FCC PART 15

EMI MEASUREMENT AND TEST REPORT

For
Actiontec Electronics, Inc.

760 North Mary Ave.
Sunnyvale, CA 94086

FCC ID: LNQGT704

2004-03-03

Note: This test report is specially limited to the above client company and product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION... 4
Product Description for Equipment Under Test (EUT) ... 4
Obiective .. 4
Related Submittal(s)/Grant(s).. 4
Test Methodology .. 4
Test Facility ... 4
SYSTEM TEST CONFIGURATION... 6
JUSTIFICATION .. 6
EUT ExERCISE SOFTWARE.. 6
Special Accessories.. 6
SChEMATICS / BLOCK DIAGRAM ... 6
EQUIPMENT MODIFICATIONS .. 6
Configuration of Test System .. 7
Test Setup Block Diagram ... 7
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS ... 8
REMOTE SUPPORT EQUIPMENT LIST AND DETAILS .. 8
External I/O Cabling List and Details .. 8
SUMMARY OF TEST RESULTS ... 9
§15.203 - ANTENNA REQUIREMENT... 10
Standard Applicable .. 10
§15.207(A) - CONDUCTED EMISSIONS.. 11
Measurement Uncertainty ... 11
EUT SETUP... 11
Spectrum Analyzer Setup ... 11
TEST EQUIPMENT LIST AND DETAILS... 11
Test Procedure .. 11
Summary of Test Results .. 12
Conducted Emissions Test Data ... 12
Plot of Conducted Emissions Test Data ... 12
§15.209(A) - SPURIOUS EMISSION .. 15
Standard Applicable .. 15
MEASUREMENT Procedure.. 15
EQuipment Lists .. 15
Measurement Result ... 16
§15.209(F) - SPURIOUS RADIATED EMISSION... 23
Measurement Uncertainty ... 23
EUT SETUP... 24
Spectrum Analyzer Setup .. 24
Test Equipment List and Details.. 24
Test Procedure .. 25
Corrected Amplitude \& MArgin Calculation .. 25
SUMMARY OF TEST ReSULTS ... 25
Radiated Emission Test Result for 802.11b.. 26
Radiated Emission Test Result for 802.11G .. 28
§15.247(A)(2) - 6 DB BANDWIDTH .. 30
Standard Applicable ... 30
MEASUREMENT Procedure.. 30
EQuIPMENT LISTS ... 30
MEASUREMENT RESULT ... 30
§15.247(B)(3) - PEAK OUTPUT POWER MEASUREMENT... 34
STANDARD APPLICABLE ... 34
Actiontec Electronics, Inc.
MEASUREMENT PROCEDURE. 34
EQUIPMENT LISTS 34
Measurement Result 34
§15.247(C) - 100 KHZ BANDWIDTH OF BAND EDGES 38
Standard Applicable 38
Measurement Procedure. 38
EQUIPMENT LISTS 38
Measure Results 38
§15.247(D) - POWER SPECTRAL DENSITY 43
Standard Applicable 43
Measurement Procedure. 43
EQUIPMENT LISTS 43
Measurement Results. 44

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The Actiontec Electronics, Inc. 's, model: GT704-WG, GT704-WR, GT704 or the "EUT" as referred to in this report is an transceiver, $802.11 \mathrm{~b} / \mathrm{g}$ Wireless Gateway which measures approximately 8.1 " $\mathrm{L} \times 5.25$ " W x 1.5 " H . The EUT is a DTS device, which operates at the frequency range of $2412-2462 \mathrm{MHz}$, with the maximum conducted output power of 12.87 dBm for 802.11 b and 18.87 dBm for 802.11 g .

The EUT utilized the Actiontec power adapter, M/N: AD-1260G.

> * The test data gathered are from a production sample, $S / N: G T 704-W G-001$, provided by the manufacturer.

Objective

This type approval report is prepared on behalf of Actiontec Electronics, Inc. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for Output Power, Antenna Requirements, 6 dB Bandwidth, power spectral density, 100 kHz Bandwidth of Band Edges Measurement, Out of Band Emission, Spurious Emission, Conducted and Spurious Radiated Emission.

Related Submittal(s)/Grant(s)

No Related Submittals.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz .

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2001.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234.

The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method - 47 CFR Part - Digital Devices, CISPER 22: 1997:
Electromagnetic Interference - Limits and Methods of Measurement of Information Technology
Equipment test methods.

SYSTEM TEST CONFIGURATION

Justification

The host system was configured for testing according to ANSI C63.4-2001.
The EUT was tested in the normal (native) operating mode to represent worst-case results during the final qualification test.

EUT Exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the system components. The test software, provided by the customer, is started the Windows terminal program under the Windows 98/2000/ME/XP operating system.

Once loaded, set the Tx channel to low, mid and high for testing.

Special Accessories

As shown in following test block diagram, all interface cables used for compliance testing are shielded. The host PC and the peripherals featured shielded metal connectors.

Schematics / Block Diagram

Please refer to Appendix A.

Equipment Modifications

No modifications were made to the EUT.

Configuration of Test System

Test Setup Block Diagram

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Sony	Notebook	PCG-885L	T62M159	DOC
HP	Printer	Thinkjet 2225C	2512S43681	BS46XU2225C

Remote Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Arescom	Simulator	CDS6020	N/A	DOC

External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	To
Unshielded RJ45 Cablex3	1.5	Ethernet Port/EUT	Terminators
Unshielded RJ45 Cable	1.0	Ethernet Port/EUT	RJ45 Port/Host
Shielded USB Cable	1.5	USB Port/EUT	USB Port/Host
Unshielded RJ11 Cable	30	DSL Port/EUT	Simulator
Shielded Printer Cable	2	Parallel / Host	HP Printer

SUMMARY OF TEST RESULTS

Results reported relate only to the product tested, serial number: GT704-WG-001.

FCC RULES	DescriplionOFTEST	RESULT
$\S 2.1091$	RF Exposure	Pass
$\S 15.203$	Antenna Requirement	Pass
$\S 15.207(\mathrm{a})$	Conducted Emissions	Pass
$\S 15.209(\mathrm{a})$	Spurious Emission	Pass
$\S 15.247(\mathrm{a})(2)$	6 dB Bandwidth	Pass
$\S 15.247(\mathrm{~b})(3)$	Maximum Peak Output Power	Pass
$\S 15.247(\mathrm{c})$	100 kHz Bandwidth of Frequency Band Edge	Pass
$\S 15.247(\mathrm{~d})$	Peak Power Spectral Density	Pass
$\S 15.205$	Restricted Band	Pass

§15.203 - ANTENNA REQUIREMENT

Standard Applicable

According to $\S 15.203$, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

Refer to statement below for compliance.
"The antenna for this device is a unique antenna which has a reversed SMA connector. Please refer to the antenna specification for details".

§15.207(a) - CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is $\pm 2.4 \mathrm{~dB}$.

EUT Setup

The measurement was performed in the shield room, using the same setup per ANSI C63.4-2001 measurement procedure. The specification used was FCC 15 Subpart B limits.

The spacing between the peripherals was 10 centimeters.
External I/O cables were draped along the edge of the test table and bundle when necessary.

Spectrum Analyzer Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 Mhz .

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
 Schwarz	Artificial LISN	ESH2-Z5	$871884 / 039$	$2003-03-28$
 Schwarz	EMI Test Receiver	ESCS30	100176	$2003-05-06$

* Statement of Traceability: BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within $-4 \mathrm{~dB} \mu \mathrm{~V}$ of specification limits). Quasi-peak readings are distinguished with a "Qp".

Summary of Test Results

According to the recorded data in following table, the EUT complies with the FCC Conducted margin for a Class B device, with the worst margin reading of:
-13.8 dB at 0.150 in the Neutral mode

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

Conducted Emissions Test Data

Line Conducted Emissions				FCC Part 15 Class B	
Frequency MHz	Amplitude $\mathrm{dB} \mu \mathrm{V}$	Detector Qp/Ave/Peak	Phase Line/Neutral	$\begin{array}{r} \text { Limit } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{array}$	Margin dB
0.150	52.2	QP	Neutral	66	-13.8
0.150	51.5	QP	Line	66	-14.5
1.510	26.1	Ave	Neutral	50	-23.9
1.570	28.3	QP	Line	56	-27.7
0.995	28.2	QP	Neutral	56	-27.8
1.510	25.4	QP	Neutral	56	-30.6
1.940	25.3	QP	Line	56	-30.7
0.150	22	Ave	Neutral	56	-34.0
0.150	20.8	Ave	Line	56	-35.2
1.570	9.1	Ave	Line	46	-36.9
1.000	2.1	Ave	Neutral	46	-43.9
1.940	3.2	Ave	Line	50	-46.8

Plot of Conducted Emissions Test Data
Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference.

```
Bay Area Compliance Laboratory Corp 44. Feb 04 13:31
Class B
\begin{tabular}{ll} 
EUT: & ET-704 \\
Manuf: & Actiontec \\
Op Cand: & Normsi \\
Operratur: & Jerry \\
Comment: & L
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Start & Stop & Step & IF BM & Datactar & M-Timo & Atten & Preamp \\
\hline 150k & 4N & Bk & DK & \(a P+A V\) & 20 ms & 15dELN & OFF \\
\hline 1M & EM & 10k & 9 k & QP+AV & 1 ms & 15 dELN & OFF \\
\hline 5M & 30 M & 100 K & gik & \(Q P+A V\) & 1 1ma & 1FaRL & OFF \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { Finsl Mesaurement: } & x \text { QP } f+A V \\
& \text { Mess Time: } \\
& \text { Subranges: } \quad 25 \\
& \text { Acc Margin: } \\
& \text { BdB }
\end{aligned}
\]
```


Bay Area Compliance Laboratory Corp 14. Feb 04 13: 15

Class B

EUT:	GT-704
Manuf:	Antlontec
Op Cond:	Normal
Operratur:	Jerry
Comment:	N

Start	Stop	3tap	IF EW	Detector	M-T1me	Attan	Praamp
150k	1 M	8k	9k	ap +AV	20 ms	15dBLN	OFF
1M	8M	10k	9k	QP+AV	138	15 CBLN	OFP
EM	30 M	100k	9K	$\square P+A V$	1488	4EdBLN	OFF

Final Meseurement: | x ap $f+A V$ | |
| :--- | :--- |
| | Mess Timas |
| | Subrangesi |
| | Acc Margin: |
| | EdB |

§15.209(a) - SPURIOUS EMISSION

Standard Applicable

According to $\S 15.209$ (a), except as provided elsewhere in the subpart of 15.209 , the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Measurement		
Frequency (MHz)) Field stre	h distance
(microvolts/meter) (meters)		
0.009-0.490................. 2400/F(kHz)	300
0.490-1.705................. 24000/F(kHz)	30
1.705-30.0...................	... 30	30
30-88........................	100 **	3
88-216.......................	. 150 **	3
216-960......................	.. 200 **	3
Above 960.................. 500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806$ MHz . However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241

Measurement Procedure

1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	8565 EC	Spectrum Analyzer	2003-06-30

Measurement Result

Please refer to following pages for plots of spurious emission.

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

$$
\begin{aligned}
& \text { START 3.OOGHZ STOP ᄅS.OOGHZ } \\
& \text { *日BW 100KHz VEW 100KHz *SWP 300sec }
\end{aligned}
$$

ATTEN 3OdB MKA－43．6フd日m

STAAT 3．OOGHZ STOP ᄅE．OOGHZ
＊a日W 10OKHz VEW 10OKHz＊SWP 30Osec

§15.209(f) - SPURIOUS RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is $\pm 4.0 \mathrm{~dB}$.

According to $\S 15.205$, except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{G H z}$
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
${ }^{1} 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$14.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$149.9-150.05$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$2310-2390$	$15.35-16.2$	
$8.362-8.366$	$156.52475-156.52525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	$156.7-156.9$	$2655-2900$	$22.01-23.12$
$8.41425-8.41475$	$162.0125-167.17$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$167.72-173.2$	$3332-3339$	$31.2-31.8$
$12.51975-12.57725$	$240-285$	$3345.8-3358$	$36.43-36.5$
$13.36-13.41$	$322-335.4$	$3600-4400$	$\left.\mathbf{}^{2}\right)$

${ }_{2}^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$
${ }^{2}$ Above 38.6
Except as provided in paragraph (d) and (e), the filed strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

According to $\S 15.209$, the device shall meet radiated emission general requirements.

Except for Class A device, the filed strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission (MHz)	Field Strength (Microvolts/meter)	$\mathbf{d B}$ $(\mathbf{d B} \mu \mathbf{V} / \mathbf{m e t e r})$
$30-88$	100	40
$88-216$	150	43.5
$216-960$	200	46
Above 960	500	54

EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2001. The specification used was the FCC 15.209 limits.

The spacing between the peripherals was 10 centimeters.
External I/O cables were draped along the edge of the test table and bundle when necessary.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR, Section 15.33, the frequency was investigated from 30 to 2500 MHz . During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video $\boldsymbol{B} / \boldsymbol{W}$
Below 30 MHz	10 kHz	10 kHz
$30-1000 \mathrm{MHz}$	100 kHz	100 kHz
Above 1000 MHz	1 MHz	1 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Amplifier, Microwave	8449 B	3147 A 00400	$3 / 14 / 2003$
HP	Amplifier, Pre	8447 E	1937 A 01057	$8 / 4 / 2003$
HP	Amplifier, Pre	8447 E	1937 A 01046	$8 / 2 / 2003$
HP	Analyzer, Spectrum	8565 EC	3946 A 001131	$6 / 30 / 2003$
ETS	Antenna, Biconical	3110 B	$9603-2315$	$10 / 11 / 2003$
A.R.A.	Antenna, Horn, DRG	DRG-118/A	1132	$9 / 30 / 2003$
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	$2455-261$	$8 / 1 / 2003$
ETS	Antenna, logperiodic	3148	$0004-1155$	$10 / 11 / 2003$
EMCO	Antenna, Loop, H-Field	6512	00029604	$2 / 12 / 2004$

[^0]
Test Procedure

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within $-4 \mathrm{~dB} \mu \mathrm{~V}$ of specification limits), and are distinguished with a " $\mathbf{Q p}$ " in the data table.

Corrected Amplitude \& Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:
Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7 \mathrm{~dB} \mu \mathrm{~V}$ means the emission is $7 \mathrm{~dB} \mu \mathrm{~V}$ below the maximum limit for Class B. The equation for margin calculation is as follows:

$$
\text { Margin }=\text { Corr. Ampl. }- \text { FCC 15.209 Limit }
$$

Summary of Test Results

According to the data in section 12.7, the EUT complied with the FCC Title 47, Part 15, Subpart C, section $15.205,15.207$ and 15.247, and had the worst margin of:

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

802.11b data:

- $\mathbf{1 3 . 1} \mathbf{~ d B}$ at $\mathbf{2 3 9 0 . 0 0} \mathbf{~ M H z}$ in the Vertical polarization, Low Channel
$\mathbf{- 1 4 . 3} \mathbf{~ d B}$ at $\mathbf{7 3 1 1 . 0 0} \mathbf{~ M H z}$ in the Vertical polarization, Middle Channel
$\mathbf{- 8 . 1} \mathbf{~ d B}$ at $\mathbf{2 4 9 0 . 0 0} \mathbf{~ M H z}$ in the Vertical polarization, High Channel
-1.4 dB at $\mathbf{2 5 0 . 0 1 ~ M H z}$ in the Horizontal polarization, Unwanted Emission

802.11g data:

- $\mathbf{1 4 . 6} \mathbf{~ d B}$ at $\mathbf{2 3 9 0 . 0 0} \mathbf{~ M H z}$ in the Vertical polarization, Low Channel
-12.2 dB at $\mathbf{7 3 1 1 . 0 0} \mathbf{~ M H z}$ in the Vertical polarization, Middle Channel
-16.5 dB at $\mathbf{2 4 8 3 . 5 0} \mathbf{M H z}$ in the Vertical polarization, High Channel
$\mathbf{- 1 . 5 ~ d B}$ at $\mathbf{2 5 0 . 0 1 ~ M H z}$ in the Horizontal polarization, Unwanted Emission

Radiated Emission Test Result for 802.11b

Indicated			Table		NNA		ECTION	CTOR	Corrected Amplitude		15 RT C
Frequency MHz	Ampl. $\mathrm{dB} \mu \mathrm{V} /$ m	Comments	Angle Degree	Height Meter	Polar H/V	Anten na $\mathrm{dB} \mu \mathrm{V} /$ m	Cable DB	Amp. DB	Corr. Ampl. $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Limit $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB
Low Channel, 1-25GHz											
2412.00	109.1	Fund/Peak	90	1.5	V	28.1	3.4	35.2	105.4		
2412.00	96.8	Fund/Peak	30	1.2	h	28.1	3.4	35.2	93.1		
2412.00	105.4	Fund/Ave	90	1.5	v	28.1	3.4	35.2	101.7		
2412.00	93.2	Fund/Ave	30	1.2	h	28.1	3.4	35.2	89.5		
2390.00	45.1	Ave	180	1.2	V	28.1	3.4	35.6	41.0	54	-13.1
2390.00	44.2	Ave	0	1.3	h	28.1	3.4	35.6	40.1	54	-14.0
4824.00	31.7	Ave	210	1.1	v	32.5	4.9	33.0	36.1	54	-17.9
4824.00	30.2	Ave	290	1.5	h	32.5	4.9	33.0	34.6	54	-19.4
2390.00	55.2	Peak	180	1.2	V	28.1	3.4	35.6	51.1	74	-23.0
4824.00	44.3	Peak	210	1.1	V	32.5	4.9	33.0	48.7	74	-25.3
4824.00	43.1	Peak	290	1.5	h	32.5	4.9	33.0	47.5	74	-26.5
2390.00	47.6	Peak	0	1.3	h	28.1	3.4	35.6	43.5	74	-30.6
Middle Channel, 1-25GHz											
2437.00	109.2	Fund/Peak	330	1.5	v	28.1	3.4	35.2	105.5		
2437.00	101.1	Fund/Peak	180	1.2	h	28.1	3.4	35.2	97.4		
2437.00	105.8	Fund/Ave	330	1.5	V	28.1	3.4	35.2	102.1		
2437.00	97.3	Fund/Ave	180	1.2	h	28.1	3.4	35.2	93.6		
7311.00	32.5	Ave	310	1.6	v	35.1	5.6	33.5	39.7	54	-14.3
7311.00	30.9	Ave	30	1.2	h	35.1	5.6	33.5	38.1	54	-15.9
4874.00	31.7	Ave	90	1.5	v	32.5	4.9	33.0	36.1	54	-17.9
4874.00	30.2	Ave	210	1.2	h	32.5	4.9	33.0	34.6	54	-19.4
7311.00	45.5	Peak	310	1.6	V	35.1	5.6	33.5	52.7	74	-21.3
7311.00	44.3	Peak	30	1.2	h	35.1	5.6	33.5	51.5	74	-22.5
4874.00	44.6	Peak	90	1.5	v	32.5	4.9	33.0	49.0	74	-25.0
4874.00	43.5	Peak	210	1.2	h	32.5	4.9	33.0	47.9	74	-26.1

| High Channel, 1-25GHz | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2462.00 | 108.9 | Fund/Peak | 180 | 1.5 | v | 28.1 | 3.4 | 35.2 | 105.2 | | |
| 2462.00 | 101.9 | Fund/Peak | 270 | 1.5 | h | 28.1 | 3.4 | 35.2 | 98.2 | | |
| 2462.00 | 105.2 | Fund/Ave | 180 | 1.5 | v | 28.1 | 3.4 | 35.2 | 101.5 | | |
| 2462.00 | 98.4 | Fund/Ave | 270 | 1.5 | h | 28.1 | 3.4 | 35.2 | 94.7 | | |
| 2490.00 | 49.7 | Ave | 0 | 1.6 | v | 28.1 | 3.4 | 35.2 | 46.0 | 54 | -8.1 |
| 2490.00 | 48.6 | Ave | 160 | 1.8 | h | 28.1 | 3.4 | 35.2 | 44.9 | 54 | -9.2 |
| 2490.00 | 61.4 | Peak | 0 | 1.6 | v | 28.1 | 3.4 | 35.2 | 57.7 | 74 | -16.4 |
| 4924.00 | 31.8 | Ave | 270 | 1.2 | v | 32.5 | 4.9 | 33.0 | 36.2 | 54 | -17.8 |
| 2490.00 | 59.8 | Peak | 160 | 1.8 | h | 28.1 | 3.4 | 35.2 | 56.1 | 74 | -18.0 |
| 4924.00 | 30.3 | Ave | 30 | 1.5 | h | 32.5 | 4.9 | 33.0 | 34.7 | 54 | -19.3 |
| 4924.00 | 44.2 | Peak | 270 | 1.2 | v | 32.5 | 4.9 | 33.0 | 48.6 | 74 | -25.4 |
| 4924.00 | 42.9 | Peak | 30 | 1.5 | h | 32.5 | 4.9 | 33.0 | 47.3 | 74 | -26.7 |

Indicated			Table	Antenna		Correction Factor			FCC 15 Subpart B	
Frequency MHz	Ampl. $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Direction Degree	Height Meter	Polar H/V	Antenna $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Cable Loss $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Amp. dB	Corr. Ampl. $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Limit $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB
250.01	56.5	0	1.5	h	13.3	2.2	27.4	44.6	46	-1.4
331.25	51.9	180	1.5	h	15.8	2.3	27.4	42.6	46	-3.4
218.76	53.1	0	1.5	V	11.9	2.2	27.3	39.9	43.5	-3.6
160.01	52.4	120	1.5	h	12.9	1.8	27.5	39.6	43.5	-3.9
375.00	50.1	290	1.5	h	15.3	2.4	27.3	40.5	46	-5.5
160.00	49.2	150	1.2	v	12.9	1.8	27.3	36.6	43.5	-6.9
80.20	48.9	90	1.5	V	9.5	1.2	27.5	32.1	40	-7.9
293.75	49.1	15	1.5	h	13.7	2.3	27.6	37.5	46	-8.5

FUND = Fundamental
AVG = average

Radiated Emission Test Result for $\mathbf{8 0 2 . 1 1 g}$

Indicated			TABLE		NNA		ECTION	CTOR	Corrected Amplitude	FC SuB	$\begin{gathered} 15 \\ \text { RT C } \end{gathered}$
Frequency MHz	Ampl. $\begin{gathered} \mathrm{dB} \mu \mathrm{~V} / \\ \mathrm{m} \end{gathered}$	Comments	Angle Degree	Height Meter	Polar H/V	$\begin{gathered} \text { Anten } \\ \text { na } \\ \mathrm{dB} \mu \mathrm{~V} / \\ \mathrm{m} \\ \hline \end{gathered}$	Cable DB	Amp. DB	Corr. Ampl. $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Limit $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB
Low Channel, 1-25GHz											
2412.00	104.3	Fund/Peak	180	1.8	v	28.1	3.4	35.2	100.6		
2412.00	97.3	Fund/Peak	210	1.4	h	28.1	3.4	35.2	93.6		
2412.00	88.2	Fund/Ave	180	1.8	V	28.1	3.4	35.2	84.5		
2412.00	73.9	Fund/Ave	210	1.4	h	28.1	3.4	35.2	70.2		
2390.00	43.2	Edge/Ave	0	2.0	v	28.1	3.4	35.2	39.5	54	-14.6
4824.00	31.7	Ave	150	1.6	V	32.5	4.9	33.0	36.1	54	-17.9
4824.00	30.4	Ave	90	1.5	h	32.5	4.9	33.0	34.8	54	-19.2
2390.00	37.9	Edge/Ave	30	1.0	h	28.1	3.4	35.2	34.2	54	-19.9
2390.00	57.3	Edge/Peak	0	2.0	V	28.1	3.4	35.2	53.6	74	-20.5
4824.00	44.3	Peak	150	1.6	V	32.5	4.9	33.0	48.7	74	-25.3
2390.00	51.8	Edge/Peak	30	1.0	h	28.1	3.4	35.2	48.1	74	-26.0
4824.00	43.1	Peak	90	1.5	h	32.5	4.9	33.0	47.5	74	-26.5
Middle Channel, 1-25GHz											
2437.00	107.3	Fund/Peak	120	1.8	v	28.1	3.4	35.2	103.6		
2437.00	100.6	Fund/Peak	180	1.6	h	28.1	3.4	35.2	96.9		
2437.00	93.5	Fund/Ave	120	1.8	v	28.1	3.4	35.2	89.8		
2437.00	86.3	Fund/Ave	180	1.6	h	28.1	3.4	35.2	82.6		
7311.00	34.6	Ave	180	2.0	v	35.1	5.6	33.5	41.8	54	-12.2
7311.00	30.7	Ave	150	1.8	h	35.1	5.6	33.5	37.9	54	-16.1
4874.00	31.6	Ave	270	1.4	v	32.5	4.9	33.0	36.0	54	-18.0
4874.00	30.2	Ave	90	1.5	h	32.5	4.9	33.0	34.6	54	-19.4
7311.00	46.7	Peak	180	2.0	v	35.1	5.6	33.5	53.9	74	-20.1
7311.00	45.2	Peak	150	1.8	h	35.1	5.6	33.5	52.4	74	-21.6
4874.00	43.5	Peak	270	1.4	v	32.5	4.9	33.0	47.9	74	-26.1
4874.00	41.4	Peak	90	1.5	h	32.5	4.9	33.0	45.8	74	-28.2

High Channel, 1-25GHz												
2462.00	107.2	Fund/Peak	180	1.8	v	28.1	3.4	35.2	103.5			
2462.00	101.3	Fund/Peak	210	1.5	h	28.1	3.4	35.2	97.6			
2462.00	93.1	Fund/Ave	180	1.8	v	28.1	3.4	35.2	89.4			
2462.00	87.5	Fund/Ave	210	1.5	h	28.1	3.4	35.2	83.8			
2483.50	41.3	Ave	330	1.5	v	28.1	3.4	35.2	37.6	54	-16.5	
4924.00	31.7	Ave	300	1.4	v	32.5	4.9	33.0	36.1	54	-17.9	
2483.50	58.6	Peak	330	1.5	v	28.1	3.4	35.2	54.9	74	-19.2	
4924.00	30.1	Ave	90	1.3	h	32.5	4.9	33.0	34.5	54	-19.5	
2483.50	33.9	Ave	310	1.6	h	28.1	3.4	35.2	30.2	54	-23.9	
4924.00	44.2	Peak	300	1.4	v	32.5	4.9	33.0	48.6	74	-25.4	
2483.50	50.7	Peak	310	1.6	h	28.1	3.4	35.2	47.0	74	-27.1	
4924.00	40.9	Peak	90	1.3	h	32.5	4.9	33.0	45.3	74	-28.7	

Indicated			Table	Antenna		Correction Factor			FCC 15 Subpart B	
Frequency MHz	Ampl. $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Direction Degree	Height Meter	Polar H/V	Antenna $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Cable Loss $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Amp. dB	Corr. Ampl. $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Limit } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB
250.01	56.4	0	1.5	h	13.3	2.2	27.4	44.5	46	-1.5
331.25	51.8	120	1.2	h	15.8	2.3	27.4	42.5	46	-3.5
218.76	52.8	15	1.5	V	11.9	2.2	27.3	39.6	43.5	-3.9
160.01	52.2	110	1.2	h	12.9	1.8	27.5	39.4	43.5	-4.1
375.00	49.9	270	1.5	h	15.3	2.4	27.3	40.3	46	-5.7
160.00	49.1	160	1.2	V	12.9	1.8	27.3	36.5	43.5	-7.0
80.20	48.7	60	1.5	V	9.5	1.2	27.5	31.9	40	-8.1
293.75	49.3	30	1.6	h	13.7	2.3	27.6	37.7	46	-8.3

FUND = Fundamental
AVG = average

§15.247(a)(2) - 6 DB BANDWIDTH

Standard Applicable

According to $\S 15.247(\mathrm{a})(2)$, for digital modulation technicques, the minimum 6 dB bandwidth shall be at least 500 kHz .

Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth. (6 dB bandwidth for DTS)
4. Repeat above procedures until all frequencies measured were complete.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	8565 EC	Spectrum Analyzer	$2003-06-30$

Measurement Result

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

Test Result for 802.11b (15.247)

Channel	Frequency (MHz)	Measured (MHz)	Measured (kHz)	Standard (kHz)	Result
Low	2412	12.33	12330	≥ 500	Pass
Mid	2437	12.08	12080	≥ 500	Pass
High	2462	12.08	12080	≥ 500	Pass

Test Result for 802.11g (15.247)

Channel	Frequency (MHz)	Measured (MHz)	Measured (kHz)	Standard (kHz)	Result
Low	2412	16.75	16750	≥ 500	Pass
Mid	2437	16.83	16830	≥ 500	Pass
High	2462	16.67	16670	≥ 500	Pass

§15.247(b)(3) - PEAK OUTPUT POWER MEASUREMENT

Standard Applicable

According to $\S 15.247$ (b) (3), for systems using digital modulation in $2400-2483.5 \mathrm{MHz}: 1$ Watt

Measurement Procedure

1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
3. Add a correction factor to the display.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	8565 EC	Spectrum Analyzer	2003-06-30

Measurement Result

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

Output Power (15.247) for 802.11b

Channel	Frequency (MHz)	RF Power (dBm)	Correction Factor (dB)	Corrected RF Power (dBm)	Corrected RF Power (W)	Limit
Low (Ch1)	2412	5.17	7.7	12.87	0.01936	1W (30dBm)
Mid (Ch7)	2437	5.00	7.7	12.70	0.01862	$1 \mathrm{~W}(30 \mathrm{dBm})$
High (Ch11)	2462	5.17	7.7	12.87	0.01936	$1 \mathrm{~W}(30 \mathrm{dBm})$

Note: Correction Factor $=10 \log \left(\mathrm{BW}_{6 \mathrm{~dB}} / \mathrm{RBW}\right)=10 \log (12 / 2)=7.7 \mathrm{~dB}$

Output Power (15.247) for 802.11 g

Channel	Frequency (MHz)	RF Power (dBm)	Correction Factor (dB)	Corrected RF Power (dBm)	Corrected RF Power (W)	Limit
Low (Ch1)	2412	9.67	9.2	18.87	0.07709	$1 \mathrm{~W}(30 \mathrm{dBm})$
Mid (Ch7)	2437	9.50	9.2	18.70	0.07413	$1 \mathrm{~W}(30 \mathrm{dBm})$
High (Ch11)	2462	9.67	9.2	18.87	0.07709	$1 \mathrm{~W}(30 \mathrm{dBm})$

Note: Correction Factor $=10 \log \left(\mathrm{BW}_{6 \mathrm{~dB}} / \mathrm{RBW}\right)=10 \log (16.7 / 2)=9.2 \mathrm{~dB}$

§15.247(c) - 100 KHZ BANDWIDTH OF BAND EDGES

Standard Applicable

According to $\S 15.247$ (c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in $\S 15.209$ (a) see $\S 15.205(\mathrm{c})$).

Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	8565 EC	Spectrum Analyzer	2003-06-30

Measure Results

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

Please refer to following pages for plots of band edge.

STAFT ᄅ. $40000 G H z$ STOP ᄅ. $4 B 35 O G H Z$ *月日W $100 K H z$ SWW $100 k H z 50.0$ ns

[^1]

§15.247(d) - POWER SPECTRAL DENSITY

Standard Applicable

According to $\S 15.247$ (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Adjust the center frequency of SA on any frequency be measured and set SA to 6 MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (DTS)
4. Adjust the center frequency of SA on any frequency be measured and set SA to 50 MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (UNII)
5. Repeat above procedures until all frequencies measured were complete.

Equipment Lists

Manufacturer	Model No.	Description	Calibration Date
HP	8565 EC	Spectrum Analyzer	2003-01-22

Measurement Results

Environmental Conditions

Temperature:	$16^{\circ} \mathrm{C}$
Relative Humidity:	52%
ATM Pressure:	1032 mbar

Test Result for 802.11b (15.247)

Channel	Frequency (MHz)	Peak Power Spectral Density (dBm)	Standard (dBm)	Result
Low	2412	-10.33	≤ 8	Pass
Mid	2437	-9.50	≤ 8	Pass
High	2462	-9.83	≤ 8	Pass

Test Result for 802.11g (15.247)

Channel	Frequency (MHz)	Peak Power Spectral Density (dBm)	Standard (dBm)	Result
Low	2412	-16.67	≤ 8	Pass
Mid	2437	-15.83	≤ 8	Pass
High	2462	-16.17	≤ 8	Pass

[^0]: * Statement of Traceability: BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

[^1]: START ᄅ，4日ヨडOGHz
 STOP 2．50000GHz
 ＊月日W 10OKHz VEW 10OKHz＊SWP 50．0ms

