FCC PART 15 # EMI MEASUREMENT AND TEST REPORT For Actiontec Electronics, Inc. 760 North Mary Ave. Sunnyvale, CA 94086 FCC ID: LNQGT701 2003-12-29 | This Report Concerns: | | Equipment Type: | | |-----------------------|---|---|--| | Original Rep | ort | USB/Ethernet DSL Modem, 54Mbps | | | | | Wireless Gateway & 54Mbps Wireless
Access Point- ITE | | | Test Engineer: | Ming Jing / | Conjan Fry | | | Report No.: | R0311181 | | | | Test Date: | 2003-11-19 | | | | Reviewed By: | Ling Zhang / | my My | | | Prepared By: | Bay Area Compliance Laboratory Corporation (BACL) | | | | | 230 Commercial Street
Sunnyvale, CA 94085 | | | | | Tel: (408) 732-9162 | | | | | Fax: (408) 732 9164 | | | **Note:** This test report is specially limited to the above client company and product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. ## TABLE OF CONTENTS | GENERAL INFORMATION | 4 | |--|------------| | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 4 | | OBJECTIVE | | | RELATED SUBMITTAL(S)/GRANT(S)
TEST METHODOLOGY | | | TEST FACILITY | | | SUPPORT EQUIPMENT LIST AND DETAILS | | | External I/O Cabling List and Details | | | SYSTEM TEST CONFIGURATION | 6 | | JUSTIFICATION | 6 | | EUT Exercise Software | ϵ | | SPECIAL ACCESSORIES | | | SCHEMATICS / BLOCK DIAGRAM | | | CONFIGURATION OF TEST SYSTEM | | | TEST SETUP BLOCK DIAGRAM | | | SUMMARY OF TEST RESULTS | 8 | | §1.1307(B)(1) & §2.1093 - RF EXPOSURE | | | | | | §15.203 - ANTENNA REQUIREMENT | | | STANDARD APPLICABLE | | | ANTENNA CONNECTED CONSTRUCTION | | | §15.207(A) - CONDUCTED EMISSIONS | | | MEASUREMENT UNCERTAINTY. | | | EUT SETUP | | | SPECTRUM ANALYZER SETUPTEST EQUIPMENT LIST AND DETAILS | | | TEST PROCEDURE | 11 | | SUMMARY OF TEST RESULTS | 12 | | CONDUCTED EMISSIONS TEST DATA | | | PLOT OF CONDUCTED EMISSIONS TEST DATA | | | §15.209(A) - SPURIOUS EMISSION | | | STANDARD APPLICABLE | | | MEASUREMENT PROCEDURE | | | EQUIPMENT LISTS | | | §15.209(F) - SPURIOUS RADIATED EMISSION | | | MEASUREMENT UNCERTAINTY | | | EUT SETUP | | | SPECTRUM ANALYZER SETUP | | | TEST EQUIPMENT LIST AND DETAILS | | | TEST PROCEDURE | | | CORRECTED AMPLITUDE & MARGIN CALCULATION | | | SUMMARY OF TEST RESULTS | | | §15.247(A)(2) – 6 DB BANDWIDTH | | | STANDARD APPLICABLE | | | MEASUREMENT PROCEDURE. | | | EQUIPMENT LISTS | | | MEASUREMENT RESULT | 31 | | §15.247(B)(3) - PEAK OUTPUT POWER MEASUREMENT | 36 | | Actiontec Electronics, Inc. | FCC ID: LNQGT701 | |--|------------------| | STANDARD APPLICABLE | | | MEASUREMENT PROCEDURE | | | EQUIPMENT LISTS | 36 | | MEASUREMENT RESULT | 36 | | §15.247(C) - 100 KHZ BANDWIDTH OF BAND EDGES | 40 | | STANDARD APPLICABLE | 40 | | MEASUREMENT PROCEDURE. | | | EQUIPMENT LISTS | 40 | | MEASURE RESULTS | | | §15.247(D) - POWER SPECTRAL DENSITY | 45 | | STANDARD APPLICABLE | | | MEASUREMENT PROCEDURE | | | EQUIPMENT LISTS | 45 | | Measurement Results | 45 | #### **GENERAL INFORMATION** #### **Product Description for Equipment Under Test (EUT)** The *Actiontec Electronics, Inc.*'s, model: *GT701*, or the "EUT" as referred to in this report is an USB/Ethernet DSL Modem, 54Mbps Wireless Access Point which is measured approximately 6.1"L x 4.5"W x 0.8"H, rated input voltage: AC 120 V/60Hz. * The test data gathered are from a production sample, S/N: 1005, provided by the manufacturer. ### **Objective** This type approval report is prepared on behalf of *Actiontec Electronics, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, C, and E of the Federal Communication Commissions rules. The objective is to determine compliance with FCC rules for Output Power, Antenna Requirements, 6 dB Bandwidth, power spectral density, 100 kHz Bandwidth of Band Edges Measurement, Out of Band Emission, Spurious Emission, Conducted and Spurious Radiated Emission. ### Related Submittal(s)/Grant(s) No Related Submittals. #### **Test Methodology** All measurements contained in this report were conducted with ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. #### **Test Facility** The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA. Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2001. The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database. Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method – 47 CFR Part – Digital Devices, CISPER 22: 1997: Electromagnetic Interference – Limits and Methods of Measurement of Information Technology Equipment test methods. ## **Support Equipment List and Details** | Manufacturer | Description | Model | Serial Number | FCC ID | |--------------|-------------------|---------------|---------------|--------| | IBM | Notebook PC | ThinkPad 1171 | N/A | N/A | | HP | Printer | 2225C | N/A | N/A | | Arescom | Line
Simulator | CDS6020 | N/A | N/A | | Panasonic | Phone Set | KX-T3175 | N/A | N/A | ### External I/O Cabling List and Details | Cable Description | Length (M) | Port/From | То | |-------------------|------------|----------------------------|-----------------------------| | RJ-45 Cable | 1.0 | Network port / EUT | Ethernet port / Notebook PC | | Cable | 1.0 | Printer port / Notebook PC | Printer | | RJ-15 Cable | 1.0 | Line Port / EUT | Line Simulator | | RF-15 Cable | 1.0 | Phone Port / EUT | Phone Set | ### SYSTEM TEST CONFIGURATION #### **Justification** The host system was configured for testing according to ANSI C63.4-2001. The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test. #### **EUT Exercise Software** The EUT exercise program used during radiated and conducted testing was designed to exercise the system components. The test software, provided by the customer, is started the Windows terminal program under the Windows 98/2000/ME/XP operating system. Once loaded, set the Tx channel to low, mid and high for testing. ### **Special Accessories** As shown in following test block diagram, all interface cables used for compliance testing are shielded. The host PC and the peripherals featured shielded metal connectors. #### **Schematics / Block Diagram** Please refer to Appendix A. #### **Equipment Modifications** No modifications were made to the EUT. ## **Configuration of Test System** ## **Test Setup Block Diagram** ## **SUMMARY OF TEST RESULTS** Results reported relate only to the product tested, serial number: 1005. | FCC RULES | DESCRIPTION OF TEST | RESULT | |-----------------|--|--------| | §2.1093 | RF Exposure | Pass | | §15.203 | Antenna Requirement | Pass | | § 15.207 (a) | Conducted Emissions | Pass | | §15.209 (a) | Spurious Emission | Pass | | §15.209 (f) | Radiated Emission | Pass | | §15.247 (a)(2), | 6 dB Bandwidth | Pass | | §15.247 (b)(3), | Maximum Peak Output Power | Pass | | § 15.247 (c) | 100 kHz Bandwidth of Frequency Band Edge | Pass | | §15.247 (d), | Peak Power Spectral Density | Pass | ## §1.1307(b)(1) & §2.1093 - RF EXPOSURE According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to §1.1310 and §2.1093 RF exposure is calculated. Limits for General Population/Uncontrolled Exposure | Frequency | Electric Field | Magnetic Field | Power Density | Averaging Time | |--------------|----------------|----------------------|-------------------|----------------| | Range (MHz) | Strength (V/m) | Strength (A/m) | (mW/cm^2) | (minute) | | | Limits for Gen | eral Population/Unco | ntrolled Exposure | | | 0.3-1.34 | 614 | 1.63 | *(100) | 30 | | 1.34-30 | 824/f | 2.19/f | $*(180/f^2)$ | 30 | | 30-300 | 27.5 | 0.073 | 0.2 | 30 | | 300-1500 | / | / | f/1500 | 30 | | 1500-100,000 | / | / | 1.0 | 30 | f = frequency in MHz #### **MPE Prediction** Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01 $S = PG/4\pi R^2$ Where: S = power density P =power input to antenna G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna Maximum peak output power at antenna input terminal: 15.7 (dBm) Maximum peak output power at antenna input terminal: 37.15 (mW) Prediction distance: 20 (cm) Prediction distance: 20 (cm) Predication frequency: 2400 (MHz) Antenna Gain (typical): 2.0 (dBi) antenna gain: 1.58 (numeric) Power density at predication frequency at 20 cm: 0.012(mW/cm²) MPE limit for uncontrolled exposure at prediction frequency: 1.0 (mW/cm²) #### **Test Result** The EUT is a mobile device. The power density level at 20 cm is 0.012 mW/cm², which is below the uncontrolled exposure limit of 1.0mW/cm² at 2400 MHz. ^{* =} Plane-wave equivalent power density ## §15.203 - ANTENNA REQUIREMENT ### **Standard Applicable** According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Refer to statement below for compliance. "The antenna for this device is an integral antenna that the end user cannot access. Furthermore the device is for outdoor use as detailed in the Users Manual and Operational Description". #### **Antenna Connected Construction** The antenna connector is designed with permanent attachment and no consideration of replacement. ## §15.207(a) - CONDUCTED EMISSIONS #### **Measurement Uncertainty** All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN. Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ±2.4 dB. #### **EUT Setup** The measurement was performed in the shield room, using the same setup per ANSI C63.4-2001 measurement procedure. The specification used was FCC 15 Subpart B limits. The spacing between the peripherals was 10 centimeters. External I/O cables were draped along the edge of the test table and bundle when necessary. #### **Spectrum Analyzer Setup** The EMI test receiver was set to investigate the spectrum from 150 kHz to 30Mhz. ### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial Number | Cal. Date | | |--------------|-------------------|---------|---------------|------------|--| | Rohde & | Antificial LICNI | EGH2 75 | 071004/020 | 2002 02 28 | | | Schwarz | Artificial LISN | ESH2-Z5 | 871884/039 | 2003-03-28 | | | Rohde & | EMT (D) | EGGGAA | 100176 | 2002.05.06 | | | Schwarz | EMI Test Receiver | ESCS30 | 100176 | 2003-05-06 | | ^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST. ### **Test Procedure** During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN. Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination. All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "Qp". ## **Summary of Test Results** According to the recorded data in following table, the EUT <u>complies with the FCC</u> Conducted margin for a Class B device, with the *worst* margin reading of: -12.6dB at 0.150 in the Line mode ### **Environmental Conditions** | Temperature: | 25° C | |--------------------|-----------| | Relative Humidity: | 52% | | ATM Pressure: | 1100 mbar | ### **Conducted Emissions Test Data** | | LINE CON | FCC PART | 15 Class B | | | |-----------|-----------|-------------|--------------|-------|--------| | Frequency | Amplitude | Detector | Phase | Limit | Margin | | MHz | dΒμV | Qp/Ave/Peak | Line/Neutral | dΒμV | dB | | 0.150 | 53.4 | QP | Line | 66 | -12.6 | | 0.150 | 51.9 | QP | Neutral | 66 | -14.1 | | 0.705 | 36.2 | QP | Line | 56 | -19.8 | | 0.870 | 29.6 | QP | Neutral | 56 | -26.4 | | 0.150 | 28.9 | AVG | Line | 56 | -27.1 | | 0.705 | 14.7 | AVG | Line | 46 | -31.3 | | 0.870 | 11.5 | AVG | Neutral | 46 | -34.5 | | 0.150 | 18.3 | AVG | Neutral | 56 | -37.7 | | 17.100 | 12.3 | AVG | Neutral | 50 | -37.7 | | 17.100 | 14.9 | QP | Neutral | 60 | -45.1 | | 17.100 | 13.5 | QP | Line | 60 | -46.5 | | 17.100 | 0.8 | AVG | Line | 50 | -49.2 | ## **Plot of Conducted Emissions Test Data** Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference. ## Bay Area Compliance Laboratory Corp 24. Nov 03 16:20 Class B EUT: GT701 Actiontec Manuf: Op Cond: Normal Operator: Ming Comment: | Scan Setti | ngs (3 Ranges | 3) | | | | | | |------------|---------------|------|-------|----------|---------|--------|--------| | | Frequencies | | | Receiv | er Sett | lugs | | | Start | Stop | Step | IF BW | Detector | M-Time | Atten | Preamp | | 150k | 1M | 5k | 9k | QP+AV | 1ms | 15dBLN | OFF | | 1M | ам | 10k | 9k | QP+AV | ims | 15dBLN | OFF | | ME | MOE | 100k | 9k | QP+AV | 1ms | 15dBLN | OFF | Final Measurement: x QP / + AV Meas Time: 4 ms 25 6dB Subranges: Acc Margin: ## §15.209(a) - SPURIOUS EMISSION ### **Standard Applicable** According to §15.209 (a), except as provided elsewhere in the subpart of 15.209, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency (MHz | Measurement z) Field stren (microvolts/meter) | gth distance (meters) | |----------------|---|-----------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 ** | 3 | | 88-216 | 150 ** | 3 | | 216-960 | 200 ** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241 #### **Measurement Procedure** - 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range. - 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded. - 4. Set the SA on View mode and then plot the result on SA screen. - 5. Repeat above procedures until all frequencies measured were complete. #### **Equipment Lists** | Manufacturer | Model No. | Description | Calibration Date | | | |--------------|-----------|-------------------|------------------|--|--| | HP | 8565EC | Spectrum Analyzer | 2003-01-22 | | | ### **Measurement Result** Please refer to following pages for plots of spurious emission. ## **Environmental Conditions** | Temperature: | 25° C | |--------------------|-----------| | Relative Humidity: | 52% | | ATM Pressure: | 1100 mbar | ## Plots of Spurious Emission for 802.11b (15.247) ## Plots of Spurious Emission for 802.11g (15.247) ## §15.209(f) - SPURIOUS RADIATED EMISSION #### **Measurement Uncertainty** All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability. Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ±4.0 dB. According to §15.205, except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |---------------------|-----------------------|-----------------|------------------| | 0.090 - 0.110 | 16.42 – 16.423 | 399.9 – 410 | 4.5 – 5.15 | | $^{1}0.495 - 0.505$ | 16.69475 – 16.69525 | 608 - 614 | 5.35 – 5.46 | | 2.1735 – 2.1905 | 16.80425 - 16.80475 | 960 – 1240 | 7.25 – 7.75 | | 4.125 – 4.128 | 25.5 – 25.67 | 1300 – 1427 | 8.025 - 8.5 | | 4.17725 – 4.17775 | 37.5 – 38.25 | 1435 – 1626.5 | 9.0 – 9.2 | | 4.20725 – 4.20775 | 73 – 74.6 | 1645.5 – 1646.5 | 9.3 – 9.5 | | 6.215 - 6.218 | 74.8 – 75.2 | 1660 – 1710 | 10.6 – 12.7 | | 6.26775 - 6.26825 | 108 – 121.94 | 1718.8 – 1722.2 | 13.25 – 13.4 | | 6.31175 - 6.31225 | 123 – 138 | 2200 – 2300 | 14.47 – 14.5 | | 8.291 – 8.294 | 149.9 – 150.05 | 2310 - 2390 | 15.35 – 16.2 | | 8.362 – 8.366 | 156.52475 – 156.52525 | 2483.5 – 2500 | 17.7 – 21.4 | | 8.37625 - 8.38675 | 156.7 – 156.9 | 2655 – 2900 | 22.01 – 23.12 | | 8.41425 - 8.41475 | 162.0125 – 167.17 | 3260 – 3267 | 23.6 – 24.0 | | 12.29 – 12.293 | 167.72 – 173.2 | 3332 – 3339 | 31.2 – 31.8 | | 12.51975 – 12.57725 | 240 – 285 | 3345.8 – 3358 | 36.43 – 36.5 | | 13.36 – 13.41 | 322 – 335.4 | 3600 – 4400 | (²) | ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510MHz ² Above 38.6 Except as provided in paragraph (d) and (e), the filed strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. According to §15.209, the device shall meet radiated emission general requirements. Except for Class A device, the filed strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency of Emission | Field Strength | dB | |-----------------------|--------------------|--------------| | (MHz) | (Microvolts/meter) | (dBµV/meter) | | 30 - 88 | 100 | 40 | | 88 - 216 | 150 | 43.5 | | 216 - 960 | 200 | 46 | | Above 960 | 500 | 54 | ### **EUT Setup** The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2001. The specification used was the FCC 15.209 limits. The spacing between the peripherals was 10 centimeters. External I/O cables were draped along the edge of the test table and bundle when necessary. ### **Spectrum Analyzer Setup** According to FCC Rules, 47 CFR, Section 15.33, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the spectrum analyzer was set with the following configurations: | Frequency Range | RBW | <i>Video B/W</i> | |-----------------|--------|------------------| | Below 30MHz | 10kHz | 10kHz | | 30 - 1000MHz | 100kHz | 100kHz | | Above 1000MHz | 1MHz | 1MHz | ### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial Number | Cal. Date | |--------------|----------------------|--------|---------------|------------| | НР | Spectrum Analyzer | 8568B | 2601A02165 | 2003-07-03 | | HP | Amplifier | 8447E | 2944A10187 | 2003-09-23 | | НР | Quasi-Peak Adapter | 85650A | 3019A05393 | 2003-06-13 | | EMCO | Biconical Antenna | 3110B | 9309-1165 | 2003-10-11 | | EMCO | Log Periodic Antenna | 3146 | 2101 | 2003-10-11 | ^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST. #### **Test Procedure** For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet. Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table. #### **Corrected Amplitude & Margin Calculation** The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows: Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows: Margin = Corr. Ampl. - FCC 15.209 Limit #### **Summary of Test Results** According to the data in section 12.7, the EUT <u>complied</u> with the FCC <u>Title 47</u>, <u>Part 15</u>, <u>Subpart C</u>, <u>section 15.205</u>, 15.207 and 15.247, and had the worst margin of: #### **Environmental Conditions** | Temperature: | 25° C | |--------------------|-----------| | Relative Humidity: | 52% | | ATM Pressure: | 1100 mbar | Test Data for 802.11b, 15.247 - -14.655 dB at 7236.00 MHz in the Vertical polarization, Low Channel - -14.255 dB at 7311.00 MHz in the Vertical polarization, Middle Channel - -14.655 dB at 7386.00 MHz in the Vertical polarization, High Channel - -2.13 dB at 250.01 MHz in the Vertical polarization, Unwanted Emission Test Data for 802.11g, 15.247 - -9.550 dB at 2400.00 MHz in the Vertical polarization, Low Channel - -12.155 dB at 7311.00 MHz in the Vertical polarization, Middle Channel - -12.555 dB at 7386.00 MHz in the Vertical polarization, High Channel - -2.33 dB at 250.01 MHz in the Vertical polarization, Unintentional Emission Test Data for ADSL Modem, 15B -2.07 dB at 250.00 MHz in the Vertical polarization ### **Radiated Emission Test Result** ## Final test data for 802.11b (15.247) | | Indicate | ED | TABLE | Antenna | | CORRECTION FACTOR | | | CORRECTED AMPLITUDE | | C 15
Part C | |-----------|------------|-----------|--------|---------|----------|-------------------|-------|------|---------------------|--------|----------------| | Frequency | Ampl. | | Angle | Height | Polar | Anten
na | Cable | Amp. | Corr. Ampl. | Limit | Margin | | MHz | dBμV/
m | Comments | Degree | Meter | H/V | dBμV/
m | DB | DB | dBμV/m | dBμV/m | dB | | | | | | Lo | w Channe | l, 1-25G | Hz | | | | | | 2412.00 | 111.5 | FUND/PEAK | 90 | 2.0 | V | 28.1 | 3.35 | 35.2 | 107.750 | | | | 2412.00 | 105.8 | FUND/PEAK | 300 | 1.2 | Н | 28.1 | 3.35 | 35.2 | 102.050 | | | | 2412.00 | 102.3 | FUND/AVE | 90 | 2.0 | V | 28.1 | 3.35 | 35.2 | 98.550 | | | | 2412.00 | 96.4 | FUND/AVE | 300 | 1.2 | Н | 28.1 | 3.35 | 35.2 | 92.650 | | | | 7236.00 | 32.1 | AVE | 200 | 1.2 | V | 35.1 | 5.645 | 33.5 | 39.345 | 54 | -14.655 | | 7236.00 | 31.7 | AVE | 0 | 1.3 | Н | 35.1 | 5.645 | 33.5 | 38.945 | 54 | -15.055 | | 4824.00 | 31.9 | AVE | 160 | 1.1 | V | 32.5 | 4.91 | 33.0 | 36.310 | 54 | -17.690 | | 4824.00 | 30.4 | AVE | 0 | 1.5 | Н | 32.5 | 4.91 | 33.0 | 34.810 | 54 | -19.190 | | 7236.00 | 45.5 | PEAK | 200 | 1.2 | V | 35.1 | 5.645 | 33.5 | 52.745 | 74 | -21.255 | | 7236.00 | 44.3 | PEAK | 0 | 1.3 | Н | 35.1 | 5.645 | 33.5 | 51.545 | 74 | -22.455 | | 4824.00 | 44.2 | PEAK | 160 | 1.1 | V | 32.5 | 4.91 | 33.0 | 48.610 | 74 | -25.390 | | 4824.00 | 43.1 | PEAK | 0 | 1.5 | Н | 32.5 | 4.91 | 33.0 | 47.510 | 74 | -26.490 | ## Final test data for 802.11b (15.247, Continued) | | Indicati | ED | TABLE | Ant | TENNA | Cor | CORRECTION FACTOR | | | _ | C 15
PART C | |-------------------------|------------|-----------|--------|--------|----------|-------------|-------------------|------|-------------|--------|----------------| | Frequency | Ampl. | Comments | Angle | Height | Polar | Anten
na | Cable | Amp. | Corr. Ampl. | Limit | Margin | | MHz | dBμV/
m | Comments | Degree | Meter | H/V | dBμV/
m | DB | DB | dBμV/m | dBμV/m | dB | | Middle Channel, 1-25GHz | | | | | | | | | | | | | 2437.00 | 112.4 | FUND/PEAK | 180 | 1.5 | V | 28.1 | 3.35 | 35.2 | 108.650 | | | | 2437.00 | 101.7 | FUND/PEAK | 210 | 1.2 | Н | 28.1 | 3.35 | 35.2 | 97.950 | | | | 2437.00 | 103.9 | FUND/AVE | 180 | 1.5 | V | 28.1 | 3.35 | 35.2 | 100.150 | | | | 2437.00 | 92.4 | FUND/AVE | 210 | 1.2 | Н | 28.1 | 3.35 | 35.2 | 88.650 | | | | 7311.00 | 32.5 | AVE | 310 | 1.6 | V | 35.1 | 5.645 | 33.5 | 39.745 | 54 | -14.255 | | 7311.00 | 31.9 | AVE | 15 | 1.2 | Н | 35.1 | 5.645 | 33.5 | 39.145 | 54 | -14.855 | | 4874.00 | 31.8 | AVE | 60 | 1.5 | V | 32.5 | 4.91 | 33.0 | 36.210 | 54 | -17.790 | | 4874.00 | 30.2 | AVE | 230 | 1.2 | Н | 32.5 | 4.91 | 33.0 | 34.610 | 54 | -19.390 | | 7311.00 | 45.6 | PEAK | 310 | 1.6 | V | 35.1 | 5.645 | 33.5 | 52.845 | 74 | -21.155 | | 7311.00 | 44.7 | PEAK | 15 | 1.2 | Н | 35.1 | 5.645 | 33.5 | 51.945 | 74 | -22.055 | | 4874.00 | 44.5 | PEAK | 60 | 1.5 | V | 32.5 | 4.91 | 33.0 | 48.910 | 74 | -25.090 | | 4874.00 | 43.7 | PEAK | 230 | 1.2 | Н | 32.5 | 4.91 | 33.0 | 48.110 | 74 | -25.890 | | | | | | Hig | gh Chanr | nel, 1-25G | Hz | | | | | | 2462.00 | 112.3 | FUND/PEAK | 270 | 1.8 | V | 28.1 | 3.350 | 35.2 | 108.550 | | | | 2462.00 | 103.5 | FUND/PEAK | 270 | 1.5 | Н | 28.1 | 3.350 | 35.2 | 99.750 | | | | 2462.00 | 103.7 | FUND/AVE | 270 | 1.8 | V | 28.1 | 3.350 | 35.2 | 99.950 | | | | 2462.00 | 94.8 | FUND/AVE | 270 | 1.5 | Н | 28.1 | 3.350 | 35.2 | 91.050 | | | | 7386.00 | 32.1 | AVE | 180 | 1.7 | V | 35.1 | 5.645 | 33.5 | 39.345 | 54 | -14.655 | | 7386.00 | 31.7 | AVE | 160 | 1.8 | Н | 35.1 | 5.645 | 33.5 | 38.945 | 54 | -15.055 | | 4924.00 | 31.9 | AVE | 270 | 1.2 | V | 32.5 | 4.910 | 33.0 | 36.310 | 54 | -17.690 | | 4924.00 | 30.4 | AVE | 15 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 34.810 | 54 | -19.190 | | 7386.00 | 45.5 | PEAK | 180 | 1.7 | V | 35.1 | 5.645 | 33.5 | 52.745 | 74 | -21.255 | | 7386.00 | 44.3 | PEAK | 160 | 1.8 | Н | 35.1 | 5.645 | 33.5 | 51.545 | 74 | -22.455 | | 4924.00 | 44.2 | PEAK | 270 | 1.2 | V | 32.5 | 4.910 | 33.0 | 48.610 | 74 | -25.390 | | 4924.00 | 43.1 | PEAK | 15 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 47.510 | 74 | -26.490 | | | Indicated | | Table | An | tenna | Correction Factor | | | FCC 15 Subpart B | | |-----------|-----------|-----------|--------|-------|---------|-------------------|------|----------------|---------------------------|--------| | Frequency | Ampl. | Direction | Height | Polar | Antenna | Cable
Loss | Amp. | Corr.
Ampl. | Limit | Margin | | MHz | dBμV/m | Degree | Meter | H/V | dBμV/m | dBμV/m | dB | dBμV/m | $\text{dB}_\mu\text{V/m}$ | dB | | 250.01 | 53.4 | 0 | 1.5 | V | 13.30 | 2.17 | 25 | 43.87 | 46.0 | -2.13 | | 206.30 | 52.2 | 0 | 1.5 | V | 11.50 | 2.17 | 25 | 40.87 | 43.5 | -2.63 | | 200.05 | 51.3 | 150 | 1.2 | Н | 11.50 | 2.17 | 25 | 39.97 | 43.5 | -3.53 | | 233.20 | 51.6 | 15 | 1.5 | V | 12.60 | 2.17 | 25 | 41.37 | 46.0 | -4.63 | | 318.75 | 48.2 | 180 | 1.5 | V | 15.10 | 2.33 | 25 | 40.63 | 46.0 | -5.37 | | 166.09 | 46.5 | 120 | 1.5 | Н | 12.95 | 1.81 | 25 | 36.26 | 43.5 | -7.24 | | 110.86 | 47.3 | 90 | 1.5 | V | 11.30 | 1.54 | 25 | 35.14 | 43.5 | -8.36 | ## Final test data for 802.11g (15.247) | | INDICATE | ED | TABLE | An | ΓENNA | Сов | RRECTION I | FACTOR | CORRECTED AMPLITUDE | | | |-----------|------------|-----------|--------|--------|-----------|-------------|------------|--------|---------------------|--------|---------| | Frequency | Ampl. | | Angle | Height | Polar | Anten
na | Cable | Amp. | Corr. Ampl. | Limit | Margin | | MHz | dBμV/
m | Comments | Degree | Meter | H/V | dBμV/
m | DB | DB | dBμV/m | dBμV/m | dB | | | | | | Hz | | | | | | | | | 2412.00 | 106.3 | FUND/PEAK | 90 | 1.8 | V | 28.1 | 3.350 | 35.2 | 102.550 | | | | 2412.00 | 99.8 | FUND/PEAK | 270 | 1.4 | Н | 28.1 | 3.350 | 35.2 | 96.050 | | | | 2412.00 | 91.2 | FUND/AVE | 90 | 1.8 | V | 28.1 | 3.350 | 35.2 | 87.450 | | | | 2412.00 | 85.3 | FUND/AVE | 270 | 1.4 | Н | 28.1 | 3.350 | 35.2 | 81.550 | | | | 2400.00 | 80.5 | EDGE/PEAK | 310 | 2.0 | V | 28.1 | 3.350 | 35.2 | 76.750 | 86.3 | -9.550 | | 2400.00 | 72.6 | EDGE/PEAK | 30 | 1.0 | Н | 28.1 | 3.350 | 35.2 | 68.850 | 79.8 | -10.950 | | 2400.00 | 52.2 | EDGE/AVE | 30 | 1.0 | Н | 28.1 | 3.350 | 35.2 | 48.450 | 59.8 | -11.350 | | 7236.00 | 34.3 | AVE | 300 | 1.0 | V | 35.1 | 5.645 | 33.5 | 41.545 | 54.0 | -12.455 | | 2400.00 | 54.5 | EDGE/AVE | 310 | 2.0 | V | 28.1 | 3.350 | 35.2 | 50.750 | 66.3 | -15.550 | | 7236.00 | 30.5 | AVE | 240 | 1.5 | Н | 35.1 | 5.645 | 33.5 | 37.745 | 54.0 | -16.255 | | 4824.00 | 31.7 | AVE | 150 | 1.6 | V | 32.5 | 4.910 | 33.0 | 36.110 | 54.0 | -17.890 | | 4824.00 | 30.4 | AVE | 90 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 34.810 | 54.0 | -19.190 | | 7236.00 | 46.1 | PEAK | 300 | 1.0 | V | 35.1 | 5.645 | 33.5 | 53.345 | 74.0 | -20.655 | | 7236.00 | 44.9 | PEAK | 240 | 1.5 | Н | 35.1 | 5.645 | 33.5 | 52.145 | 74.0 | -21.855 | | 4824.00 | 44.3 | PEAK | 150 | 1.6 | V | 32.5 | 4.910 | 33.0 | 48.710 | 74.0 | -25.290 | | 4824.00 | 43.1 | PEAK | 90 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 47.510 | 74.0 | -26.490 | | | | | | Mid | dle Chanı | nel, 1-25 | GHz | | | | | | 2437.00 | 107.3 | FUND/PEAK | 120 | 1.8 | V | 28.1 | 3.350 | 35.2 | 103.550 | | | | 2437.00 | 100.4 | FUND/PEAK | 180 | 1.6 | Н | 28.1 | 3.350 | 35.2 | 96.650 | | | | 2437.00 | 92.2 | FUND/AVE | 120 | 1.8 | V | 28.1 | 3.350 | 35.2 | 88.450 | | | | 2437.00 | 86.3 | FUND/AVE | 180 | 1.6 | Н | 28.1 | 3.350 | 35.2 | 82.550 | | | | 7311.00 | 34.6 | AVE | 180 | 2.0 | V | 35.1 | 5.645 | 33.5 | 41.845 | 54 | -12.155 | | 7311.00 | 30.7 | AVE | 150 | 1.8 | Н | 35.1 | 5.645 | 33.5 | 37.945 | 54 | -16.055 | | 4874.00 | 31.6 | AVE | 270 | 1.4 | V | 32.5 | 4.910 | 33.0 | 36.010 | 54 | -17.990 | | 4874.00 | 30.2 | AVE | 90 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 34.610 | 54 | -19.390 | | 7311.00 | 46.7 | PEAK | 180 | 2.0 | V | 35.1 | 5.645 | 33.5 | 53.945 | 74 | -20.055 | | 7311.00 | 45.2 | PEAK | 150 | 1.8 | Н | 35.1 | 5.645 | 33.5 | 52.445 | 74 | -21.555 | | 4874.00 | 43.5 | PEAK | 270 | 1.4 | V | 32.5 | 4.910 | 33.0 | 47.910 | 74 | -26.090 | | 4874.00 | 41.4 | PEAK | 90 | 1.5 | Н | 32.5 | 4.910 | 33.0 | 45.810 | 74 | -28.190 | ## Final test data for 802.11g (15.247, Continued) | | INDICATED | | TABLE | Antenna | | CORRECTION FACTOR | | | CORRECTED AMPLITUDE | | C 15
ART C | |-----------------------|------------------------|-----------|--------|---------|-------|-------------------|-------|------|----------------------|--------|---------------| | Frequency | Ampl. | | Angle | Height | Polar | Antenna | Cable | Amp. | Corr. Ampl. | Limit | Margin | | MLI | $\text{dB}\mu\text{V}$ | Comments | Dograd | Meter | H/V | dD\//m | DB | DB | dD\//m | dD\//m | ٩D | | MHz | /m | | Degree | Meter | П/ V | dBμV/m | DB | υв | dBμV/m | dBμV/m | dB | | High Channel, 1-25GHz | | | | | | | | | | | | | 2462.00 | 107.1 | FUND/PEAK | 270 | 1.8 | V | 28.1 | 3.350 | 35.2 | 103.350 | | | | 2462.00 | 100.2 | FUND/PEAK | 210 | 1.5 | Н | 28.1 | 3.350 | 35.2 | 96.450 | | | | 2462.00 | 92.1 | FUND/AVE | 270 | 1.8 | V | 28.1 | 3.350 | 35.2 | 88.350 | | | | 2462.00 | 86.3 | FUND/AVE | 210 | 1.5 | Н | 28.1 | 3.350 | 35.2 | 82.550 | | | | 7386.00 | 34.2 | AVE | 330 | 1.5 | V | 35.1 | 5.645 | 33.5 | 41.445 | 54 | -12.555 | | 7386.00 | 30.5 | AVE | 310 | 1.6 | Н | 35.1 | 5.645 | 33.5 | 37.745 | 54 | -16.255 | | 4924.00 | 31.7 | AVE | 300 | 1.4 | V | 32.5 | 4.910 | 33.0 | 36.110 | 54 | -17.890 | | 4924.00 | 30.1 | AVE | 90 | 1.3 | Н | 32.5 | 4.910 | 33.0 | 34.510 | 54 | -19.490 | | 7386.00 | 46.6 | PEAK | 330 | 1.5 | V | 35.1 | 5.645 | 33.5 | 53.845 | 74 | -20.155 | | 7386.00 | 44.9 | PEAK | 310 | 1.6 | Н | 35.1 | 5.645 | 33.5 | 52.145 | 74 | -21.855 | | 4924.00 | 44.2 | PEAK | 300 | 1.4 | V | 32.5 | 4.910 | 33.0 | 48.610 | 74 | -25.390 | | 4924.00 | 40.9 | PEAK | 90 | 1.3 | Н | 32.5 | 4.910 | 33.0 | 45.310 | 74 | -28.690 | | Indicated | | | Table | Antenna | | Correction Factor | | | FCC 15 Subpart B | | |-----------|--------|-----------|--------|---------|-------------|-------------------|------|----------------|------------------|--------| | Frequency | Ampl. | Direction | Height | Polar | Antenna | Cable
Loss | Amp. | Corr.
Ampl. | Limit | Margin | | MHz | dBμV/m | Degree | Meter | H/V | $dB\mu V/m$ | dBμV/m | dB | dBμV/m | $dB\mu V/m$ | dB | | 250.01 | 53.2 | 160 | 1.5 | V | 13.30 | 2.17 | 25 | 43.67 | 46.0 | -2.33 | | 233.20 | 51.9 | 250 | 1.6 | V | 12.60 | 2.17 | 25 | 41.67 | 46.0 | -4.33 | | 318.75 | 48.9 | 160 | 1.5 | V | 15.10 | 2.33 | 25 | 41.33 | 46.0 | -4.67 | | 206.30 | 52.1 | 320 | 1.5 | V | 11.50 | 2.17 | 25 | 40.77 | 46.0 | -5.23 | | 200.05 | 51.5 | 150 | 1.3 | Н | 11.50 | 2.17 | 25 | 40.17 | 46.0 | -5.83 | | 166.09 | 46.8 | 60 | 1.5 | Н | 12.95 | 1.81 | 25 | 36.56 | 43.5 | -6.94 | | 110.86 | 47.1 | 180 | 1.2 | V | 11.30 | 1.54 | 25 | 34.94 | 43.5 | -8.56 | *Note:* FUND = Fundamental AVG = average ## Final test data for ADSL Modem (FCC15B) | Indicated | | | Table | Antenna | | Correction Factor | | | FCC 15 Subpart B | | |-----------|--------|-----------|--------|---------|---------|-------------------|------|----------------|------------------|--------| | Frequency | Ampl. | Direction | Height | Polar | Antenna | Cable
Loss | Amp. | Corr.
Ampl. | Limit | Margin | | MHz | dBμV/m | Degree | Meter | H/V | dBμV/m | dBμV/m | dB | dBμV/m | dBμV/m | dB | | 250.00 | 58.69 | 0 | 1.2 | V | 11.70 | 1.14 | 27.6 | 43.93 | 46.0 | -2.07 | | 100.00 | 56.90 | 90 | 2 | Н | 11.50 | 0.54 | 28.5 | 40.44 | 43.5 | -3.06 | | 375.00 | 53.50 | 200 | 2.5 | Н | 14.90 | 2.24 | 27.9 | 42.74 | 46.0 | -3.26 | | 375.00 | 52.90 | 180 | 1.2 | V | 14.90 | 2.24 | 27.9 | 42.14 | 46.0 | -3.86 | | 100.00 | 53.10 | 30 | 1.2 | V | 11.50 | 0.54 | 28.5 | 36.64 | 43.5 | -6.86 | | 400.00 | 48.10 | 180 | 2.5 | Н | 15.80 | 2.57 | 28.2 | 38.27 | 46.0 | -7.73 | | 400.00 | 47.00 | 30 | 1.2 | V | 15.80 | 2.57 | 28.2 | 37.17 | 46.0 | -8.83 | | 750.00 | 38.50 | 0 | 1.2 | V | 22.20 | 3.79 | 28.7 | 35.79 | 46.0 | -10.21 | | 75.00 | 47.80 | 270 | 2 | Н | 9.50 | 0.98 | 28.6 | 29.68 | 40.0 | -10.32 | | 250.00 | 49.60 | 270 | 2.5 | Н | 11.70 | 1.14 | 27.6 | 34.84 | 46.0 | -11.16 | | 125.00 | 47.60 | 160 | 1.2 | V | 12.30 | 0.59 | 28.3 | 32.19 | 43.5 | -11.31 | | 150.00 | 45.90 | 90 | 2 | Н | 13.00 | 0.74 | 28.2 | 31.44 | 43.5 | -12.06 | | 150.00 | 44.30 | 0 | 1.2 | V | 13.00 | 0.74 | 28.2 | 29.84 | 43.5 | -13.66 | | 70.65 | 43.80 | 180 | 1.2 | V | 9.60 | 1.07 | 28.6 | 25.87 | 40.0 | -14.13 | | 300.00 | 43.90 | 180 | 1.2 | V | 13.90 | 1.33 | 27.3 | 31.83 | 46.0 | -14.17 | | 200.00 | 45.80 | 160 | 1.2 | V | 10.10 | 0.89 | 27.9 | 28.89 | 43.5 | -14.61 | | 125.00 | 43.70 | 180 | 2 | Н | 12.30 | 0.59 | 28.3 | 28.29 | 43.5 | -15.21 |