.21	51.81	-2.02	Average	5	! 5393.600	49.73	54.00	-4.27	51.64	-1.91	Average
6 ! 5354.400	62.64	74.00	-11.36	64.66	-2.02	Peak	6	! 5393.600	62.42	74.00	-11.58	64.33	-1.91	Peak
1 !10460.000	60.59	68.20	-7.61	53.64	6.95	Peak	1	10460.000	60.58	68.20	-7.62	53.63	6.95	Peak
2 !15690.000	53.35	54.00	-0.65	43.68	9.67	Average	2	15690.000	47.61	54.00	-6.39	37.94	9.67	Average
3 !15690.000	65.58	74.00	-8.42	55.91	9.67	Peak	3	15690.000	59.42	74.00	-14.58	49.75	9.67	Peak

802.11ax HE80 mode:

		Hor	izont	al						Ve	ertica	I		
Freq	Level	Limit Line	Over Limit		Factor	Remark		Freq	Level	Limit Line		Read Level	Factor	Remark
	dBuV/m				dB/m		1	MHz ! 5149.600	dBuV/m					
1 ! 5148.200 2 ! 5148.200					-2.38	Average		1 5149.600		54.00 74.00			-2.37	Average
3 * 5200.200		74.00	-/.11	98.00		Average	_	* 5214.000		74.00	-4.03	100.15		Average
4 * 5200.200				109.99	-2.34	_		* 5214.000				110.86		_
1 !10420.000		68.20	-14.82			Peak	-	110420.000		68.20	-16.77			Peak
2 !15630.000	42.79	54.00	-11.21	33.10	9.69	Average	2	15630.000	42.65	54.00	-11.35	32.96	9.69	Average
3 !15630.000	54.29	74.00	-19.71	44.60	9.69	Peak	3	!15630.000	54.26	74.00	-19.74	44.57	9.69	Peak

Above 1G (1 GHz-40 GHz) in UNII-3:

802.11a mode:

						Lov	v CH							
		Hor	izont	al						Ve	ertica			
Freq	Level	Limit Line			Factor	Remark		Freq	Level	Limit Line		Read Level	Factor	Remark
MHz 1 ! 5615.400 2 5680.560 3 5719.800 4 ! 5742.480 5 5862.000 6 ! 5919.600 7 ! 5962.440 1 !11490.000 2 !11490.000	63.11 76.19 117.77 63.68 64.64 64.05 51.44	68.20 90.85 110.74 122.20 108.84 72.18 68.20 54.00	-5.55 -27.74 -34.55 -4.43 -45.16 -7.54 -4.15 -2.56	64.01 76.93 118.42 63.84		Peak Peak Peak Peak Peak	2	! 5617.560 5698.920 5716.920 ! 5749.680 5857.680 ! 5912.040	63.91 64.28 78.15 120.71 64.44 64.26 64.08 52.75 66.04	104.40 109.94 122.20 110.05 77.76 68.20 54.00 74.00	-4.29 -40.12 -31.79 -1.49 -45.61 -13.50 -4.12 -1.25	65.05 65.10 78.90 121.34 64.62 64.21 63.91 45.42 58.71	-1.14 -0.82 -0.75 -0.63 -0.18 0.05 0.17 7.33 7.33	Peak Peak Peak Peak Peak Peak Peak Average Peak

		Hori	zont	al						Ve	ertical	l		
Freq	-	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line		Read Level	Factor	Remark
MHz 1 ! 5633.760 2 5685.600 3 5706.840 4 ! 5782.440 5 5858.760 6 ! 5919.240 7 ! 5964.240 ! !11570.000 6 ! 11735.000	63.91 9 63.85 16 117.77 17 64.52 16 65.19 7 63.96 6 50.24 5 63.28 7	68.20 94.58 07.12 22.20 09.75 72.45 68.20 54.00	-43.27 -4.43 -45.23	118.26 64.69 65.12 63.69 42.80 55.84	dB/m -1.08 -0.89 -0.80 -0.49 -0.17 0.07 0.27 7.44 7.44 15.19	Peak Peak Peak Peak Peak Peak Average Peak	2	! 5618.280 5676.240 5703.240 ! 5786.760 5863.440 ! 5917.080	64.02 64.13 121.36 64.90	68.20 87.66 106.11 122.20 108.43 74.04	-4.85 -23.64 -41.98 -0.84 -43.53 -9.20 -3.68 -1.93 -7.92	64.94 64.94 121.83 65.06 64.78	dB/m -1.14 -0.92 -0.81 -0.47 -0.16 0.06 0.23 7.44 7.44 15.19	Peak Peak Peak Peak Peak Peak Peak Average Peak

	High	n CH
rizontal		Vertical
Limit Level Facto dB dBuV dB/ -5.66 63.70 -1.1 -20.97 64.42 -0.9 -44.77 64.24 -0.7 -5.12 117.41 -0.3 -40.33 70.30 -0.1 -37.15 64.96 -0.0 -3.68 64.37 0.1 -4.74 41.64 7.6 -11.44 54.94 7.6	m 6 Peak 3 Peak 8 Peak 8 Peak 8 Peak 9 Peak 9 Peak 5 Peak 2 Average 2 Peak	Limit Over Read Hevel Line Limit Level Factor Remark Hevel F
	Limit Level Facto dB dBuV dB/ -5.66 63.70 -1.1 -20.97 64.42 -0.9 -44.77 64.24 -0.7 -5.12 117.41 -0.3 -40.33 70.30 -0.1 -37.15 64.96 -0.0 -3.68 64.37 0.1 -4.74 41.64 7.6 -11.44 54.94 7.6	Over Read Limit Level Factor Remark dB dBuV dB/m -5.66 63.70 -1.16 Peak -20.97 64.42 -0.93 Peak -44.77 64.24 -0.78 Peak -5.12 117.41 -0.33 Peak -40.33 70.30 -0.18 Peak -37.15 64.96 -0.09 Peak -3.68 64.97 0.15 Peak -4.74 41.64 7.62 Average -11.44 54.94 7.62 Peak

802.11ax HE20 mode:

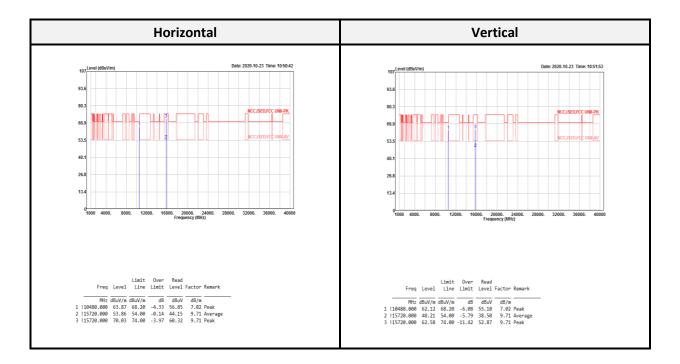
							Low CH								
	Horizontal										Ve	rtical			
Fred	Level	Limit Line			Factor	Remark			Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz 1 ! 5617.926 2 5696.406 3 5719.404 4 ! 5746.086 5 5865.246 6 5883.246 7 ! 5950.206 1 !11490.000 2 !11490.000 3 !17235.000	62.93 63.80 78.87 119.01 63.66 64.76 64.22 49.93 61.83	107.93 99.08 68.20 54.00 74.00	-5.27 -38.75 -31.77 -3.19	64.07 64.64 79.62 119.65 63.81 64.83 64.01 42.60	-1.14 -0.84 -0.75 -0.64 -0.15 -0.07 0.21	Peak Peak Peak Peak Peak Peak Average Peak	1 2	5698 5718	.160 .200 .360 .160 .080 .800 .120 .000	67.15 86.95 121.90	68.20 103.87 110.34 122.20 108.54 86.81 68.20	-36.72 -23.39 -0.30 -43.91 -22.35	63.98 67.99 87.70 122.57 64.79 64.47 64.19	-1.06 -0.84 -0.75 -0.67 -0.16 -0.01 0.24	Peak Peak Peak Peak Peak Peak Peak Average Peak

						Mi	iddle CH							
	Horizontal									Ve	rtical			
Freq	Level	Limit Line			Factor	Remark		Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz 1 ! 5613.960 2 5685.600 3 5709.000 4 ! 5784.960 5 5858.040 6 5895.480 7 ! 5962.440 1 !11570.000 2 !11570.000 3 !17335.000	62.81 62.95 63.14 118.40 63.97 64.31 64.63 49.38 61.14	109.95 90.01 68.20 54.00 74.00	-5.39 -31.63 -44.58 -3.80 -45.98 -25.70 -3.57	63.97 63.84 63.93 118.88 64.14 64.33 64.37 41.94 53.70	-1.16 -0.89 -0.79 -0.48 -0.17 -0.02 0.26	Peak Peak Peak Peak Peak Peak Peak Average Peak	2	5619.360 5691.000 5708.640 5790.360 5868.120 5885.400	62.35 63.51 64.36 121.29 65.33 64.56 65.29 51.42 64.01	107.12 97.48 68.20 54.00	-35.05 -43.26 -0.91 -41.79 -32.92 -2.91 -2.58 -9.99	63.49 64.37 65.16 121.74 65.47	-1.14 -0.86 -0.80 -0.45 -0.14 -0.07 0.16	Peak Peak Peak Peak Peak Peak Peak Average Peak

	High CH													
Horizontal										Ve	rtica			
Freq	Level	Limit Line		Read Level	Factor	Remark		Freq	Level	Limit Line			Factor	Remark
MHz 1 ! 5625.120 2 5688.480 3 5714.760 4 ! 5829.240 5 5855.160 6 5899.080 7 ! 5945.520 1 !11650.000 2 !11650.000 3 !17475.000	63.48 63.01 63.63 118.41 77.58 64.07 64.38 49.04 61.73	96.70 109.33 122.20 110.76 87.34 68.20 54.00 74.00	-4.72 -33.69 -45.70 -3.79 -33.18 -23.27 -3.82	64.59 63.88 64.39 118.72 77.76 64.08 64.20 41.42 54.11	-1.11 -0.87 -0.76 -0.31 -0.18 -0.01 0.18	Peak Peak Peak Peak Peak Peak Peak Average Peak	5 6 7 1 2	! 5647.800 5688.120 5708.640 ! 5818.440 5858.400	63.40 63.36 121.95 75.29 64.72 64.79 50.24 62.38	68.20 96.44 107.62 122.20 109.85 101.49 68.20 54.00 74.00	-4.80 -33.04 -44.26 -0.25 -34.56 -36.77	64.27 64.16 122.29 75.46 64.80 64.61 42.62 54.76	-1.03 -0.87 -0.80 -0.34 -0.17 -0.08 0.18 7.62	Peak Peak Peak Peak Peak Peak Peak Peak

802.11ax HE40 mode:

Horizontal	Vertical
Limit Over Read Freq Level Line Limit Level Factor Remark	Limit Over Read Freq Level Line Limit Level Factor Remark
MHz dBuV/m dBuV/m dB dBuV dB/m 1 ! 5630.160 62.86 68.20 -5.34 63.95 -1.09 Peak 2 5697.840 71.84 103.61 -31.77 72.68 -0.84 Peak 3 5719.800 88.49 110.74 -22.25 89.23 -0.74 Peak 4 ! 5769.840 116.94 122.20 -5.26 117.49 -0.55 Peak 5 5856.240 64.20 110.45 -46.25 64.38 -0.18 Peak 6 5893.680 64.16 91.34 -27.18 64.19 -0.03 Peak 7 ! 5944.080 64.46 68.20 -3.74 64.29 0.17 Peak 1 !11510.000 46.30 54.00 -7.70 38.95 7.35 Average 2 !11510.000 57.89 74.00 -16.11 50.54 7.35 Peak 3 !17265.000 57.22 68.20 -10.98 42.30 14.92 Peak	MHz dBuV/m dBuV/m dB dBuV dB/m 1 ! 5629.800 63.54 68.20 -4.66 64.64 -1.10 Peak 2 5700.000 77.50 105.20 -27.70 78.32 -0.82 Peak 3 ! 5719.800 93.93 110.74 -16.81 94.67 -0.74 Peak 4 ! 5739.960 121.10 122.20 -1.10 121.76 -0.66 Peak 5 5856.600 65.47 110.35 -44.88 65.65 -0.18 Peak 6 5885.400 65.28 97.48 -32.20 65.35 -0.07 Peak 7 ! 5937.600 64.50 68.20 -3.70 64.35 0.15 Peak 1 !11510.000 49.30 54.00 -4.70 41.95 7.35 Average 2 !11510.000 60.75 74.00 -13.25 53.40 7.35 Peak 3 !17265.000 58.99 68.20 -9.21 44.07 14.92 Peak


Report No.: RLK200729001-00C

						н	gh CH							
Horizontal										Ve	ertica			
Freq	Level	Limit Line		Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m			MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB/m	
1 ! 5648.520	63.10	68.20	-5.10	64.12	-1.02	Peak	1	! 5619.000	63.64	68.20	-4.56	64.78	-1.14	Peak
2 5685.600	63.84	94.58	-30.74	64.73	-0.89	Peak	2	5694.240		100.95		66.28	-0.85	Peak
3 5719.440	66.70	110.64	-43.94	67.45	-0.75	Peak	3	5719.080	70.37	110.54	-40.17	71.12	-0.75	Peak
4 ! 5779.920	117.75	122.20	-4.45	118.24	-0.49	Peak	4	! 5799.000	119.84	122.20	-2.36	120.26	-0.42	Peak
5 5863.800	69.81	108.33	-38.52	69.97	-0.16	Peak	5	5858.400	74.87	109.85	-34.98	75.04	-0.17	Peak
6 5878.560	65.93	102.56	-36.63	66.02	-0.09	Peak	6	5881.440	69.35	100.42	-31.07	69.43	-0.08	Peak
7 ! 5946.960	64.77	68.20	-3.43	64.59	0.18	Peak	7	! 5960.640	64.86	68.20	-3.34	64.62	0.24	Peak
1 !11590.000	47.08	54.00	-6.92	39.60	7.48	Average	1	!11590.000	48.02	54.00	-5.98	40.54	7.48	Average
2 !11590.000	59.43	74.00	-14.57	51.95	7.48	Peak	2	!11590.000	61.06	74.00	-12.94	53.58	7.48	Peak
3 !17385.000	57.84	68.20	-10.36	42.52	15.32	Peak	3	!17385.000	58.47	68.20	-9.73	43.15	15.32	Peak

802.11ax HE80 mode:

		Hor	izont	al						Ve	ertica	I		
Freq	Level	Limit Line		Read Level	Factor	Remark		Freq	Level	Limit Line		Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m			MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1 ! 5628.360	67.55	68.20	-0.65	68.65	-1.10	Peak	1	! 5633.040	67.33	68.20	-0.87	68.41	-1.08	Peak
2 ! 5691.000	81.69	98.56	-16.87	82.55	-0.86	Peak	2	! 5651.040	68.42	68.97	-0.55	69.43	-1.01	Peak
3 5710.440	85.36	108.13	-22.77	86.14	-0.78	Peak	3	5714.760	88.26	109.33	-21.07	89.02	-0.76	Peak
4 ! 5766.240	112.17	122.20	-10.03	112.73	-0.56	Peak	4	! 5765.160	116.10	122.20	-6.10	116.66	-0.56	Peak
5 5858.760	78.06	109.75	-31.69	78.23	-0.17	Peak	5	5855.160	83.71	110.76	-27.05	83.89	-0.18	Peak
6 5878.200	72.23	102.82	-30.59	72.32	-0.09	Peak	6	5876.760	74.06	103.89	-29.83	74.15	-0.09	Peak
7 ! 5931.840	65.30	68.20	-2.90	65.18	0.12	Peak	7	! 5951.280	65.60	68.20	-2.60	65.39	0.21	Peak
1 !11550.000	44.93	54.00	-9.07	37.51	7.42	Average	1	!11550.000	47.75	54.00	-6.25	40.33	7.42	Average
2 !11550.000	56.40	74.00	-17.60	48.98	7.42	Peak	2	!11550.000	58.35	74.00	-15.65	50.93	7.42	Peak
3 !17325.000	57.67	68.20	-10.53	42.60	15.07	Peak	3	!17325.000	58.02	68.20	-10.18	42.95	15.07	Peak

Above 1G (1 GHz-40 GHz): test the worst mode:

Level = Read Level + Factor

Over Limit = Level - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

8 FCC §15.407(a)(e) –Emission Bandwidth and Occupied Bandwidth

Report No.: RLK200729001-00C

8.1 Applicable Standard

According to FCC §15.407(a),

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less.

Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

As per FCC §15.407(e): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

8.2 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01,

Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth; b) Set the VBW > RBW; c) Detector = Peak;
- d) Trace mode = max hold; e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%;

99% Occupied Bandwidth

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99% occupied bandwidth is *required* only as a condition for using the optional band-edge measurement techniques described in II.G.3.d). Measurements of 99% occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

Report No.: RLK200729001-00C

- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

8.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		Conduct	ed Room		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	100406	2020/03/11	2021/03/10
Cable	MTJ	MT40S	620620-MT40S- 100	Each use	-

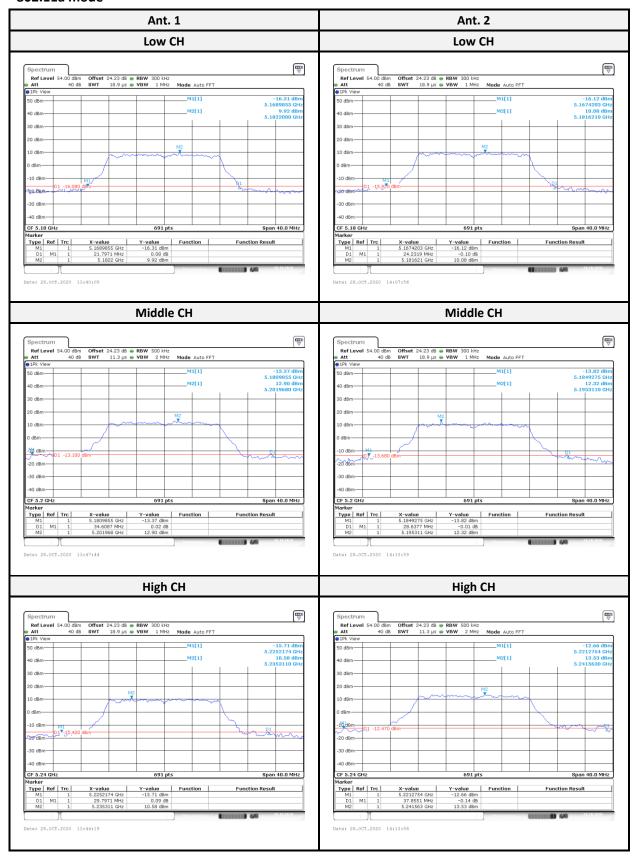
^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

8.4 Test Data and Test Plot

UNII-1

Mode	Channel	Frequency	26dB Emission Bandwidth (MHz)							
		(MHz)	Ant. 1	Ant. 2	Ant. 3	Ant. 4				
	36	5180	21.80	24.23	33.91	22.20				
802.11a	40	5200	34.61	28.64	23.71	23.30				
	48	5240	29.80	37.86	36.58	22.14				
	36	5180	24.12	25.22	33.86	21.68				
802.11ax HE20	40	5200	28.17	34.26	35.94	22.43				
	48	5240	27.54	33.91	39.59	23.42				
002 1124 11540	38	5190	40.35	39.88	40.00	40.46				
802.11ax HE40	46	5230	64.81	69.80	72.12	44.64				
802.11ax HE80	42	5210	82.09	82.09	81.16	80.93				

Report No.: RLK200729001-00C


UNII-3

Mode	Channel	Frequency	6dB	1Hz)	Limit		
		(MHz)	Ant. 1	Ant. 2	Ant. 3	Ant. 4	(MHz)
	149	5745	16.35	16.35	16.35	16.35	>0.5
802.11a	157	5785	16.35	16.35	16.35	16.35	>0.5
	165	5825	16.35	16.35	16.35	16.35	>0.5
	149	5745	18.96	19.01	18.90	18.96	>0.5
802.11ax HE20	157	5785	18.90	19.01	18.78	18.96	>0.5
	165	5825	18.96	19.01	18.78	19.01	>0.5
002 44 - 44 14 15 40	151	5755	37.57	36.99	37.57	37.33	>0.5
802.11ax HE40	159	5795	37.68	37.57	37.57	36.64	>0.5
802.11ax HE80	155	5775	76.75	76.99	75.36	77.68	>0.5

Page 32 of 66

For UNII-1

802.11a mode

