

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELAN Devices) on the ActionTec Electronics, Inc. Model: 802CA

FCC ID: LNQ802CA

GRANTEE: ActionTec Electronics, Inc.

> 1269 Innsbruck Drive Sunnyvale, CA 94089

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: October 29, 2001

FINAL TEST DATE: October 12, October 15 and October 16, 2001

AUTHORIZED SIGNATORY:

Mark Briggs

Director of Engineering

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

802CA

Manufacturer:

ActionTec Electronics, Inc. 1269 Innsbruck Drive Sunnyvale, CA 94089

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV3** Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Mark Briggs

Title Director of Engineering

Company Elliott Laboratories Inc. Address 684 W. Maude Ave

Sunnyvale, CA 94086

Mark Briggs

USA

Date: October 29, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R 45194 Page 2 of 19 Pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
SUMMARY OF RESULTS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ENCLOSURE	8
MODIFICATIONS	8
SUPPORT EQUIPMENT	
INTERFACE PORTS	
TEST SOFTWARE	
ANTENNA REQUIREMENTS	9
TEST SITE	10
GENERAL INFORMATION	10
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	11
INSTRUMENT CONTROL COMPUTER	11
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	12
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13
CONDUCTED EMISSIONS	13
RADIATED EMISSIONS	13
CONDUCTED EMISSIONS FROM ANTENNA PORT	14

TABLE OF CONTENTS (Continued)

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	15
FCC 15.407 (A) OUTPUT POWER LIMITS	16
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	16
SPURIOUS RADIATED EMISSIONS LIMITS	17
AC POWER PORT CONDUCTED EMISSIONS LIMITS	17
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	
FXHIRIT 2. Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the ActionTec Electronics, Inc. model 802CA pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the ActionTec Electronics, Inc. model 802CA and therefore apply only to the tested sample. The sample was selected and prepared by Angela Yao of ActionTec Electronics, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R 45194 Page 5 of 19 Pages

Test Report Report Date: October 29, 2001

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in tl	he 5.15 – 5.25 Gl	Hz Band		
15.407 (d)		Maximum Antenna Gain /Integral Antenna	Integral Antenna, Gain of 1.2dBi	COMPLIES
15.407(e)		Indoor operation only	Refer to page 38 of the user's manual in Exhibit 6 for statement regarding indoor use only	COMPLIES
15.407(a) (1)		26dB Bandwidth	>25 MHz normal mode; >43 MHz Turbo mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	>17 MHz normal mode; >33 MHz Turbo mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	12.5dBm normal mode; 12.9dBm Turbo mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-4.3dBm/MHz normal mode; -4.6dBm/MHz Turbo mode	COMPLIES
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-4.7dB @ 260.909 MHz	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-2.0dB @ 10,360 MHz	COMPLIES
Operation in tl	ne 5.25 – 5.35 Gl	Hz Band		
		Maximum Antenna Gain	Integral Antenna, Gain of 1.2dBi	COMPLIES
15.407(a) (2)		26dB Bandwidth	>25 MHz normal mode; >43 MHz Turbo mode	N/A
	6.2.2 q1 (ii)	20dB Bandwidth	>17 MHz normal mode; >33 MHz Turbo mode	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	15.0dBm normal mode; 15.6dBm Turbo mode	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	1.2dBm/MHz normal mode; -1.7dBm/MHz Turbo mode	COMPLIES
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-4.7dB @ 260.909MHz	COMPLIES
15.407(b)(2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-1.26dB @ 4,168MHz	COMPLIES

File: R 45194 Page 6 of 19 Pages

General requi	rements for all ba	nds		
	6.2.2 q(iv)(a)	Digital modulation	Digital modulation is used	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	<13dB	COMPLIES
	6.2.2 q(iv)(b)	Peak Power Spectral Density	10dBm/MHz (Turbo Mode)	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The channels selected represented the lowest channel available in the 5.15 GHz band, the lowest channel available in the 5.25 GHz band and the highest channel available in the 5.25 GHz band.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to page 4 of the "Theory of Operations" in exhibit 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is 20 ppm, refer to page 2 of the "Theory of Operations" in exhibit 9 for a detailed analysis.	N/A
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11 based on the device being a mobile device with separation of more than 20cm from persons during operation	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	-11.2dB @ 8.418MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

File: R 45194 Page 7 of 19 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The ActionTec Electronics, Inc. model 802CA is a wireless LAN Card designed for installation in a notebook PC. It provides an 802.11a wireless interface with data rates up to 54 Mb/s. It can also provide higher data rates of up to 72Mb/s.

Normally, the host laptop would be placed on a tabletop during operation. The laptop was, therefore, treated as tabletop equipment during testing to simulate the end user environment. The electrical rating of the EUT is 5 V dc.

The sample was received on October 12, 2001 and tested on October 12, October 15 and October 16, 2001. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
ActionTec Electronics	802AC	wireless LAN card	-	-

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The unit did not require any modifications during testing in order to comply with the specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	1171-7WU	Notebook PC	AA-GAWM5 01/02	DoC
IBM	19308801-09	External Floppy Drive	3210675	-
Hewlett Packard	2225C	Printer	2714S40166	-
IBM	02K6555	Adaptor	11S02K6543Z1ZORN	-
			1477 J U	

The printer and floppy drives were not connected when measuring the radiated emissions from the radio above 1GHz.

File: R 45194 Page 8 of 19 Pages

INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

			Cable(s)	
Port	Connected To	Description	Shielded or Unshielded	Length (m)
USB	External Floppy Drive	USB Cable	Shielded	0.5
Parallel	Printer	Parallel Cable	Shielded	2.0
DC Power	Adaptor	2 wire	Unshielded	2.5

TEST SOFTWARE

The EUT was operating on the selected channel (refer to test data) and operating at a data rate of 6Mb/s in the normal mode (802.11a) and 12Mb/s in Turbo mode. These data rates produce the highest output power spectral density in the respective modes.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 15.15 - 15.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna with a gain of 1.2dBi.

File: R 45194 Page 9 of 19 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 12, October 15 and October 16, 2001at the Elliott Laboratories Open Area Test Site #3 & 4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R 45194 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R 45194 Page 11 of 19 Pages

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R 45194 Page 12 of 19 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R 45194 Pages 13 of 19 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R 45194 Page 14 of 19 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R 45194 Pages 15 of 19 Pages

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R 45194 Pages 16 of 19 Pages

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted band.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm	68.3 dBuV/m
5725 – 5825	-27 dBm (note 1)	68.3 dBuV/m
	-17 dBm (note 2)	78.3 dBuV/m

Note 1: Applies to spurious signals separated by more than 10 MHz from the allocated band. Note 2: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R 45194 Page 17 of 19 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R 45194 Page 18 of 19 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R 45194 Page 19 of 19 Pages

EXHIBIT 1: Test Equipment Calibration Data

File: R45194 Appendix Page 1 of 2

-	30 - 1000 MHz, 12-Oct-01 04:42 PM					
Engineer: mfaustino						
<u>Manufacturer</u>	<u>Description</u>	Model #		Cal interval		Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	12	10/12/2000	10/12/2001
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	12	4/10/2001	4/10/2002
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	10/5/2000	11/5/2001
Radiated Emissions.	1 - 6.5 GHz, 12-Oct-01 09:45 PM					-
Engineer: Vishal						
<u>Manufacturer</u>	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	12	3/31/2001	3/31/2002
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	956	12	3/22/2001	3/22/2002
Hewlett Packard	Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	12	5/31/2001	5/31/2002
Antenna Conducted I Engineer: jmartinez	Emissions, 18-Oct-01 01:21 PM					
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
		011200				
	(_, 0, _ 0 0 .	_, 0, _ 0 0 _
Radiated Emissions,	1000- 40,000 MHz, 18-Oct-01 01:22 PM					
Engineer: jmartinez	1000- 40,000 MHz, 18-Oct-01 01:22 PM					
Engineer: jmartinez Manufacturer	1000- 40,000 MHz, 18-Oct-01 01:22 PM <u>Description</u>	Model #	Assett #		Last Calibrated	Cal Due
Engineer: jmartinez <u>Manufacturer</u> EMCO	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz	3115	487	12	Last Calibrated 3/31/2001	<u>Cal Due</u> 3/31/2002
Engineer: jmartinez Manufacturer	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz				Last Calibrated	Cal Due
Engineer: jmartinez <u>Manufacturer</u> EMCO	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz	3115	487	12	Last Calibrated 3/31/2001	<u>Cal Due</u> 3/31/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz	3115 P/N 84300-80039	487 1156	12 12	Last Calibrated 3/31/2001 3/27/2001	Cal Due 3/31/2002 3/27/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 9KHz - 26GHz	3115 P/N 84300-80039 8449B	487 1156 785	12 12 12	Last Calibrated 3/31/2001 3/27/2001 1/25/2001	Cal Due 3/31/2002 3/27/2002 1/25/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emission	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz	3115 P/N 84300-80039 8449B	487 1156 785	12 12 12	Last Calibrated 3/31/2001 3/27/2001 1/25/2001	Cal Due 3/31/2002 3/27/2002 1/25/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 9KHz - 26GHz	3115 P/N 84300-80039 8449B	487 1156 785 284	12 12 12 12	Last Calibrated 3/31/2001 3/27/2001 1/25/2001	Cal Due 3/31/2002 3/27/2002 1/25/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emission Engineer: jgonzalez	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 9KHz - 26GHz s, 02-Nov-01 11:32 AM	3115 P/N 84300-80039 8449B 8563E	487 1156 785 284	12 12 12	Last Calibrated 3/31/2001 3/27/2001 1/25/2001 2/22/2001	<u>Cal Due</u> 3/31/2002 3/27/2002 1/25/2002 2/22/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emission Engineer: jgonzalez Manufacturer	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 9KHz - 26GHz s, 02-Nov-01 11:32 AM Description	3115 P/N 84300-80039 8449B 8563E	487 1156 785 284 Assett #	12 12 12 12 12	Last Calibrated 3/31/2001 3/27/2001 1/25/2001 2/22/2001	Cal Due 3/31/2002 3/27/2002 1/25/2002 2/22/2002
Engineer: jmartinez Manufacturer EMCO Hewlett Packard Hewlett Packard Hewlett Packard Conducted Emission Engineer: jgonzalez Manufacturer Rohde& Schwarz	1000- 40,000 MHz, 18-Oct-01 01:22 PM Description Horn Antenna, D. Ridge 1-18GHz High Pass filter, 8.2GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 9KHz - 26GHz s, 02-Nov-01 11:32 AM Description Pulse Limiter	3115 P/N 84300-80039 8449B 8563E Model # ESH3 Z2	487 1156 785 284 Assett # 812	12 12 12 12 12 Cal interval	Last Calibrated 3/31/2001 3/27/2001 1/25/2001 2/22/2001 Last Calibrated 1/23/2001	<u>Cal Due</u> 3/31/2002 3/27/2002 1/25/2002 2/22/2002 <u>Cal Due</u> 1/23/2002

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45022 54 Pages

File: R45194 Appendix Page 2 of 2

Elliot	t	EM	C Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Emissions Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

ActionTec Electronics

Model

802CA

EMC Test Data

Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Emissions Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The ActionTec Electronics, Inc. model 802CA is a wireless LAN Card designed for installation in a notebook PC. It provides an 802.11a wireless interface with data rates up to 54 Mb/s. It can also provide higher data rates of up to 72Mb/s. Normally, the host laptop would be placed on a tabletop during operation. The laptop was, therefore, treated as tabletop equipment during testing to simulate the end user environment. The electrical rating of the EUT is 5 V dc.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
ActionTec Electronics	802AC	wireless LAN card		LNQ802CA

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

SF.	lliott
CL	шои

EMC Test Data

Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Emissions Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	1171-7WU	Notebook PC	AA-GAWM5 01/02	DoC
IBM	19308801-09	External Floppy Drive	3210675	DoC
Hewlett Packard	2225C	Printer	2714S40166	DS16XU2225C
IBM	02K6555	Adaptor	11S02K6543Z1ZORN14	N/A

Remote Support Equipment

	1101	note capport zquipi.	10116	
Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Ports

			Cable(s)	
Port	Connected To	Description	Shielded or Unshielded	Length(m)
USB	External Floppy Drive	USB Cable	Shielded	0.5
Parallel	Printer	Parallel Cable	Shielded	2
DC Power	Adaptor	2 wire	Unshielded	2.5

EUT Operation During Emissions

The EUT was transmitting on the center channel during radiated spurious emissions tests below 1GHz.

Ellio	u		EMC	Test Da
Client	t: ActionTec Electronics		Job Number: J4	14996
Mode	I: 802CA		T-Log Number: T4	45022
			Proj Eng: M	ark Hill
Contact	t: Angela Yao			
Emissions Spec	:: FCC 15 Sub. B & E, RSS	5-210	Class:	В
Immunity Spec	;; -		Environment:	-
Manufacturor	Lo	et Configuration Coal Support Equipm Description	nent	ECC ID
Manufacturer IBM	Lo Model	ocal Support Equipn Description	nent Serial Number	FCC ID
	Model 1171-7WU	Description Notebook PC	Serial Number AA-GAWM5 01/02	
IBM	Model 1171-7WU	Description Notebook PC mote Support Equip	Serial Number AA-GAWM5 01/02 ment	DoC
	Model 1171-7WU	Description Notebook PC	Serial Number AA-GAWM5 01/02	
IBM Manufacturer	Model 1171-7WU	Description Notebook PC mote Support Equip	Serial Number AA-GAWM5 01/02 ment	DoC
IBM Manufacturer	Model 1171-7WU	Description Notebook PC mote Support Equip Description	Serial Number AA-GAWM5 01/02 ment	DoC
IBM Manufacturer	Model 1171-7WU	Description Notebook PC mote Support Equip Description	Serial Number AA-GAWM5 01/02 ment Serial Number	FCC ID

EUT Operation During Emissions Testing (Radio)

The radio was transmitting at full power on the specified channels a data rate of 6 Mb/s (Normal mode) or 12Mb/s (Turbo mode). The channels were selected since they are at the top, center and bottom of the allocated bands.

6	Elliott		IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Conducted Emissions - Power Ports

Test Specifics

Ca Dill'

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/2/2001 Config. Used: 1
Test Engineer: jgonzalez Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

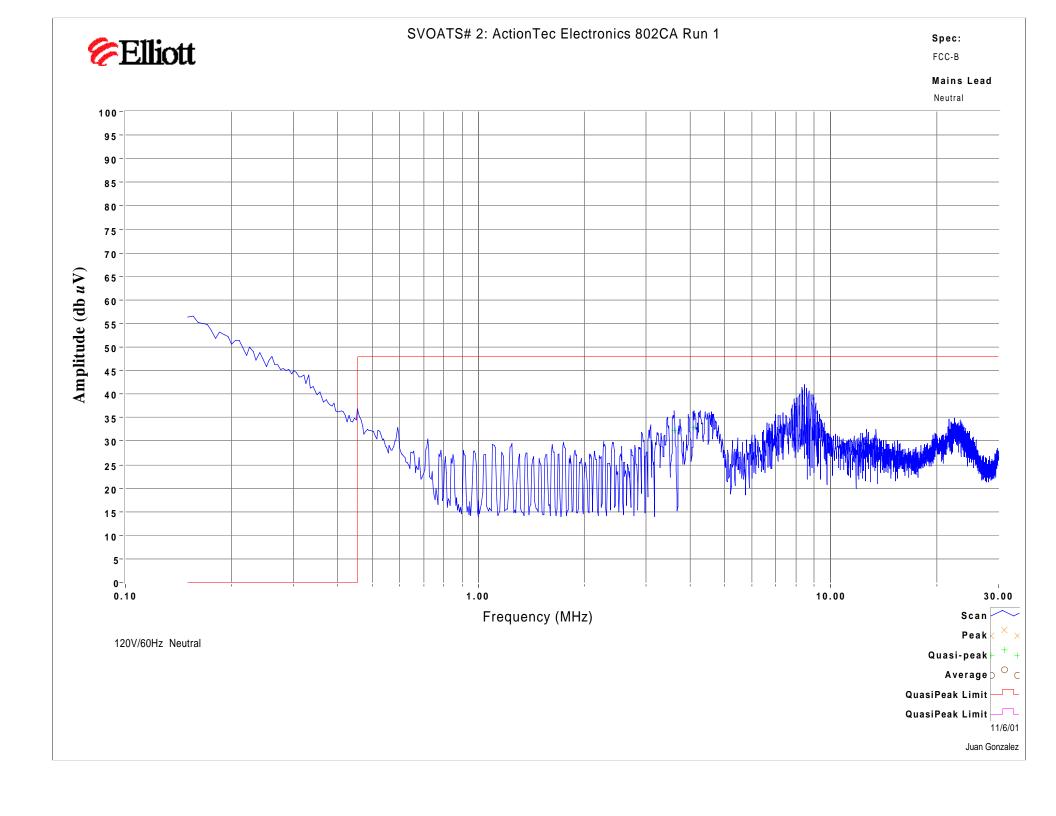
For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

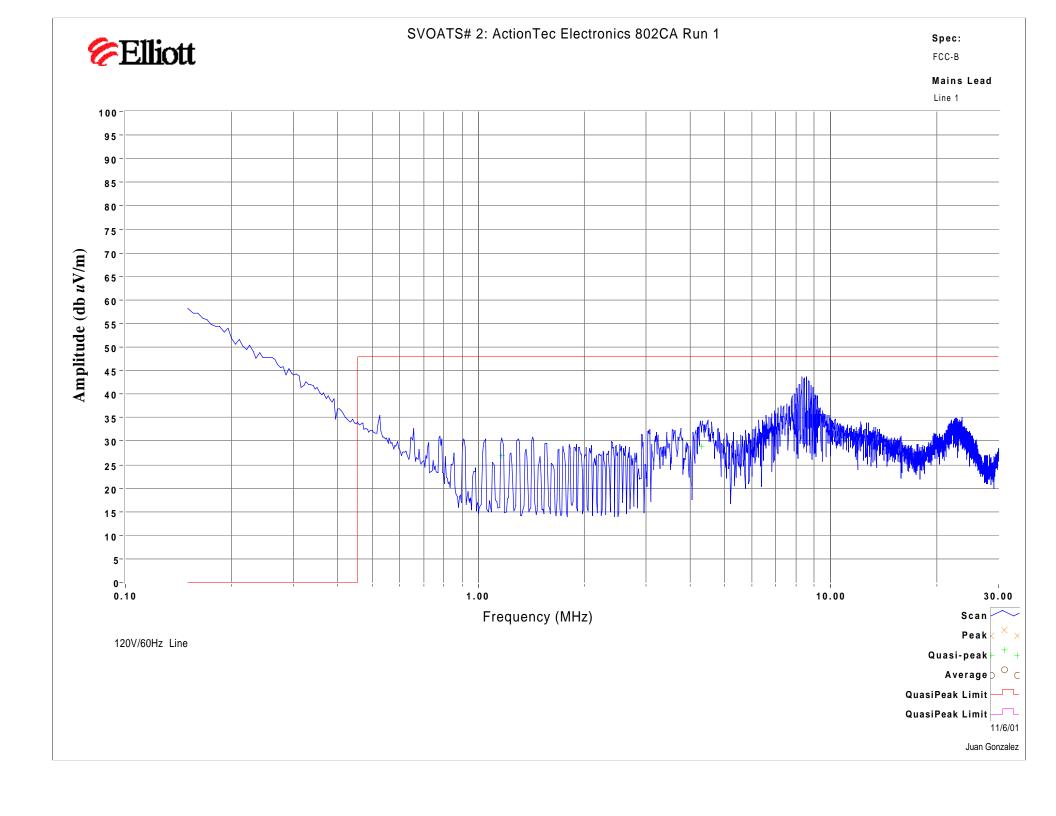
Ambient Conditions: Temperature: 18°C

Rel. Humidity: 65%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power 120V/60Hz	FCC B	Pass	-11.2dB @ 8.418MHz


Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: ActionTec Electronics Job Number: J44996	Model: 802CA T-Log Number: T45022 Proj Eng: Mark Hill	Model: 802CA	Client:			rc					IC Tes
Proj Eng: Mark Hill	Proj Eng: Mark Hill	Proj Eng: Mark Hill			L Electroni						
Contact: Angela Yao Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Contact: Angela Yao Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Contact: Angela Yao Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Model.	002CA							
Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Spec: FCC 15 Sub. B & E, RSS-210 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Contact:	Angela Y	ao					r roj Erig.	Wark rim
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP				, RSS-210)			Class:	В
requency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	frequency Level AC FCC B Detector Comments MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP				-			l .		l.
MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	MHz dBμV Line Limit Margin QP/Ave 8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP									
8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	8.4183 36.8 Line 1 48.0 -11.2 QP 8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP							mments		
8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	8.4183 33.5 Neutral 48.0 -14.5 QP 4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP									
4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	4.1012 32.9 Neutral 48.0 -15.1 QP 3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP									
3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP	3.6082 32.3 Neutral 48.0 -15.7 QP 4.3083 28.9 Line 1 48.0 -19.1 QP									
4.3083 28.9 Line 1 48.0 -19.1 QP	4.3083 28.9 Line 1 48.0 -19.1 QP	4.3083 28.9 Line 1 48.0 -19.1 QP									
1.1697 26.8 Line 1 48.0 -21.2 QP	1.1697 26.8 Line 1 48.0 -21.2 QP	1.1697 26.8 Line 1 48.0 -21.2 QP						QP			
			4.3003			40.0	21.2	0.0			
				26.8	Line 1	48.0	-21.2	<u> </u>			
				26.8	Line 1	48.0	-21.2	QP			
				26.8	Line 1	48.0	-21.2	QP			
				26.8	Line 1	48.0	-21.2	QP			
				26.8	Line 1	48.0	-21.2	QP			
				26.8	Line 1	48.0	-21.2	QP			
				26.8	Line 1	48.0	-21.2	QP			

	Elliott	EMC Test Data		
Client:	ActionTec Electronics	Job Number:	J44996	
Model:	802CA	T-Log Number:	T45022	
		Proj Eng:	Mark Hill	
Contact:	Angela Yao			
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В	

FCC Part 15 Subpart E Tests

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	10/15/2001 & 10/16/2001
Test Engineer:	Jmartinez
Test Location:	SVOATS# 4

Config. Used: # 2 Config Change: None

Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 18°C

Rel. Humidity: 75%

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	12.5 / 15.0 dBm
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	-4.3 / 1.2 dBm/MHz
3	26dB Bandwidth	15.407	Pass	>25MHz
3	20 dB Bandwidth	RSS 210	Pass	>17 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB; Peak PSD 7.5dBm/MHz
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the 27dBm/MHz limit
6	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-2.02dB @ 10360MHz

(F)	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Output Power

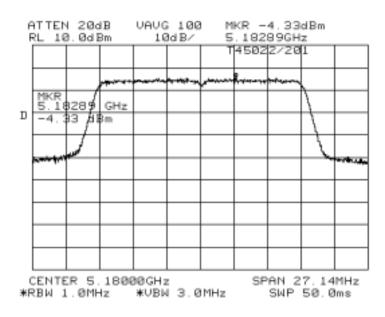
Antenna Gain: 1.2 dBi

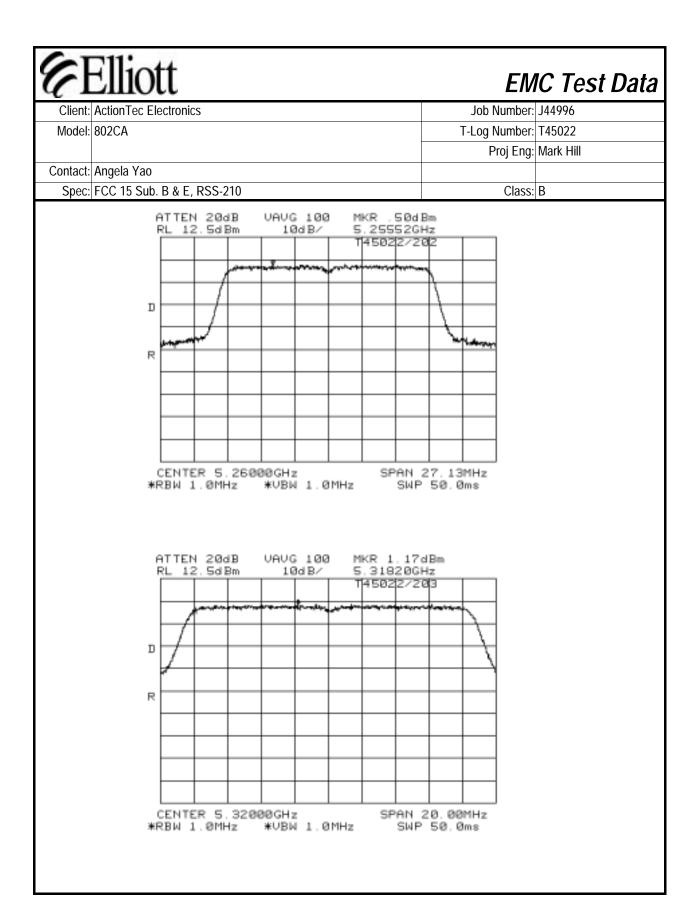
Channel	Frequency (MHz)	26-dB BW (MHz)	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
Low	5180	24.83	10.4	17.0	Note 2
LOW	5180	24.83	12.5	17.0	Note 1
Midd	5260	24.58	12.5	24.0	Note 2
ivildu	5260	24.6	14.0	24.0	Note 1
High	5320	25.75	12.8	24.0	Note 2
nigii	5320	25.8	15.0	24.0	Note 1

Note 1:	Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = 30kHz). Used Max hold
Note 1.	function.
Note 2:	Measured using a Rohde & Schwarz Power Meter with a average power sensor.
Note 3:	RSS 210 limit is 23dBm in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit. This limit is based on the
Note 3:	emission bandwidth and operating frequency.
Note 3:	RSS 210 limit is 24dBm in the 5.15 to 5.25 GHz band, same as FCC limit. This limit is based on the emission
Note 3:	bandwidth and operating frequency.

(F)	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Run #2: Power Spectral Density

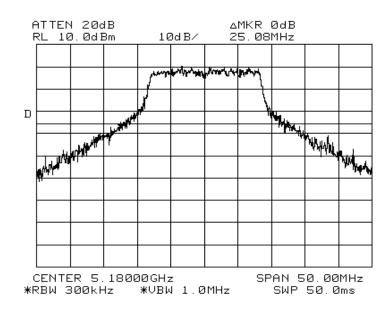

Antenna Gain: 1.2 dBi

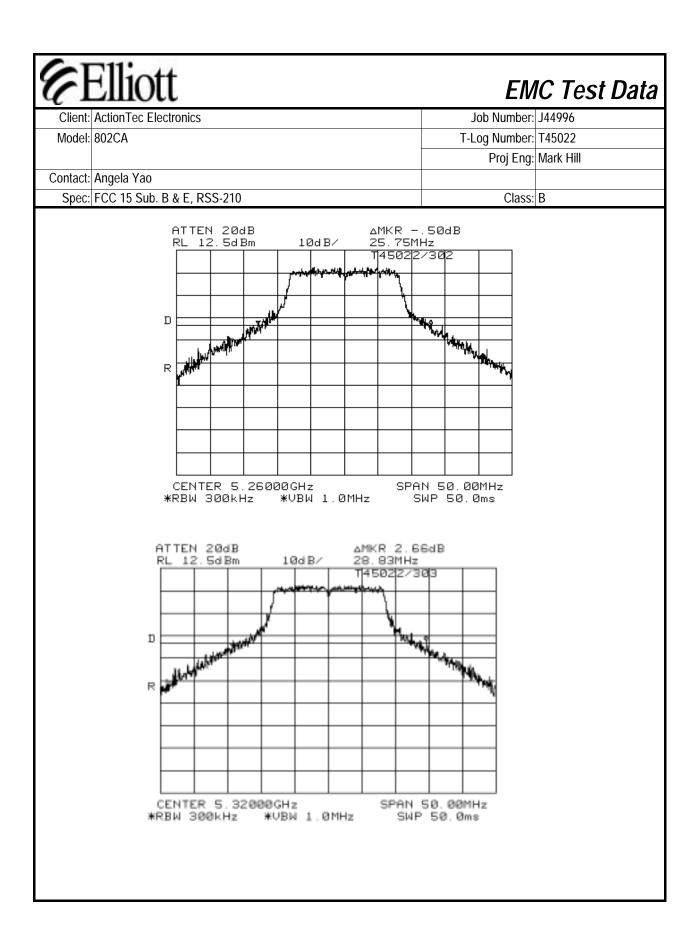

Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (dBm) note 2	Graph Reference	
	5180	-4.3	4.0	T45022/201	Note 1
	5260	0.5	11.0	T45022/202	Note 1
	5320	1.2	11.0	T45022/203	Note 1

The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off during the peak excursion measurements (run #4). The peak PSD of **7.5dBm** did not exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) so no restriction is placed on the output power or average PSD with respect to RSS 210.

Note 2: RSS 210 limit is 10dBm/MHz in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit.

Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 3 MHz, video averaging ON)

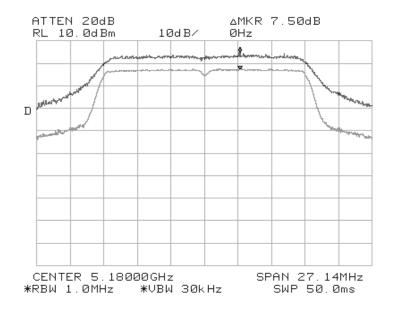



(F)	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Run #3: Signal Bandwidth

Channel	Frequency (MHz)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	Graph reference #
Low	5180	300 kHz	25.08	17.25	T45022/301
Midd	5260	300 kHz	25.75	17.2	T45022/302
High	5320	300 kHz	28.8	17.3	T45022/303

Plots Showing Signal Bandwidth

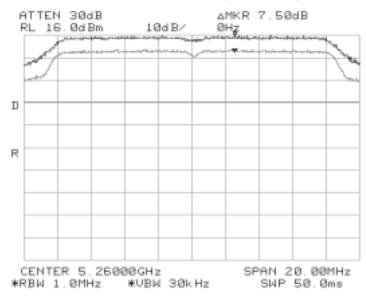

	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Run #4: Peak Excursion Measurement

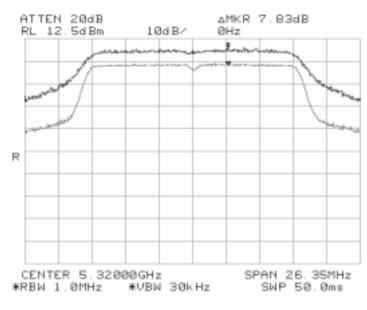
Plots Showing Peak Excursion

Trace A: RBW = VBW = 1MHz
Trace B: RBW = 1 MHz, VBW = 30kHz

Low Channel Peak Excursion = 7.5 dB. Peak power spectral density (RSS210 only) = 5.4 dBm.



Elliott


EMC Test Data

2			
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Mid Channel Peak Excursion = 7.5 dB. Peak power spectral density (RSS210 only) = 6 dBm.

High Channel Peak Excursion = 7.83 dB. Peak power spectral density (RSS210 only) = 7.5 dBm.

	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & F. RSS-210	Class.	В

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

The antenna gain of the radios integral antenna is 1.2dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -28.5 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 1.2 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	T45022/501
		1 to 5.15 GHz	3109.6 (Note 2)	T45022/502
	5180	5.25 to 10 GHz	6216.6 (Note 3)	T45022/503
		10 GHz to 20 GHz	10360 (Note 3)	T45022/504
		20 GHz to 40 GHz	None	T45022/505
		30 - 1000 MHz	Note 4	T45022/506
		1 to 5.25 GHz	3153.3 (Note 2)	T45022/507
	5260	5.35 to 10 GHz	6312.1 (Note 3)	T45022/508
		10 GHz to 20 GHz	10520 (Note 3)	T45022/509
		20 GHz to 40 GHz	None	T45022/510
		30 - 1000 MHz	Note 4	T45022/511
		1 to 5.725 GHz	4256 (Note 1)	T45022/512
	5320	5.825 to 10 GHz	6384.17 (Note 3)	T45022/513
		10 GHz to 20 GHz	10640 (Note 1)	T45022/514
		20 GHz to 40 GHz	None	T45022/515

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no field strength measurements required.
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.

E	HOLL	l									EM	IC Test Da
Client: Acti	onTec Elec	ctronics								Job N	lumber:	J44996
Model: 802	CA											T45022
										Pi	roj Eng:	Mark Hill
ontact: Ang												
Spec: FC0	C 15 Sub. E										Class:	В
				_	<u>t-0т-ва</u> МНz (10	dBm	@ 5.18	GHz)			<u>2)</u>	
		TTEN : L 13.		1	0d B/	6	KR -9 . 27GI	Ηz		n		
	Γ					Т	4502	2/50	11			T45022/501
	T I	DISPL	AY LIN	11								
	마		- G D III									
	R F		\vdash									
	H			and and the same	المرابع المرابع	بالإرورووجير	7444	الم المعادلة	4	Mary Congress		
	<u> </u>		4 11 - 210	-1				1117-1				
	-			+								
	-			+								
	L						<u> </u>					
		TART BW 1.		*VB	W 1.0		OP 40		800r	ms		
					T4502	22/502						
		ATTEN					MKR -			lm		
	,	RL 13.	laBm		10dB/		3.103 T 4502			_	٦	
		\vdash		_		+	+			+	-	
		\vdash				+		_	+		-	
	D	\vdash		_	_	+	+	\vdash	+	+	-	
						+		-			-	
	R					-	_	_	_		-	
	15	\sqcup			↓	ervetan.		_				
					-	anger'	-	-	-		•	

t: ActionTec Electronics			Job	Number:	J44996
el: 802CA			T-Log	Number:	T45022
				Proj Eng:	Mark Hill
t: Angela Yao					
c: FCC 15 Sub. B & E, RSS-210	T45022	/F.O.2		Class:	В
	T45022				
ATTEN 20dB RL 13.1dBm	10dB/	MKR -33. 6.216000	73dBm Hz		
		T45022/5	201	7	
				7	
				7	
D				1	
	8			7	
R	السممسر	andiane in a		1	
No. 2012 - 10 - 10 - 10 - 10 - 10 - 10 - 10	*	Mar Made	Marian		
				1	
				7	
				1	
CENTER 6.216	67GHz	SPAN	50.00MHz	_	
*RBW 1.⊘MHz	*VBW 1.0M	Hz SWI	P 50.0ms		
	T45022	/504			
		MKR -47.	23d Bm		
ATTEN 204B	10407	10.36108	GHz	7	
ATTEN 20dB RL 13.1dBm	10dB/		7811		
	1008/	T45022/5	01		
	1008/		01	-	
RL 13.1dBm	10087		01		
	10087		01		
RL 13.1dBm	10087		001	-	
RL 13.1dBm		T45022/5		-	
RL 13.1dBm	TOBY	T45022/5	To the second se	-	
RL 13.1dBm		T45022/5	1	-	
RL 13.1dBm		T45022/5	To the same of the	-	

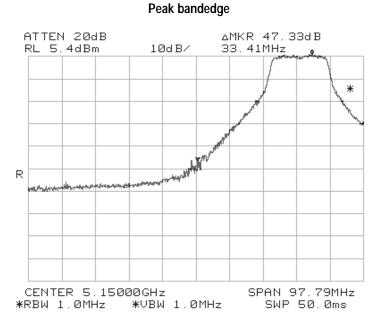
	<u>Ellio</u>												IC Test Da
	ActionTec E	lectro	onics									ob Number	
lodel:	802CA										I-L	og Number	
	A 1 - 1/											Proj Eng	: Mark Hill
	Angela Yao		D	20.040								01	
Spec:	FCC 15 Sub	. В &	≀ E, R\$			00 MII-	. /12 4) O I	- 2/ CI	1-7		Class	: B
				·	1 - 40,0	000 MHz	(13 UI	om @ :).20 GI	7 <i>2)</i>			
				N 30			ØdB∕		KR -	31.8	3d Bm	1	
				1	T I	т і	Jag B/	Г	270	HZ			
			-	₩	+	+	-					\vdash	T45022/506
				₩	+	+							
		D		₩	-	+							
		_		Ш.	₩		_						
				۴									
		R		H	40		wylan	-	www	L., N	مخوساهماد	- Carriera	
			p-p-cm/f	Mary Company	Ţ,T	T							
				+-	+-	+-						\vdash	
			CTAD	T ØH	_			CT	OP 4	0.00	CH-		
				1.0		*VBI	4 1.6			SWP		ns	
						T	45022/	507					
			TTE	N 20	d D			м	VD _	50.5	3d Dm		
		F	2L I	2.5d	Bm	16	ad B/			58GH:			
				\vdash	\vdash	+-						\vdash	
		R				+							
				-	-	+		3				\vdash	
			-	·	***	**	phrase-na	-	-indepen	Mary Mary	***	-	
						_				AN 5 SWP			

	tionTec Ele	ectro	nics								Jo	b Numbe	er: J44996
lodel: 802	2CA										T-Lo	og Numbe	er: T45022
												Proj En	ıg: Mark Hill
	gela Yao												
Spec: FC	C 15 Sub.	В&	E, RS	S-210		т,	15022/5	.00				Clas	ss: B
		,				14	13022/3		#14B	07.0			
				N 200		1	∂d B∕			-37.6 125GH) 	
		R				<u> </u>		١					
					المريد (سيسا	unit diam		~~~	***** _{**}	All and all supply	1-1-1-N 1-		
										1	1		
		,			200	25.00				2011		3MII-	
				ER 6 1.0MI			 1.0 5022 /5		SF	PAN 5 SWP			
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.ØMI	Hz B	*∪BI	N 1.0	509 m	KR -	SWP	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz B	*∪BI	N 1.€	509 m	KR -	SWP 47.3	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz HB Bm	*VBI	4 1.6	509 M	KR - Ø. 5Ø	47.3 008G	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz HB Bm	*VBI	N 1.€	509 M	KR - Ø. 5Ø	47.3 008G	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz HB Bm	*VBI	4 1.6	509 M	KR - Ø. 5Ø	47.3 008G	50.0 3dBm	∂ms	
		*F	RBW HTTE!	1.0M	Hz HB Bm	*VBI	4 1.6	509 M	KR - Ø. 5Ø	47.3 008G	50.0 3dBm	∂ms	

lodel: 802CA	Electronics			Job Number	: J44996
iouei. ouzca				T-Log Number	: T45022
				Proj Eng	: Mark Hill
ntact: Angela Ya					
Spec: FCC 15 St	ıb. B & E, RSS-210),000 MHz (13 dB	m @ E 22 CUz)	Class	: B
		7,000 MINZ (13 UD		00.15	
	ATTEN 20dB RL 12.5dBm	10dB/	MKR -39. 6.33GHz	20d Bm	
					T45022/511
					145022/511
	Б				
	R				
	mellylan	-barren and a second	Secretary and the second	7	
	START ØHz		STOP 40.0		
	*RBW 1.0MHz	*VBW 1.0	MHz SWF	9 800ms	
		T45022/5	12		
	ATTEN 20dB		MKR -47.	004 Pm	
	RL 6.2dBm	10dB/	4.256070		
	R	a			
	magazan garan da	Harris American	And of the Parish of State of	LANGE PROPERTY OF	
				+ + + -	

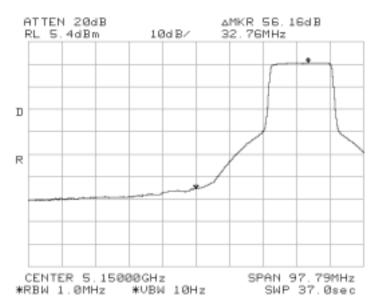
	tt Electro									J	ob Numb	er: J44996	
Nodel: 802CA										T-L	og Numb	oer: T45022	
											Proj E	ng: Mark Hill	
ntact: Angela Yac													
Spec: FCC 15 Su	o. B &	ι E, RS	SS-210		-	45022	F12				Cla	ss: B	
					ı	45022/							
	F	ATTEI RL 6	N 20 .2dB	dB m	1	.0dB/		MKR - 6.38		30d Br Hz	m		
							*						
	R					أيسبب	V	-					
		* Planting	-					Ι,	and the same	The Special Sp			
			ER 6		17GH	z W 1.	amu-	S	PAN	50.0 50.	0MHz		
	**	CDM .	1.600	nz	***	W 1.	arinz		SME	50.	oms		
					1	45022/	514						
			20d							30d Bm			
	R [L 6.	2dBm	1	10	2d B∕	1	0.64 	1500	Hz T			
	-												
	-												
	-												
							. <u>?</u> .						
	R						A STATE OF THE PERSON NAMED IN	المام المام المام	Phys. Co.	~~	-		
	R	-		a Property and the	سعيلوالبد				l	1			
	R			a Propriet State Control	استبلواليد	di-a-diamen							
	R	- Annual Park		g Jaggig Car	استيلو الراد	di-a-chirmon							
	R			g Supply to the	3./fy-l,mm	Jan-Chipman's							

	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & F. RSS-210	Class:	В


Band Edge Measurements:

For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was then applied to the average and peak field strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

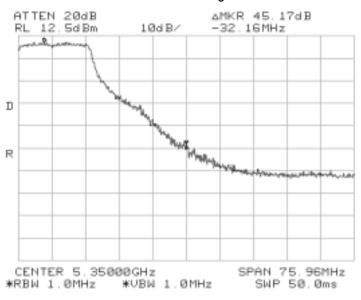
Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)


5.15 GHz band edge, EUT operating on the lowest channel

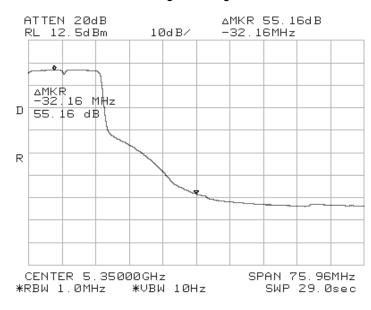
The highest signal within 50 MHz of the 5.15 GHz band was -47.33 dBc (Peak) / -56.16 dBc (Average)

Elliott EMC Test Da					
Client:	ActionTec Electronics	Job Number	J44996		
Model:	802CA	T-Log Number	T45022		
		Proj Eng	Mark Hill		
Contact:	Angela Yao				
Spec:	FCC 15 Sub. B & E, RSS-210	Class	В		

Average Bandedge



EMC Test Data Client: ActionTec Electronics Model: 802CA Spec: FCC 15 Sub. B & E, RSS-210 EMC Test Data Job Number: J44996 T-Log Number: T45022 Proj Eng: Mark Hill Class: B

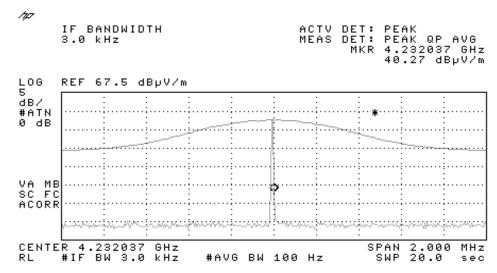

5.35 GHz band edge EUT operating on channel 17 (highest channel):

The highest signal in the 5.35 to 5.46 GHz band was -45 dBc (Peak) / - 55.16 dBc (Average)

Peak bandedge

Average Bandedge

6I	ZIII()ll						EM	IC Test Da
	ActionTec		nics				J	ob Number:	J44996
Model:	802CA						T-Lo	og Number:	T45022
								Proj Eng:	Mark Hill
Contact:	Angela Ya	10							
Spec:	FCC 15 Si	ub. B &	E, RSS-210					Class:	В
	missions fro	om 30 -			ired while pe		sions meas	surements o	of the digital device.
			ons in restric			(Average)		m (Peak)	
Limit	for emission	ons outs	ide of restric	cted bands:	EIRP < -2	7dBm/MHz	(68dB	uV/m)	
Frequency MHz	Level dBµV/m	Pol v/h	15.209 <i>L</i> imit	/ 15.407 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
Frequency				15.407			Height	Comments	
5180.0	αβμν/m 107.9	V/N V	Limit -	iviargin -	Pk/QP/Avg Pk	degrees 112		RBW = VB	\/\
5180.0	98.0	V	_	-	Avg	112			Hz, VBW = 10Hz
5180.0	103.0	h	-	-	Pk	78		RBW = VB	
5180.0	92.7	h	-	-	Avg	78			Hz, VBW = 10Hz
5320.0	105.9	V	-	-	Pk	224	1.4	RBW = VB	W = 1 MHz
5320.0	96.1	V	-	-	Avg	225	1.4	RBW = 1M	Hz, VBW = 10Hz
5320.0	101.4	h	-	-	Pk	280		RBW = VB	
5320.0	91.9	h	-	-	Avg	280	1.3	RBW = 1M	Hz, VBW = 10Hz
Band Edge	Field Stre	ength C	alculations						
Frequency	Level	Pol		15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	N	
5150.0	60.6	V	74.0	-13.4	Pk			Note 1	
5150.0	41.8 55.7	V	54.0	-12.2	Avg			Note 1	
5150.0 5150.0	36.5	h h	74.0 54.0	-18.3 -17.5	Pk Avg			Note 1 Note 1	
5350.0	60.9	V	74.0	-17.5	Pk			Note 1	
5350.0	41.1	V	54.0	-12.9	Avg			Note 2	
5350.0	56.4	h	74.0	-17.6	Pk			Note 2	
5350.0	36.9	h	54.0	-17.1	Avg			Note 2	
				7777	19 1				
Note 1:	relative me	easurem	ents in run	#5 (-47.3dE	Bc for peak a		or average	•	calculated using the the highest peak and
								مما امیدا محا	aulatad uaina tha!
	∟∪ i opera	UT operating on highest channel available in the 5.25 - 5.35 MHz band. Signal level calculated using the re							


strength measurements of the fundamental signal level.

Note 2:

measurements in run #5 (-45 dBc for peak and -55 dBc for average) applied to the highest peak and average field

Ciletit.	ActionTec	Electro	nics				J	ob Number:	J44996
Model:	802CA						T-Lo	og Number:	T45022
						-		Proj Eng:	
Contact:	Angela Ya	ngela Yao						, ,	
	•		E, RSS-210					Class:	R
			s Emission	s 1000 - 4	OOOO MHz			Old33.	D .
		•				Bm (PCDAC =	: 05)		
requency		Pol		15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10360.0	66.3	٧	68.3	-2.0	Note 3	270		Note 4	
15540.0	48.3	V	54.0	-5.7	Avg	225	1.3	Note 2	
15540.0	47.8	h	54.0	-6.2	Avg	280	1.5	Note 2	
6216.0	60.9	٧	68.3	-7.5	Note 3	315	1.6	Note 4 & 5	
10360.0	57.0	h	68.3	-11.3	Note 3	280	1.5	Note 4	
15540.0	62.0	V	74.0	-12.0	Pk	225	1.3	Note 2	
15540.0	60.2	h	74.0	-13.8	Pk	280	1.5	Note 2	
6216.0	50.1	h	68.3	-18.2	Note 3	315	1.5	Note 4 & 5	
		nel (5.2	6 GHz)Pow	er= 13 dBı	m (PCDAC=				
15780.0	51.9	h	54.0	-2.1	Avg	270	1.5	Note 2	
10520.0	64.1	V	68.3	-4.2	Note 3	270		Note 4	
15780.0	49.8	V	54.0	-4.2	Avg	315		Note 2	
15780.0	66.1	h	74.0	-7.9	Pk	270		Note 2	
15780.0	62.8	V	74.0	-11.2	Pk	315		Note 2	
10520.0	56.9	h	68.3	-11.4	Note 3	115		Note 4	
6312.0	52.8	V	68.3	-15.5	Note 3	225		Note 4 & 5	
6312.0	43.2	h	68.3	-25.2	Note 3	180		Note 4 & 5	
	~				1	m (PCDAC=			
10640.0		V	54.0	-4.2	Avg	225		Note 2	
15960.0	48.9	V	54.0	-5.1	Avg	270		Note 2	
15960.0	48.1	h	54.0	-5.9	Avg	225		Note 2	
4256.0		V	54.0	-7.7	Pk	0			ise Floor Measurement
6384.0	59.7	V	68.3	-8.6	Note 3	318		Note 4 & 5	
10640.0	63.8	V	74.0	-10.2	Pk	225		Note 2	
4256.0	43.5	h	54.0	-10.5	Pk	0			ise Floor Measurement
15960.0	61.4	V	74.0	-12.6	Pk	270		Note 2	
15960.0	60.4	h	74.0	-13.6	Pk	225		Note 2	
10640.0 6384.0	35.0 48.5	h	54.0 68.3	-19.0 -19.8	Avg Note 3	225 285		Note 2 Note 4 & 5	
10640.0		h			 				
	51.2	h	74.0	-22.8	Pk	225	1.5	Note 2	

Client:	ActionTec Electronics	Job Number:	J44996			
Model:	802CA	T-Log Number:	T45022			
		Proj Eng:	Mark Hill			
Contact:	Angela Yao					
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В			
test note	s for run 6b					
Note 1:	For emissions falling in the restricted bands detailed in 15.205 the emissions the limit is EIRP < -27dBm (equivalent to a field strength	•	apply. For all other			
Note 2:	Signal is in a restricted band					
Note 3:	Restricted Band Peak Measurements: Resolution and Video BW: 1 Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measurement averaging on (100 samples).		•			
Note 4:	Signal does not fall in a restricted band.					
Note 5:	This measurement was made using a resolution bandwidth of 3 kH allow measurements with RBW = 1MHz because a preamplifier continuous signal would overload the amplifier and there is no low put the intentionally trasmitted signal but pass the spuroius signal). The during the conducted antenna measurements) and so the amplitude the same as that in a 1MHz bandwidth (please refer to the plot belot the average limit.	uld not be used (with the pass filter with sufficient e signal was a narrowb le (peak/average) in a 3	e EUT operating the it shape factor to reject and signal (as verified BKHz bandwidth would be			

Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not change with resolution bandwidth.

	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

FCC Part 15 Subpart E Tests

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	10/15/2001 & 10/16/2001	Config. Used: #2
Test Engineer:	Jmartinez	Config Change: None
Test Location:	SVOATS# 4	Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 18°C Rel. Humidity: 75%

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	12.9 / 15.6 dBm
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	-4.6 / -1.7dBm/MHz
3	26dB Bandwidth	15.407	Pass	>43 MHz
3	20 dB Bandwidth	RSS 210		>33 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB, Peak PSD 10dBm/MHz
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the 27dBm/MHz limit
6	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-1.26dB @ 4168MHz

	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1b: Output Power

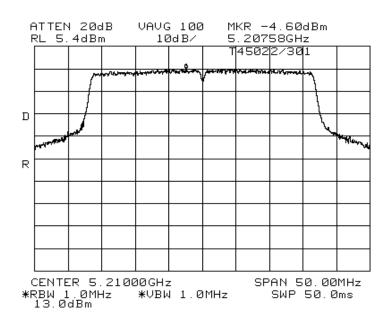
Antenna Gain: 1.2 dBi

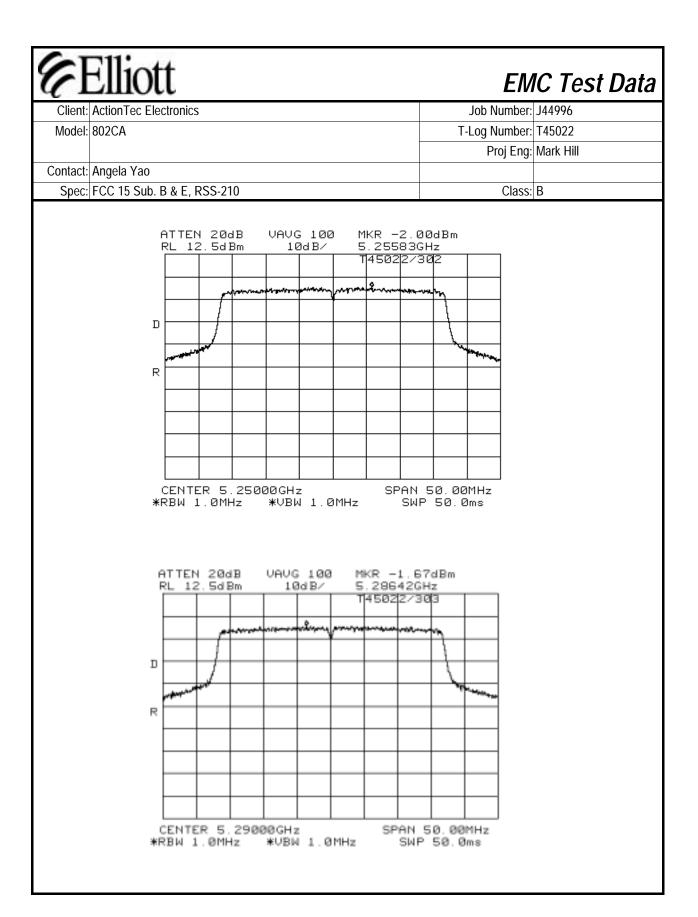
Channel	Frequency (MHz)	26-dB BW (MHz)	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
Low	5210	43.8	10.4	17.0	Note 2
LOW	5210	43.8	12.9	17.0	Note 1
Midd	5250	46.2	13.0	17.0	Note 2
IVIIdu	5250	46.2	15.6	17.0	Note 1
High	5290	45.2	12.5	24.0	Note 2
nigii	5290	45.2	14.7	24.0	Note 1

Note 1:	Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = 30kHz). Used Max hold
Note 1:	function.
Note 2:	Measured using a Rohde & Schwarz Power Meter with a average power sensor.
Note 3:	RSS 210 limit is 23dBm in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit. This limit is based on the
	emission bandwidth and operating frequency.
Note 3:	RSS 210 limit is 24dBm in the 5.15 to 5.25 GHz band, same as FCC limit. This limit is based on the emission
Note 3:	bandwidth and operating frequency.

EE.	lliott	EM	EMC Test Data				
Client: A	ctionTec Electronics	Job Number:	J44996				
Model: 80	D2CA	T-Log Number:	T45022				
		Proj Eng:	Mark Hill				
Contact: A	ngela Yao						
Spec: Fo	CC 15 Sub. B & E, RSS-210	Class:	В				
Dun #2: Dou	Dun #2. Dower Spectral Density						

Run #2: Power Spectral Density

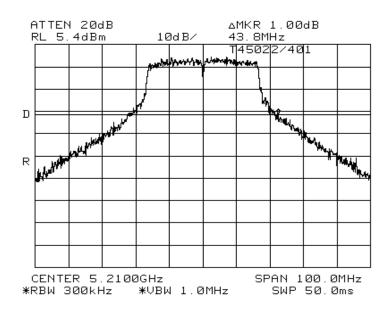

Antenna Gain: 1.2 dBi

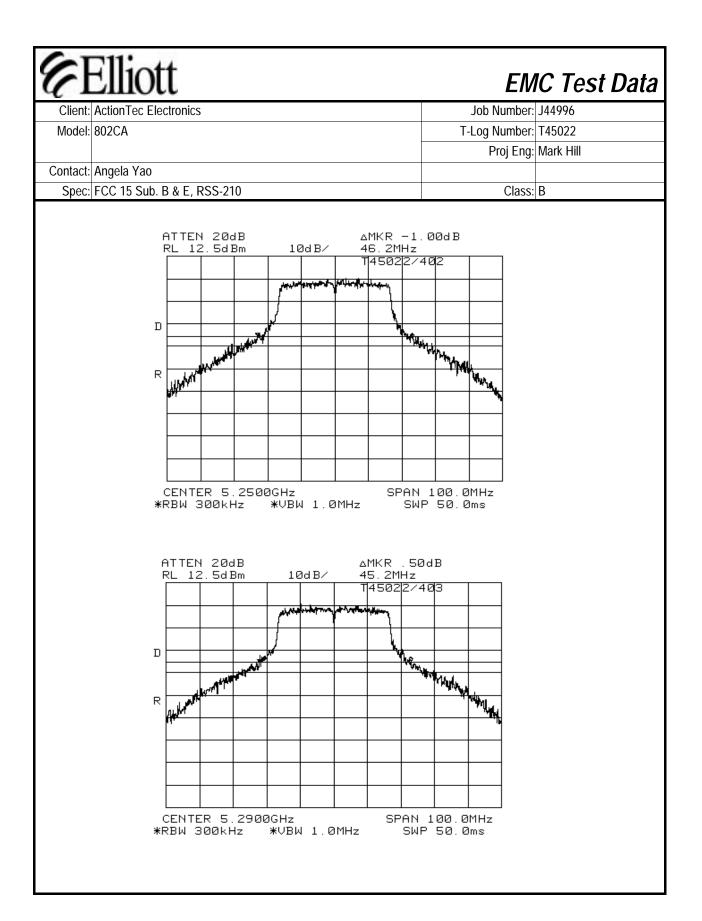

Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (dBm) note 2	Graph Reference	
Low	5210	-4.6	4.0	T45022/301	Note 1
Midd	5250	-2.0	4.0	T45022/302	Note 1
High	5290	-1.7	11.0	T45022/303	Note 1

The above measurements were made using RBW = 1MHz, VBW = 1MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off during the peak excursion measurements (run #4). The peak PSD of 7.5 dBm did not exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) so no restriction is placed on the output power or average PSD with respect to RSS 210.

Note 2: RSS 210 limit is 10dBm/MHz in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit.

Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 1 MHz, video averaging ON)




(F)	Elliott	EN	IC Test Data
Client:	ActionTec Electronics	Job Number	J44996
Model:	802CA	T-Log Number	T45022
		Proj Eng	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class	В

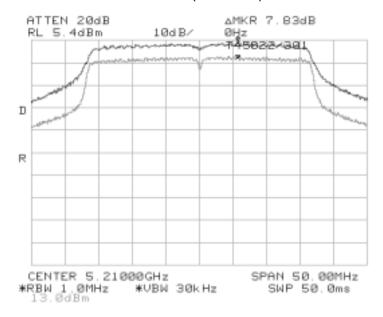
Run #3: Signal Bandwidth

Channel	Frequency (MHz)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	Graph reference #
Low	5210	300 kHz	43.8	33.17	T45022/401
Midd	5250	300 kHz	46.2	33.33	T45022/402
High	5290	300 kHz	45.2	33.33	T45022/403

Plots Showing Signal Bandwidth

EMC Test Data

Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В


Run #4: Peak Excursion Measurement

Plots Showing Peak Excursion

Trace A: RBW = VBW = 1MHz Trace B: RBW = 1 MHz, VBW = 30kHz

Low Channel Peak Excursion = 7.83 dB. Peak power spectral density (RSS210 only) = 5 dBm.

5.21 GHz @ 10 dBm (PCDAC = 05)

EMC Test Data Job Number: J44996 Client: ActionTec Electronics Model: 802CA T-Log Number: T45022 Proj Eng: Mark Hill Contact: Angela Yao Spec: FCC 15 Sub. B & E, RSS-210 Class: B Mid Channel Peak Excursion = 7.17 dB. Peak power spectral density (RSS210 only) = 9.67 dBm. 5.25 GHz @ 13 dBm (PCDAC = 08) ATTEN 20dB ΔMKR 7.17dB RL 5.4dBm 10dB/ 0Hz D R CENTER 5.25000GHz SPAN 50.00MHz *RBW 1.0MHz 3.0dBm *VBW 30kHz SWP 50.0ms High Channel Peak Excursion = 7.5 dB. Peak power spectral density (RSS210 only) = 10 dBm. 5.29 GHz @ 13 dBm (PCDAC = 08) ATTEN 20dB ΔMKR 7.50dB RL 5.4dBm 10dB/ D R

CENTER 5.29000GHz

*VBW 30kHz

*RBW 1.0MHz 3.0dBm SPAN 50.00MHz

SWP 50.0ms

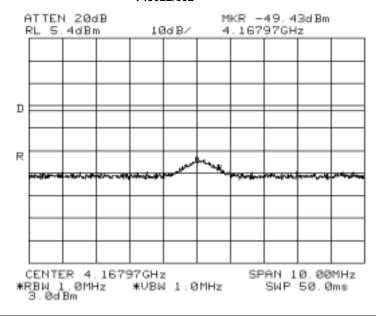
(F)	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

The antenna gain of the radios integral antenna is 1.2dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -28.2 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 1.2 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	T45022/601
		1 to 5.15 GHz	4167.97 (Note 1)	T45022/602
Low	5210	5.25 to 10 GHz	6253.3 (Note 1)	T45022/603
		10 GHz to 20 GHz	10420 (Note 3)	T45022/604
		20 GHz to 40 GHz	None	
		30 - 1000 MHz	Note 4	T45022/607
	5252	1 to 5.25 GHz	4200 (Note 1)	T45022/608
Midd		5.35 to 10 GHz	6300 (Note 1)	T45022/609
		10 GHz to 20 GHz	10500 (Note 3)	T45022/610
		20 GHz to 40 GHz	None	
		30 - 1000 MHz	Note 4	T45022/611
		1 to 5.725 GHz	4232.07 (Note)	T45022/612
High	5290	5.825 to 10 GHz	6348.3 (Note 1)	T45022/613
		10 GHz to 20 GHz	10580 (Note 3)	T45022/614
		20 GHz to 40 GHz	None	

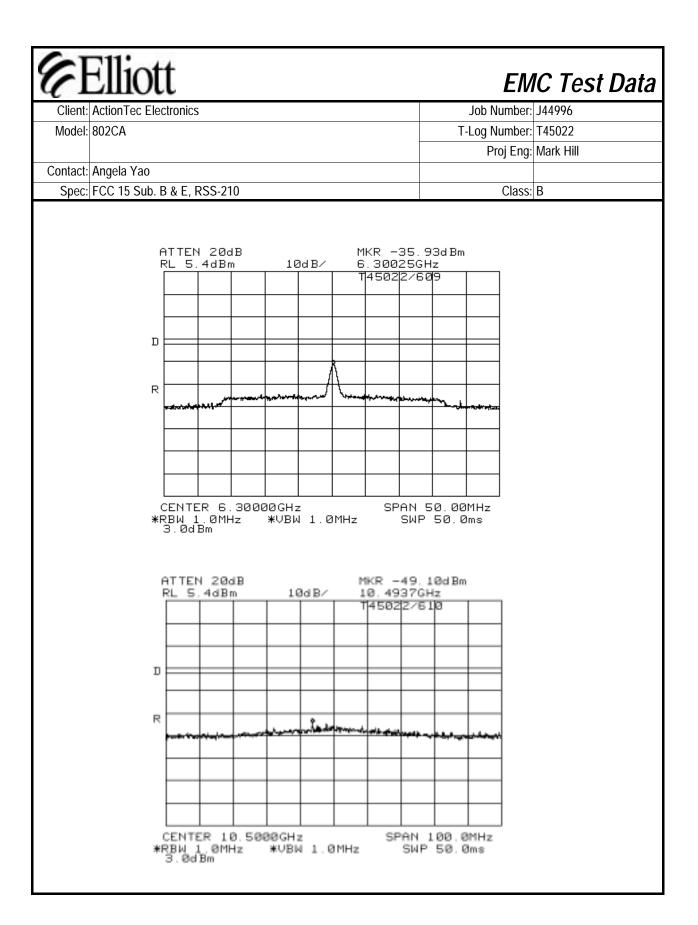
Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no field strength measurements required.
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.
Note 5:	Signal is wihtin 10Mhz of the 5.725 or 5.825 Band edge. Limit is -17dBm EIRP


F	Elliot	t							EM	IC Test Da
Client:	ActionTec Elec	ctronics						Job N	umber:	J44996
Model:	802CA						T-Log Number: T45022			T45022
								Pr	oj Eng:	Mark Hill
Contact:	Angela Yao									
Spec:	FCC 15 Sub. E	3 & E, RS	SS-210						Class:	В
		·	ots Showi to 40,000	_			/=VBW	<u>=1MHz</u>)	
		TTEN L 5.4		10	∂d B∕	KR - .20G	Ød Bm			

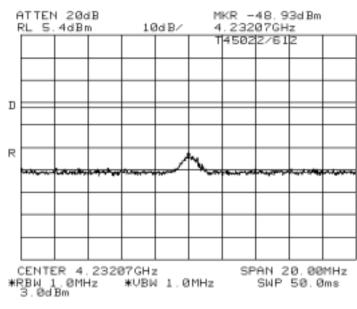
*VBW 1.0MHz

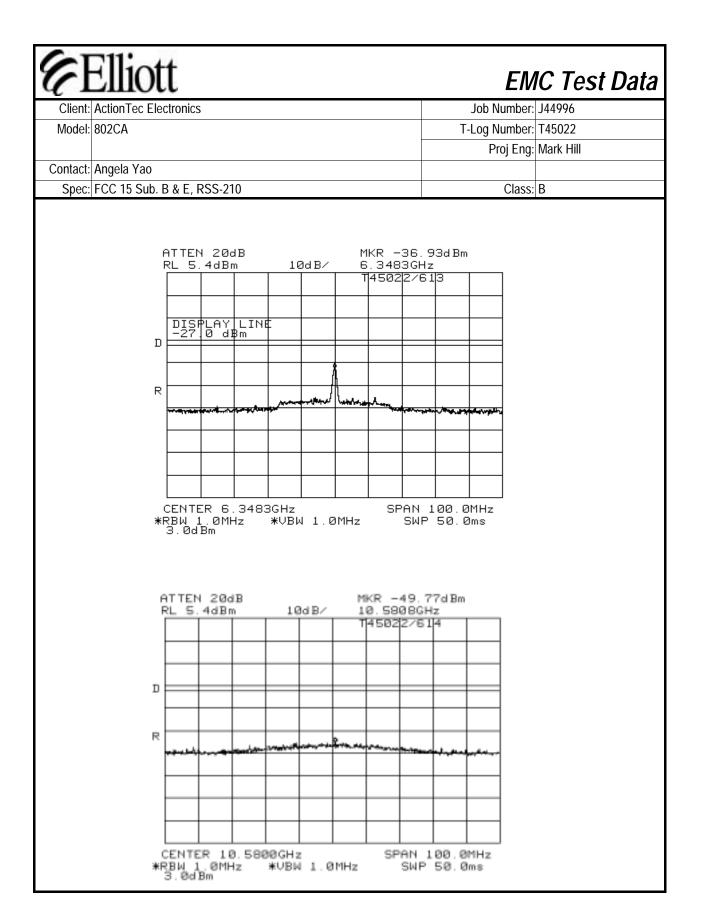
STOP 40.00GHz

SWP 800ms


D

R


START ØHz *RBW 1.ØMHz 3.ØdBm

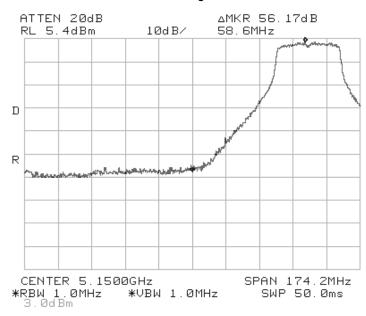

Ellio										Job Nu	ımber:	J44996
el: 802CA									T			T45022
										Pro	j Eng:	Mark Hill
ct: Angela Yao	DOFF	CC 210									Class:	D
ec: FCC 15 Sub.	D & E, R	33-210									Class:	D
			1	Γ4502	22/603							
	ATTEN	20dE	3					34.7	7d Bn	n		
	RL 5.	4dBm 		10	3d B/	6 	. 252:	2GHz T				
			-+							+-+		
			-+							+-		
Ι	$\vdash \vdash \vdash$		+							\vdash		
			_		Æ					+-		
F	$\downarrow \vdash \vdash \downarrow$		٠	, Burnay	\ \ \ \	*******	444			+-		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		- Andread Land					*- *- ***		Aurit Ann		
			\dashv							+-		
			-+							+		
			+							+		
	CENTE	L R 6.2	L 25330	Hz			 SP	 AN 1	<u> </u>	⊥LLL ∂MHz		
k	RBW 1	. ØMHz 3m	<u> </u>	VBW	1 1.0	MHz		SWP	50. (Øms		
		4 20d			0 I D 4			49.9		m		
	KL 5	. 4dBm 		1	ØdB∕ 	Ī	0. 42 4502	:58GH 2/60	1Z 14		1	
			\dashv		\vdash					-	-	
			\rightarrow		\vdash						1	
	₽ ╞		\rightarrow								1	
					+					+	1	
	r 💳		-+			9	مطابهم			+	1	
		-	at the section of	(ALANGA ARA	· · · · · · · · · · · · · · · · · · ·	MAY TO SEPOND	-	· J	***		1	
			-+							+	1	
			\dashv		\vdash					-	-	
		\vdash	\rightarrow		\vdash				-	+	-	

nt: ActionTec Electronics			er: J44996
lel: 802CA		T-Log Numb	
nct: Angela Yao		Proj Ei	ng: Mark Hill
ec: FCC 15 Sub. B & E, RSS-210		Cla	ss: B
·			
0 to 40,000 MHz scan plo	t @ 5.25 GHz		
ATTEN 20dB RL 5.4dBm 10dB/	MKR -36 6.27GHz		
D			
		4.	
R	AND THE PROPERTY OF THE PARTY O	The Diffe Layer	
START ØHz *RBW 1.ØMHz *VBW 1.Ø 3.ØdBm	STOP 40. MHz Sk	ØØGHz √P 8ØØms	
3.0dBm			
ATTEN 20dB RL 5.4dBm 10dB/	MKR -48 4.20018		
	T45022/		
D Total			
R	Sandy and the sand		
	1		

Client: ActionTec Electronics		144007
	Job Number:	
Model: 802CA	T-Log Number:	
antast Angala Vaa	Proj Eng:	Mark Hill
ontact: Angela Yao	Class	D
Spec: FCC 15 Sub. B & E, RSS-210	Class:	В
0 to 40,000 MHz scan plot @ 5.29 GHz		
·		
ATTEN 20dB MKR -39 RL 12.5dBm 10dB/ 6.27GHz	17d Bm	
	+	
R H + H + H + H + H	+	
I fel and a second seco	The state of the s	
Marine Marine Marine Marine	+	
	1 1 1	

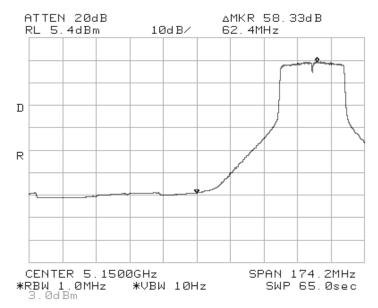
(F)	Elliott	EM	IC Test Data
Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & F. RSS-210	Class:	В

Band Edge Measurements:


For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was then applied to the average and peak field strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

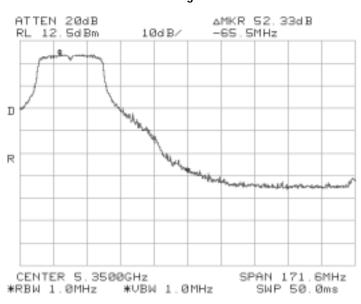
5.15 GHz band edge, EUT operating on the lowest channel


The highest signal within 50 MHz of the 5.15 GHz band was -56.17 dBc (Peak) / -58.33 dBc (Average)

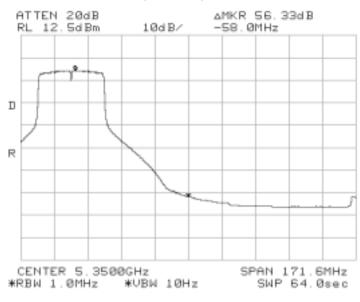
Peak Bandedge

Elliott	EMC Test Dat			
Client: ActionTec Electronics	Job Number: J44996			
Model: 802CA	T-Log Number: T45022			
	Proj Eng: Mark Hill			
Contact: Angela Yao				
Spec: FCC 15 Sub. B & E, RSS-210	Class: B			

Average Bandedge



EMC Test Data Client: ActionTec Electronics Job Number: J44996 Model: 802CA T-Log Number: T45022 Proj Eng: Mark Hill Contact: Angela Yao Class: B Spec: FCC 15 Sub. B & E, RSS-210 Class: B


5.35 GHz band edge EUT operating on the highest channel:

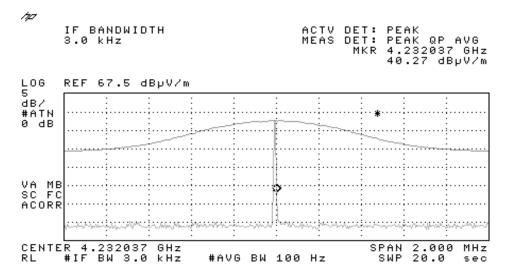
The highest signal in the 5.35 to 5.46 GHz band was -52 dBc (Peak) / - 56 dBc (Average)

Peak Bandedge

Average Bandedge

6I		ott						EM	IC Test Data	
Client:	ActionTec	Electron	nics				J	Job Number: J44996		
Model:	802CA						T-L	og Number:	T45022	
								Proj Eng:		
Contact:	Angela Ya	10						,		
			E, RSS-210					Class:	B	
			s Emission		000 MHz			Old33.	<u> </u>	
	nissions fr	om 30 -	1000 MHz v			forming emi	ssions mea	surements o	of the digital device. Re	
	Limit fo	r emissio	ons in restric	cted bands:	54dBuV/m	(Average)	74dBuV	/m (Peak)		
Limit	for emission	ons outs	ide of restric	cted bands:	EIRP < -27	7dBm/MHz	(68dE	BuV/m)		
Fundamen Frequency	tal signal Level	measur Pol		<u>calculate t</u> / 15.407	he band edg	je field stre Azimuth	ngths): Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
5210.0	104.8	V V	-	-	Pk	ucgrocs	motors	RBW = VB	W = 1 MHz	
5210.0	94.8	V	-	-	Avg				Hz, VBW = 10Hz	
5210.0	97.3	h	-	-	Pk			RBW = VB		
5210.0	87.4	h	-	-	Avg			RBW = 1M	Hz, VBW = 10Hz	
5290.0	105.7	٧	-	-	Pk			RBW = VB	W = 1 MHz	
5290.0	95.6	V	-	-	Avg				Hz, VBW = 10Hz	
5290.0	99.5	h	-	-	Pk			RBW = VB		
5290.0	88.9	h	-	-	Avg		RBW = 1MHz, VBW = 10Hz			
			alculations					To .		
Frequency	Level	Pol		/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Note 1		
5150.0	48.8 36.8	V	74.0 54.0	-25.2	Pk			Note 1		
5150.0 5150.0	41.3	v h	74.0	-17.2 -32.7	Avg Pk			Note 1 Note 1		
5150.0	29.4	h	54.0	-24.6	Avg			Note 1		
5350.0	53.7	V	74.0	-24.0	Pk			Note 1		
5350.0	39.6	V	54.0	-14.4	Avg			Note 2		
5350.0	47.5	h	74.0	-26.5	Pk			Note 2		
5350.0	32.9	h	54.0	-21.1	Avg			Note 2		
Note 1:	relative m	easurem	ents in run	#5 (-56 dBc	for peak and	d -58 dBc for	average) a	•	calculated using the e highest peak and	
Note 2:	average field strength measurements of the fundamental signal level. EUT operating on highest channel available in the 5.25 - 5.35 MHz band. Signal level calculated using the remeasurements in run #5 (-52 dBc for peak and -56 dBc for average) applied to the highest peak and average strength measurements of the fundamental signal level.									

Page 48 of 54


(F)	Ellic	ott						EM	IC Test Data
Client:	ActionTec	Electron	nics		J	Job Number: J44996			
Model:	802CA						T-L	.og Number:	T45022
								Proj Eng:	Mark Hill
Contact:	Angela Ya	0						, ,	
	•		E, RSS-210					Class:	R
•					wer = 10 dE	Rm (DCDAC	– 05)	Class.	D
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
4168.00	52.7	V V	54.0	-1.3	Avg	23	1.8	Note 2; No	te 4
4168.00	50.2	h	54.0	-3.8	Avg	345	2.0	Note 2; No	
10420.0	63.2	V	68.3	-5.1	Note 3	225	1.5	Note 4	
15628.0	47.5	V	54.0	-6.5	Avg	222	1.4	Note 2	
15628.0	47.3	h	54.0	-6.7	Avg	199	1.1	Note 2	
6252.0	60.6	V	68.3	-7.7	Note 3	148	1.4	Note 4 & 5	
10420.0	55.9	h	68.3	-12.4	Note 3	320	1.4	Note 4	
15628.0	60.5	h	74.0	-13.5	Pk	199	1.1	Note 2	
15628.0	60.1	V	74.0	-13.9	Pk	222	1.4	Note 2	
4168.00	55.4	V	74.0	-18.6	Pk	23	1.8	Note 2; No	te 4
4168.00	54.4	h	74.0	-19.6	Pk	345	2.0	Note 2; No	
6252.0	48.5	h	68.3	-19.8	Note 3	145	1.4	Note 4 & 5	
EUT On Ce	enter Chan	nel (5.2	5 GHz)Pow	er= 13 dBr	n (PCDAC=	08)		<u>.</u>	
4200.00	51.0	V	54.0	-3.0	Avg	29	2.0	Note 2,4	
4200.00	50.4	h	54.0	-3.7	Avg	360	2.0	Note 2; No	te 4
15750.0	48.9	٧	54.0	-5.1	Avg	180	1.3	Note 2	
15750.0	47.2	h	54.0	-6.8	Avg	225	1.3	Note 2	
10500.0	58.5	V	68.3	-9.8	Note 3	265	1.7	Note 4	
6300.0	57.9	V	68.3	-10.5	Note 3	315	1.5	Note 4 & 5	
15750.0	60.5	h	74.0	-13.5	Pk	225	1.3	Note 2	
15750.0	60.0	V	74.0	-14.0	Pk	180	1.3	Note 2	
10500.0	53.0	h	68.3	-15.3	Note 3	290	1.6	Note 4	
4200.00	54.8	V		-19.2		29	2.0	Note 2,4	
4200.00	53.7	h	74.0	-20.3	Pk	360	2.0	Note 2; No	te 4
			68.3 74.0 68.3 74.0		Note 3 Pk Note 3 Pk		2.0 1.5		te 4

C-T	7111	2000								
6	<u>ااا</u> ـٰد)tt						EM	IC Test Data	
_	ActionTec		nics		Job Number: J44996					
	802CA				T-	Log Number:				
	0020/								Mark Hill	
Contact:	Angela Ya	0						i ioj Liig.	IVIGIN TIIII	
	•		E, RSS-210					Class:	R	
			ailable (5.2	- 08)	Ciass.	Б				
4232.00		h	54.0	-1.9	Avg	347	2.0	Note 2,4		
4232.00		V	54.0	-4.0	Avg	9	1.7	Note 2,4		
15870.0		V	54.0	-5.8	Avg	1270	1.4	Note 2		
15870.0	47.3	h	54.0	-6.7	Avg	224	1.5	Note 2		
6348.0	60.5	V	68.3	-7.8	Note 3	280	1.3	Note 4 & 5		
10580.0	59.2	V	68.3	-9.1	Note 3	270	1.5	Note 4		
15870.0	61.2	h	74.0	-12.8	Pk	224	1.5	Note 2		
15870.0	60.2	V	74.0	-13.8	Pk	270	1.4	Note 2		
10580.0	51.0	h	68.3	-17.3	Note 3	224	1.5	Note 4		
4232.00	54.9	h	74.0	-19.1	Pk	347	2.0	Note 2,4		
6348.0	48.5	h	68.3	-19.8	Note 3	240	1.4	Note 4 & 5		
4232.00	54.0	V	74.0	-20.0	Pk	9	1.7	Note 2,4		
Note 2: Note 3:	Resolution	Band P Bw: 1M	eak Measur						Average Measurements: VBW = 3MHz, video	
Note 4:	Signal doe	es not fa	ll in a restric	ted band.						
This measurement was made using a resolution bandwidth of 3 kHz The instrumentation noise floor was too high to allow measurements with RBW = 1MHz because a preamplifier could not be used (with the EUT operating the intentional signal would overload the amplifier and there is no low pass filter with sufficient shape factor to reject the intentionally trasmitted signal but pass the spuroius signal). The signal was a narrowband signal (as verified during the conducted antenna measurements) and so the amplitude (peak/average) in a 3kHz bandwidth would be the same as that in a 1MHz bandwidth (please refer to the plot below). The peak reading has been compared with										
	_	as that i				•	•	•		

(F)	Elliott
Client:	ActionTec Electron
Model:	8U3CV

EMC Test Data

Client:	ActionTec Electronics	Job Number:	J44996
Model:	802CA	T-Log Number:	T45022
		Proj Eng:	Mark Hill
Contact:	Angela Yao		
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В

Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not change with resolution bandwidth.

6	Elliott	EMC Test L				
Client:	ActionTec Electronics	Job Number:	J44996			
Model:	802CA	T-Log Number:	T45022			
		Proj Eng:	Mark Hill			
Contact:	Angela Yao					
Spec:	FCC 15 Sub. B & E, RSS-210	Class:	В			

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/12/2001 Config. Used: 1
Test Engineer: Marissa Faustino/Vishal Config Change: None
Test Location: SVOATS #3 Host Unit Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 10 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 30°C

Rel. Humidity: 17%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, Preliminary Scan 30 -	FCC B	Pass	-5.9dB @ 260.909MHz
	1000 MHz			
2	RE, 30 - 1000MHz -	FCC B	Pass	-4.7dB @ 260.909MHz
	Maximized Emissions			
3	RE, 1000 - 6500 MHz	FCC B	Pass	-11.6dB @ 1397MHz
	Maximized Emissions			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Olicili.	ActionTec	Electro	nics		J	ob Number:	J44996		
Model:	802CA						T-L	og Number:	T45022
								Proj Eng:	
Contact:	Angela Ya	30						-, 3	
			E, RSS-210	<u> </u>				Class:	R
•			ed Emissio		0 MHz			Glassi	2
Frequency		Pol	•	C B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
260.909	40.1	Н	46.0	-5.9	QP	238	1.0		
167.700	35.5	Н	43.5	-8.0	QP	240	1.0		
432.074	37.6	Н	46.0	-8.4	QP	107	1.0		
332.820		Н	46.0	-9.7	QP	358	1.0		
192.032	33.1	Н	43.5	-10.4	QP	99	1.0		
260.909	35.6	V	46.0	-10.4	QP	318	1.0		
456.533	34.9	V	46.0	-11.1	QP	45	1.0		
157.007	32.3	V	43.5	-11.2	QP	213	1.0		
896.560		H V	46.0 43.5	-11.3 -11.4	QP	305 180	1.0		
172.400 32.700	27.7	V	40.0	-11.4	QP QP	208	1.0 1.0		
167.700	31.1	V	43.5	-12.3	QP	229	1.0		
432.074	33.6	V	46.0	-12.4	QP	332	1.0		
587.045	33.4	V	46.0	-12.4	QP	35	1.0		
466.663	33.0	H	46.0	-13.0	QP	117	1.0		
160.890		V	43.5	-13.1	QP	247	1.0		
466.663	32.7	V	46.0	-13.3	QP	289	1.0		
391.360	32.6	Н	46.0	-13.4	QP	350	1.0		
456.533	32.1	Н	46.0	-13.9	QP	0	1.0		
192.032	29.3	V	43.5	-14.2	QP	160	1.0		
157.007	28.6	Н	43.5	-14.9	QP	66	1.0		
896.560	30.8	V	46.0	-15.2	QP	146	1.0		
587.045		Н	46.0	-15.4	QP	58	1.0		
160.890		Н	43.5	-16.1	QP	268	1.0		
196.646		V	43.5	-16.2	QP	247	1.0		
391.360		V	46.0	-16.6	QP	164	1.0		
196.646		Н	43.5	-18.5	QP	247	1.0		
332.820	25.3	V	46.0	-20.7	QP	0	1.0		

Elliott Client: ActionTec Electronics Model: 802CA T-Log Number: T45022 Proj Eng: Mark Hill Contact: Angela Yao Spec: FCC 15 Sub. B & E, RSS-210 Class: B

Run #2: Maximized Readings from Run #1

Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments			
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
260.909	41.3	Н	46.0	-4.7	QP	238	1.0				
332.820	39.6	Н	46.0	-6.4	QP	358	1.0				
167.700	35.5	Н	43.5	-8.0	QP	260	1.0				
432.074	37.6	Н	46.0	-8.4	QP	107	1.0				
192.032	34.5	Н	43.5	-9.0	QP	99	1.0				
260.909	35.8	V	46.0	-10.2	QP	318	1.0				

Run #3: Maximized readings, 1000 - 6500 MHz

Measurements made at 3m per FCC requirements.

Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1397.000	42.4	V	54.0	-11.6	Avg	350	1.0	
2337.500	42.3	Н	54.0	-11.7	Avg	320	1.4	
1397.000	58.1	V	74.0	-15.9	Pk	350	1.0	
1098.000	38.0	V	54.0	-16.0	Avg	150	1.0	
1300.000	36.9	Н	54.0	-17.1	Avg	0	1.0	
2337.500	55.0	Н	74.0	-19.0	Pk	320	1.4	
1100.000	34.4	Н	54.0	-19.6	Avg	290	1.1	
1098.000	52.0	V	74.0	-22.0	Pk	150	1.0	
1300.000	51.6	Н	74.0	-22.4	Pk	0	1.0	
1100.000	48.7	Н	74.0	-25.3	Pk	290	1.1	