Actiontec 11ac RGMII Module User's Guide

Part Number: RGM840

Revision 1.3

Date: 10/21/2013

Subject to change

1. Introduction

This document provides the hardware specification for RGM840 module. This module supports 802.11ac standard with 5GHz 4x4 MIMO, 4 spatial streams, transmit beamforming and etc. This 11ac RGMII module uses local memory and flash to fully offload the host processor on the main board so only minimal software is required on the host for management purpose.

2. Block diagram

The block diagram of the module is shown in figure 1. As indicated in the diagram, this module uses a proprietary RGMII over mPCIe interface and provides 4 U.FL antenna connectors for cable antenna.

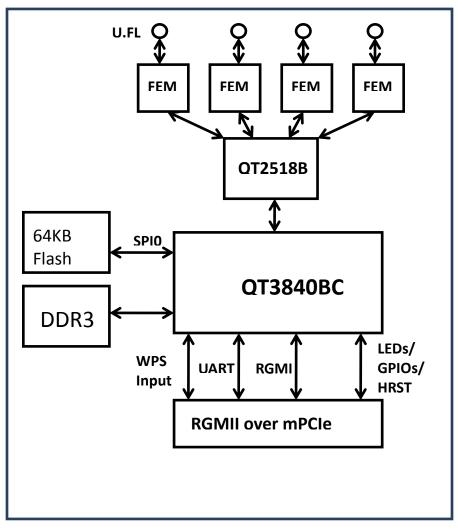


Figure 1. Block Diagram of the RGM840 module

3. General feature list

Feature list	Descriptions
Target dimensions [mm]	80mm(L) x 60mm(W)
Signaling connection	RGMII connection over mPCIe connector
Antenna connection	4 antenna connections via U.FL connectors .
РСВ	6 Layers
Chipset	QV840 (QT3840BC and QT2518B)
RF FEM	Microsemi LX5586H or Triquint TQP8080 (subject to change)
Band support	5GHz
Freq support	5180-5825MHz
BW	20MHz/40MHz/80MHz Mixed mode
Spatial Streams	Up to 4SS
Configuration and System	In-band or Web GUI
management	
WPS	WPS input pin
Wi-Fi LED	Wi-Fi LED signal pin
WPS LED	WPS LED signal pin
Radio ON/OFF Control	Radio enable/disable pin
Factory reset	Factory reset to default input via mPCIe connector
Hard reset	Hardware reset input via mPCIe connector
UART	via mPCIe connector
DDR3 Memory	16bit – 128MB, 400MHz
SPI flash	64KB (firmware downloaded via RGMII interface) or 16MB
Calibration data storage	SPI flash
Power Source	via mPCIe connector, 3.3V-2.5A and optional 5V for FEM
Interoperability	Operates with 802.11a/n/ac clients/STA and AP
MIMO features	MU-MIMO, Tx Beamforming and LDPC
Security	WPA,WPA2

4. RF Specification

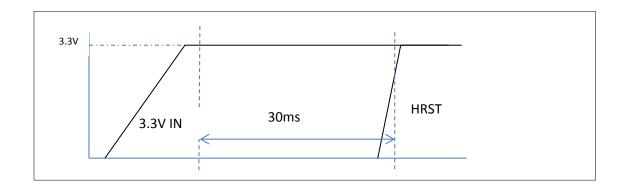
Items	Target Specification
Total max conductive output	24dBm with 3.3V
power	
TX EVM at antenna port (Subject	+17dBm @3% EVM, HT40, MCS7
to change for manufacturing)	+15dBm @1.8% EVM , MCS9 (subject to change)
RX min. sensitivity (Subject to	20MHz MCS0 -93dBm
change for manufacturing)	20MHz MCS7 -75dBm
	40MHz MCS0 -90dBm
	40MHz MSC7 -72dBm

	80MHz MCS0 -87dBm
	80MHz MCS7 -66dBm
	80MHz MCS9 -60dBm
Output power accuracy	+/- 1.5 dB max

5. Pin assignment

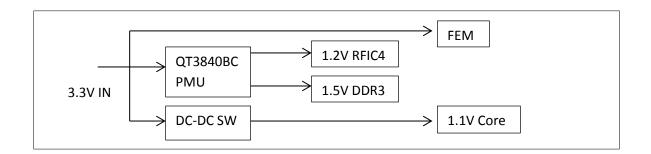
Pins	Definitions	Pin Type	Pins	Definitions	Pin Type
1	5V	5V DC Input	2	5V	5V DC Input
3	5V	5V DC Input	4	5V	5V DC Input
5	GND	Ground	6	GND	Ground
7	EXTRST	Reset Output	8	AGPIO_B_10	Bidirectional
9	GND	Ground	10	AGPIO_B_11	Bidirectional
11	GMDIO_B	Bidirectional	12	GMDC_O	Output
13	GRXD_I_3	Input	14	WLAN_DISABLE Input (0 : Disable (AGPIO B 12)	
15	GRXD_I_1	Input	16	GRXD_I_2	Input
17	GRXCLK_I	Input	18	GRXD_I_0	Input
19	GND	Ground	20	RXDV_I	Input
21	GTXCLK_O	Output	22	GND	Ground
23	GND	Ground	24	GTXCLK_I	Input
25	GTXEN_O	Output	26	GND	Ground
27	GTXD_O_3	Output	28	GTXD_O_1	Output
29	GTXD_O_2	Output	30	GTXD_O_0	Output
31	GND	Ground	32	RTD (Reset to Default) (AGPIO_B_5)	Input
33	25M_GPHY	Output	34	AGPIO_B_16	Bidirectional, PWM
35	GND	Ground	36	AGPIO B 6	Output
37	1_AGPIO_B_8	Output (UART TX)	38	WPS_LED2 (AGPIO_B_13)	Output, PWM
39	WLAN_LED (AGPIO_B_1)	Output, 3.3V, PWM	40	1_AGPIO_B_0	Input (UART RX)
41	WPS (AGPIO_B_4)	Input (0: Active)	42	GND	Ground
43	WPS_LED1 (AGPIO_B_3)	Output, 3.3V, PWM	44	HRST	Input (0 : Active)
45	GND	Ground	46	GND	Ground
47	3.3V	3.3V DC Input	48	3.3V	3.3V DC Input
49	3.3V	3.3V DC Input	50	3.3V	3.3V DC Input
51	3.3V	3.3V DC Input	52	3.3V	3.3V DC Input

6. Module power requirement

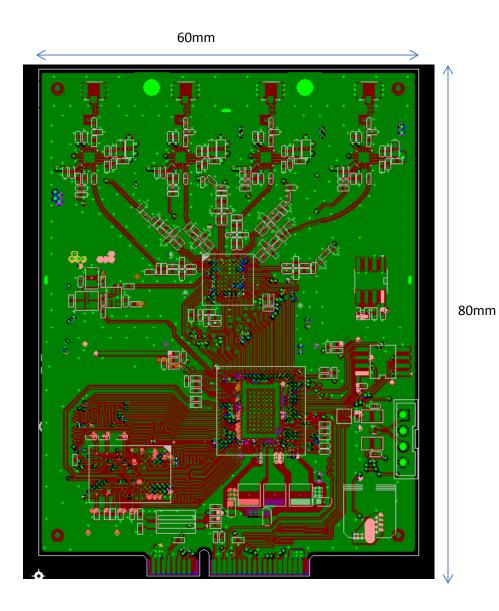

Power supply: 3.3V DC input

Max output power per chain = 18dBm (LX5586H or TQP8080)

Voltage rails	RMS Current rating (Max)
3.3V only	2.5A


7. Hardware reset (HRST) requirement

Since the HRST signal is connected to the hard reset of QT3840BC and is also used to start the linux boot via RGMII interface, therefore it should be connected to the GPIO pin of the network processor so that it can be controlled by software. Once the HRST signal is deasserted, the module will start to request tftp server running on the host processor to fetch the bootloader and firmware image. The HRST should be keep low for no less than 30ms after the 3.3V supply reaches the nominal voltage.



8. Power Management Unit (PMU)

The power management unit is a new feature integrated into the QT3840 chip and it consists of 3 switching regulators and 3 LDOs. The 3 buck converters are designed specifically to generate 1.1V for QT3840 core voltage, 1.2V for QT2518B, 1.5V for DDR3. The LDOs provide clean output voltages for oscillator, RF synthesizer and AFE block. In the latest revision of QTM840 RGMII module design, 1.1V for QT3840 core voltage is fed by external DC-DC switching regulator instead of PMU in the purpose of reducing the heat dissipation inside the QT3840 package.

9. Mechanical drawing

10. Compliance Certifications

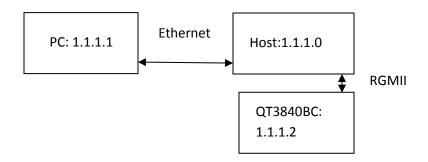
- 1. FCC EMI Certification pending
- 2. FCC DFS Certification pending
- 3. WiFi Certification pending

11. RGMII interface connection example

RGMII signals from the host processor			RGMII signals from RGMII module pin assignments		
Signals	Pin descriptions	Pin Type	Pin	Signals	Pin Type
GTXD3	RGMII Transmit data bit 3	Output	13	GRXD_I_3	Input
GTXD2	RGMII Transmit data bit 2	Output	16	GRXD_I_2	Input
GTXD1	RGMII Transmit data bit 1	Output	15	GRXD_I_1	Input
GTXD0	RGMII Transmit data bit 0	Output	18	GRXD_I_0	Input
GTXEN	RGMII Transmit enable	Output	20	RXDV_I	Input
GTXCLK	RGMII 125MHz TXCLK	Output	17	GRXCLK_I	Input
GRXCLK	RGMII receive clock	Input	21	GTXCLK_O	Output
	1K Pull down resistor		24	GTXCLK_I	Input
GRXDV	RGMII receive data valid	Input	25	GTXEN_O	Output
GRXD3	RGMII Receive data bit 3	Output	27	GTXD_O_3	Output
GRXD2	RGMII Receive data bit 2	Output	29	GTXD_O_2	Output
GRXD1	RGMII Receive data bit 1	Output	28	GTXD_O_1	Output
GRXD0	RGMII Recevie data bit 0	Output	30	GTXD_O_0	Output
	1k Pull down resistor		33	25M_GPHY	Output

12. MDIO/MDC

QT3840BC has a MDIO master controller so it can be used to manage any MDIO slave device on the host board. The two signals are provided on pin 11 and pin 12 of the mPCIe connector. If there is no need for QT3840BC to be the MDIO master, then pull down both MDC and MDIO signal to ground with 1K ohm resistor.


13. **25M_GPHY**

25M_GPHY is a free running 25MHz clock generated by QT3840BC.

14. Booting from 64KB SPI flash

The 64K Byte SPI flash is a cost reduction version of booting from flash mode. The small size of SPI flash is required to store only the mini-uboot with tftp client feature, calibration data and a small file system. The external host processor will be required to use its flash memory to store the uboot and linux image for this module. Besides, it will be allowed to control the boot up sequence of the target by controlling the hardware reset to the module via pin 44 ~HRST. When the hardware reset is released, the mini uboot will decompress itself into the internal SRAM of QT3840BC and then start the tftp client to download the full uboot code and linux image from external processor via xMII bus to the DDR3 memory of the target. Both target and external host will need IP addresses for the tftp procotol to work. After the linux kernel is boot up, the system looks the same as booting from the big flash mode.

Note: The RF calibration of the QTM840 chipset is required for on each target board and it is executed internally but requires the external calibration software to control DUT and the Litepoint equipment via telnet session. For any system with external host processor, ethernet bridge between external ethernet port to wifi ethernet port is needed to bridge the RF calibration control packets to the QT3840BC.

15. WPS description

The WPS pairing input pin is assigned to pin 41 on the connector and it is active low input. The WPS input pin can be connected to on board push button or host processor. The current timing requirement to trigger WPS function is in low state for no less than 6s but the timing can be adjusted.

16. LED description

There are 3 LEDs provided by the modules and it is active high output signal with pulse width modulation feature.

1. WLAN_LED (AGPIO_B_1) - Wifi 5GHz LED

Turn on when wifi connection is available

Turn off when wifi connection is not available

Blinking when negotiation or traffic is on line

2. WPS_LED1(AGPIO_B_3) and WPS_LED2 (Red – AGPIO_B_13)

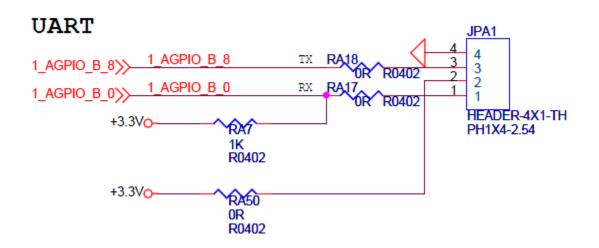
Green on when WPS pairing is active

Blinking 2Hz Green when WPS negotiation is in progress

Solid Red when WPS registration failed

Both off when WPS functionality is disabled

17. Spare GPIO description


There are 3 spare GPIO reserved for future use. They are AGPIO_B_10, AGPIO_B_11, and AGPIO_B_16. Those spare GPIOs can be connected to host processor for general use. The default state of all GPIOs is in input state.

AGPIO_B_10 and AGPIO_B_11 are pulled up on the module.

AGPIO_B_16 are floating on the module and please pulled down if not needed on the main board.

18. Console port (UART)

The console port of the module is provided on the module and also through pin 37 (1_AGPIO_B_8) and pin 40 (1_AGPIO_B_0) of the mPCle interface. Host processor can communicate to the module through the console port.

1_AGPIO_B_8 – UART TX signal

1_AGPIO_B_0 – UART RX signal (1K pull up resistor is required at pin 40 of mPCIe connector on the host processor board)

19. EMI and Antenna isolation requirement

This module is a 5GHz only radio and requires 25dB isolation from 2.4GHz antenna when dual band dual concurrent mode is supported in the final product. Otherwise, the throughput performance will be degraded due to harmonics of 2.4GHz leaking into the 5GHz radio band.

The SoC motherboard typically consists of many subsystems such as DDR2, DDR3, A/VDSL, VOIP, USB and other high speed interfaces. Each subsystem will operate on different clock frequencies and its harmonics could fall into the 5GHz band. Please make sure the EMI radiated from different clocks on the board can be contained or mitigated by either HW or SW solution.