4 FCC §15.247(i) & §2.1091 - RF Exposure Information

4.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to \$1.1310 and \$2.1091 RF exposure is calculated.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{d}\mathbf{i}\mathbf{s}\mathbf{t}\mathbf{a}\mathbf{n}\mathbf{c}\mathbf{e}$ to the center of radiation of the antenna

4.3 MPE Results

Mode	Frequency Band	MPE Distance (cm)	Output Power (dBm)	Output Power (mw)	Antenna Gain (dBi)	Power Density (mw/cm ²)	MPE Limit (mw/cm ²)
WLAN	2.4 GHz	20	22.69	185.78	2.0	0.06	1.0

The predicted power density level at 20 cm is 0.06 mw/cm^2 which is below the uncontrolled exposure limit of 1.0 mW/cm^2 . The EUT is used at least 20 cm away from user's body. It is determined as mobile equipment and complies with the MPE limit.