

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 802.11ax-                                                                                                               | HE160 Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er Spectral D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ensity- Ant 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Channel 50 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5250MHz)                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channel 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (5570MHz)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |
| Spectrum Analyzer 1           Seep 23.           KEYSIGHT Note for<br>Argen Andrea           See 23.           See 23.           See 23.           See 24.           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.10           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11           1.11 <t< th=""><th>Productions Off<br/>Priverplanes Off<br/>Priverpl</th><th>Анд Лиан Гиннен (19450)<br/>Анд Лиан 2000/2000<br/>Анд Лиан 2000/2000<br/>Анд Лиан Анал<br/>Mkr 1 5.277 84 GHz<br/>4.177 dBm</th><th>Marker         Select Marker           Select Marker         •           Peak Search         •           Next Peak         PP Search           Next Pk Right         Properties           Next Pk Left         Marker -           Pk-Pk Search         Conternous Peak           MerGF         MerRef Lot           Continuos Peak         •</th><th>Spectrum Analyzer 1<br/>Benefit SA<br/>KEVSIGHT that Branch<br/>Sector 1 Sector 1<br/>Spectrum<br/>Sector 1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1<br/>Spectrum<br/>1</th><th>the second second</th><th>Ang type (Hower (HIS))] 2 3 4 3 6<br/>Ang type (Hower (HIS))] 2 3 4 3 6<br/>Ang type (HIS) 2007000<br/>An IN WWWW<br/>An IN WAY<br/>-2.932 (Bm)</th><th>Marker Select Marker Select Marker Marker Marker I Kasher Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Detta Marker Marker Marker</th><th>Estings     Settings     Settings     Settings     Settings     Settings     Prosetiles     Marker     Counter</th></t<> | Productions Off<br>Priverplanes Off<br>Priverpl | Анд Лиан Гиннен (19450)<br>Анд Лиан 2000/2000<br>Анд Лиан 2000/2000<br>Анд Лиан Анал<br>Mkr 1 5.277 84 GHz<br>4.177 dBm | Marker         Select Marker           Select Marker         •           Peak Search         •           Next Peak         PP Search           Next Pk Right         Properties           Next Pk Left         Marker -           Pk-Pk Search         Conternous Peak           MerGF         MerRef Lot           Continuos Peak         • | Spectrum Analyzer 1<br>Benefit SA<br>KEVSIGHT that Branch<br>Sector 1 Sector 1<br>Spectrum<br>Sector 1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1<br>Spectrum<br>1 | the second | Ang type (Hower (HIS))] 2 3 4 3 6<br>Ang type (Hower (HIS))] 2 3 4 3 6<br>Ang type (HIS) 2007000<br>An IN WWWW<br>An IN WAY<br>-2.932 (Bm) | Marker Select Marker Select Marker Marker Marker I Kasher Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Detta Marker Marker Marker | Estings     Settings     Settings     Settings     Settings     Settings     Prosetiles     Marker     Counter |
| #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jan 24, 2024 💬 🛆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sweep 1.00 ms (501 pts)                                                                                                 | On<br>Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan 24, 2024 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sweep 1.00 ms (501 pts)                                                                                                                    | On<br>Off                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |























|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 802.11ac-\                                                                                                                                                           | VHT40 Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Spectral D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ensity- Ant 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                                                                                                                        |                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Channel 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5755MHz)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel 159 (5795MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                                                                                        |                                                                              |
| Spectrum Analyzer 1         Image State           Swept SA         Sector Same State           KEYSIGHT mer State         Sector Same State           1 Sockam         •           2 sockam         •           3 sockam         •           •         • | podrum Analyzer 2<br>Podr Z. 30 (1)<br>Miter 19 dB (1)<br>Miter Audu | Are tree these tests 1 2 3 4 3 6<br>Are tree trees at the tree tests 1 2 3 4 3 6<br>Are tree trees at the tree test 2 4 4 5 6<br>Are tree test 2 4 6 Hz<br>5.104 dBm | Marker         Park           Sidect Marker         Sidect Marker           Marker Frequency         Setings           Marker Frequency         Setings           Peak Search         Peak Search           Next PRay         Properties           Next PRay         Properties           Next PRay         Next Properties           Next PRay         Next Properties           Next PRay         Next Properties           Marker - Putter         Marker           Marker - Deta         Marker           Mer - Ref Lvi         Marker | Spectrum Analyzer 1         Service 3A           KEVSIGHT model         Construct of the service 3A           Sectrum 1         Sectrum 1           Sectrum 2         Sectrum 1           Sectrum 3         Sectrum 1           Sectrum 4         Sectrum 1           Sectrum 3         Sectrum 1           Sectrum 4         Sectrum 1           Sectrum 3         Sectrum 1           Sectrum 4         Sectrum 1           Sectrum 3         Sectrum 3           Sectrum 4         Sectrum 4           Sectrum 3         Sectrum 4           Sectrum 4         Sectrum 4           Sectrum 4 | Decirum Analyzer 2<br>wegi SJ<br>The Read Z off (s)<br>The Read Z off (s)<br>The Read Z off (s)<br>The Read Z off (s)<br>The Read Z off (s)<br>Read Z off (s)<br>The Read Z off (s)<br>Read Z off (s)<br>The Read Z off (s)<br>The R | Алр Inper Preser (MINI) [] 2 3 4 3 6<br>Алр Inper Preser (MINI)<br>Тор Free Run<br>An Kin Nin<br>Mikr1 5,797 6 GHz<br>4,519 dBm | Select Marker<br>Select Marker<br>Marker Pregenery,<br>0.797/00000 GHz<br>Peak Search<br>Next Peak<br>Next Peak<br>Next Pk Left<br>Nidnirum Peak<br>Pk-Pk Search<br>Marker Deta<br>MerCF<br>MarRef Lut | Settings      Settings      Search      Properties      Marker-      Counter |
| Center 5.75500 GHz<br>#Res BW 510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #Video BW 1.6 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Span 60.00 MHz<br>Sweep 1.00 ms (301 pts)                                                                                                                            | Continuous Peak<br>Search<br>On<br>Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Center 5.79500 GHz<br>#Res BW 510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Video BW 1.6 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Span 60.00 MHz<br>Sweep 1.00 ms (301 pts)                                                                                       | Continuous Peak<br>Search<br>On<br>Off                                                                                                                                                                 |                                                                              |







|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | 802.11ac-VHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160 Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er Spectral D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ensity- Ant 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channel 50 (                                                                                                                                                                                   | 5250MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel 114 (5570MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                            |
| Bootram Analyzer 1         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         •••         ••• | Représ 24.01<br>Représ 24.01<br>Ref Call March<br>Ref Call March<br>Ref Levi 22.40 dB<br>Ref Levi 22.40 dB | And the Prove (MIS) 2 3 4 3<br>And the 2000 000<br>And the 2000 000 000<br>And the 2000 000 000<br>And the 2000 000 000 000<br>And the 2000 000 000 000 000 000 000<br>And the 2000 000 000 00 | Narker Conternation of the second sec | Spectrum Analyzer 1           Swept SA           Swept SA <tr< th=""><th>Moder SM (L)     Mono 10 dB     Hono Field     School Of     Field Hit for(6)     Ne Field Of     School Of</th><th>And These House (Hels)<br/>And These Real<br/>And Market 2000/000<br/>And And And And And And And And And And</th><th>Marker Select Marker Select Marker Marker Marker Marker Source Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MorCF MarRef Lvi Continuous Peak Search</th><th>Risarch<br/>Properties<br/>Marker<br/>Counter</th></tr<> | Moder SM (L)     Mono 10 dB     Hono Field     School Of     Field Hit for(6)     Ne Field Of     School Of | And These House (Hels)<br>And These Real<br>And Market 2000/000<br>And And And And And And And And And And | Marker Select Marker Select Marker Marker Marker Marker Source Peak Search Next Peak Next Pk Right Next Pk Right Next Pk Right Next Pk Left Minimum Peak Pk-Pk Search Marker Delta MorCF MarRef Lvi Continuous Peak Search | Risarch<br>Properties<br>Marker<br>Counter |
| #Res BW 1.0 MHz<br>載 う ペ ■ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jan 24, 2024 💬                                                                                                                                                                                 | Sweep 1.00 ms (501 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan 24, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sweep 1.00 ms (501 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On<br>Off                                                                                                                                                                                                                  |                                            |















|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 802.11ax-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -HE40 Pc                                                                                                                                                                                                                                                                                                                                             | ower                                                                                          | Spectral De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsity- Ant 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Channel 151 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5755MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Channel 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 (5795MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                |
| Spectrum Analyzer 1            Swept SA            KEYSIGHT Inserties Accounting Account | Decrement Analyser 2<br>wend 23<br>mend 2 of 01<br>mend for (6)<br>NEF - Adaptime<br>Ref Lvi Offhert 22.00 dB<br>n d official and a<br>ref Lvi Offhert 22.00 dB<br>n d official and a<br>n d official and a | Ang Intel Private (1945) ]] 2 3 4 3 6<br>Ang Intel Private<br>(1976) [] 2 3 4 3 6<br>Ang Intel Private<br>Ang Inte | Marker           Select Marker           Marker           Marker           Marker           Marker           Peak Sauch           Next Peak           Next Peak           Next Peak           Minimum Peak           Marker/Scatch           Marker/Scatch           Marker/Scatch           Marker/Scatch           Marker/Scatch           Stardyn | ettings<br>ettings<br>Carcen<br>K Search<br>ordig<br>archer<br>unction<br>tarker-><br>counter | Spectrum Analyzer 1         Spectrum Analyzer 1           Swept SA         Spectrum Spec | drum Analyzer 2<br>prod 2::00 0<br>Freight and 2::00 0 | Ang happ (Hower (HOLS)) 2 3 4 3 6<br>Ang Half (HYDAT FOR<br>Trig Free Run Anthony (HYDAT FOR<br>ANTHONY (HYDAT))<br>Anthony (HYDAT)<br>Anthony (HYDAT)<br>Anthon | Select Marker<br>Select Marker<br>Marker 1<br>Merker Frequency<br>5,792800000 Grtz<br>Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Left<br>Merlmum Peak<br>Pk-Pk Search<br>Marker Detta<br>Marker Detta<br>Marker Detta | Estings     Settings     Settings     Settings     Settings     Search     Pry: Search     Pry: Search     Marker-     Counter |
| #Res BW 510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>?</b> Jan 22, 2024<br>3:41:46 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sweep 1.00 ms (301 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | On<br>Off                                                                                                                                                                                                                                                                                                                                            |                                                                                               | #Res BW 510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan 22, 2024 💬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sweep 1.00 ms (301 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | On<br>Off                                                                                                                                                                                                                       |                                                                                                                                |







|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 802.11ax-HI                                                                                                      | E160 Power                                                                                                                                                                                                                                                                                                                                                                                         | Spectral De                                                                                                                                                                                                                                                           | ensity- Ant 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Channel 50 (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5250MHz)                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | Channel 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5570MHz)                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                     |
| Spectrum Analyzer 1           Biver 25 A           CV           CV           Scate Over 1           Scate Over 1           Scate Over 1           240           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00           7.00     < | Marcel 2.50 EL     Marcel 2 | Avg Figs: Power (BMB) 2 3 4 5 6 Sete<br>Avg Hug: 200700 Awwwww<br>Tig Fine Tim<br>Mkr1 5.26776 GHz<br>-4.381 dBm | Marker     Image: Control of Marker       Act Marker     Settings       Har Frequency     Settings       Preak Search     React       Next Peak     PSaarch       Marker Dets     Counter       MarRef Lot     Marker -       MarRef Lot     Next Peak | Spectrum Analyzer 1           Swept SA           Swept SA           KEVSIGENT INDER NE<br>→→ Rayn Auto<br>ScalarDN1 to dB           1           124           124           200           1700           2700           376           376           376           376 | Provide 2, SU 0, Alter: 10 dB Provide 2, SU 0, Su | Ang Tapis Power (RMS) 2 3 4 5 6<br>Ang Tapis Power (RMS) 2 3 4 5 6<br>Amwwww<br>Tigo Tre Mar<br>Mkr1 5.555 60 GHz<br>-3.352 dBm | Select Marker<br>Select Marker<br>Marker 1<br>Marker Prequency<br>S.SSSS00000 GHz<br>Peak Search<br>Next Peak<br>Next Pk Right<br>Next Pk Right<br>Next Pk Left<br>Minimum Peak<br>Pk-Pk Search<br>Marker Delta<br>Mar-CF<br>MirRef Lvl | Pestings<br>Bettings<br>Pesk<br>Bearch<br>Prigeaties<br>Marker<br>Marker<br>Counter |
| Center 5.2500 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wideo BW 3.0 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Span 240.0 MHz<br>Sweep 1.00 ms (501 pts)                                                                        | on<br>Off                                                                                                                                                                                                                                                                                                                                                                                          | Center 5.5700 GHz<br>#Res BW 1.0 MHz                                                                                                                                                                                                                                  | #Video BW 3.0 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Span 240.0 MHz<br>Sweep 1.00 ms (501 pts)                                                                                       | Search<br>On<br>Off                                                                                                                                                                                                                     |                                                                                     |



## A.6 Frequency Stability Test Result

| Test Site | WZ-TR3     | Test Engineer | Jeff Yang              |
|-----------|------------|---------------|------------------------|
| Test Date | 2024-01-24 | Test Mode     | 5180MHz (Carrier Mode) |

| Voltage | Power | Temp | Frequency Tolerance (ppm) |           |           |            |  |
|---------|-------|------|---------------------------|-----------|-----------|------------|--|
| (%)     | (VAC) | (°C) | 0 minutes                 | 2 minutes | 5 minutes | 10 minutes |  |
|         |       | - 30 | 12.15                     | 11.66     | 11.15     | 10.88      |  |
|         |       | - 20 | 12.45                     | 12.41     | 12.36     | 12.32      |  |
|         |       | - 10 | 10.89                     | 11.10     | 11.38     | 11.67      |  |
|         |       | 0    | 10.43                     | 10.44     | 10.45     | 10.43      |  |
| 100%    | 120   | + 10 | 3.96                      | 5.12      | 5.25      | 5.53       |  |
|         |       | + 20 | 3.14                      | 3.15      | 3.18      | 3.18       |  |
|         |       | + 30 | -3.01                     | -2.42     | -2.13     | -1.94      |  |
|         |       | + 40 | -3.98                     | -3.75     | -3.54     | -3.44      |  |
|         |       | + 50 | -3.52                     | -4.03     | -4.30     | -4.41      |  |
| 115%    | 138   | + 20 | 2.64                      | 2.75      | 2.91      | 2.98       |  |
| 85%     | 102   | + 20 | 0.53                      | 0.75      | 1.05      | 1.56       |  |

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} \*10<sup>6</sup>.



## A.7 Radiated Spurious Emission Test Result

| Test Site | WZ-AC2                                                                            | Test Engineer | Karl Gao             |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------|---------------|----------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                           | Test Mode     | 802.11a – Channel 36 |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.  |               |                      |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in |               |                      |  |  |  |  |
|           | the report.                                                                       |               |                      |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7417.500  | 34.1    | 11.7   | 45.8     | 74.0     | -28.2  | Peak     | Horizontal   |
|      | 8284.500  | 35.3    | 11.1   | 46.4     | 74.0     | -27.6  | Peak     | Horizontal   |
| *    | 9678.500  | 33.9    | 13.5   | 47.4     | 68.2     | -20.8  | Peak     | Horizontal   |
| *    | 10044.000 | 36.0    | 13.9   | 49.9     | 68.2     | -18.3  | Peak     | Horizontal   |
|      | 7596.000  | 34.5    | 11.4   | 45.9     | 74.0     | -28.1  | Peak     | Vertical     |
|      | 8106.000  | 35.0    | 12.1   | 47.1     | 74.0     | -26.9  | Peak     | Vertical     |
| *    | 8675.500  | 34.6    | 12.4   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
| *    | 9840.000  | 35.2    | 13.5   | 48.7     | 68.2     | -19.5  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|----------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23 Test Mode 802.11a – Channel                                   |               |          |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |          |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |          |  |  |  |  |
|           | report.                                                                               |               |          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin |      | Polarization |
|------|-----------|---------|--------|----------|----------|--------|------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |      |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |      |              |
| *    | 7936.000  | 35.1    | 11.8   | 46.9     | 68.2     | -21.3  | Peak | Horizontal   |
| *    | 10222.500 | 34.9    | 14.2   | 49.1     | 68.2     | -19.1  | Peak | Horizontal   |
|      | 10902.500 | 34.0    | 16.6   | 50.6     | 74.0     | -23.4  | Peak | Horizontal   |
|      | 11557.000 | 32.9    | 17.9   | 50.8     | 74.0     | -23.2  | Peak | Horizontal   |
| *    | 8803.000  | 33.9    | 12.6   | 46.5     | 68.2     | -21.7  | Peak | Vertical     |
| *    | 10367.000 | 33.5    | 15.1   | 48.6     | 68.2     | -19.6  | Peak | Vertical     |
|      | 10894.000 | 34.0    | 16.4   | 50.4     | 74.0     | -23.6  | Peak | Vertical     |
|      | 11642.000 | 32.5    | 17.9   | 50.4     | 74.0     | -23.6  | Peak | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|----------|--|--|--|--|
| Test Date | 024-01-22 ~ 2024-01-23 Test Mode 802.11a – Channel                                    |               |          |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |          |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |          |  |  |  |  |
|           | report.                                                                               |               |          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 8021.000  | 35.8    | 12.1   | 47.9     | 68.2     | -20.3  | Peak     | Horizontal   |
|      | 9330.000  | 36.3    | 14.0   | 50.3     | 74.0     | -23.7  | Peak     | Horizontal   |
| *    | 9933.500  | 35.5    | 13.8   | 49.3     | 68.2     | -18.9  | Peak     | Horizontal   |
|      | 11548.500 | 32.4    | 17.7   | 50.1     | 74.0     | -23.9  | Peak     | Horizontal   |
|      | 8148.500  | 35.3    | 11.6   | 46.9     | 74.0     | -27.1  | Peak     | Vertical     |
| *    | 8888.000  | 34.3    | 12.8   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
| *    | 10520.000 | 34.7    | 15.4   | 50.1     | 68.2     | -18.1  | Peak     | Vertical     |
|      | 11455.000 | 33.5    | 17.4   | 50.9     | 74.0     | -23.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao             |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|----------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                               | Test Mode     | 802.11a – Channel 52 |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                      |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                      |  |  |  |  |
|           | report.                                                                               |               |                      |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7502.500  | 34.2    | 12.0   | 46.2     | 74.0     | -27.8  | Peak     | Horizontal   |
|      | 8242.000  | 33.4    | 11.0   | 44.4     | 74.0     | -29.6  | Peak     | Horizontal   |
| *    | 8896.500  | 33.5    | 12.8   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 10010.000 | 34.0    | 13.8   | 47.8     | 68.2     | -20.4  | Peak     | Horizontal   |
|      | 8369.500  | 35.1    | 11.1   | 46.2     | 74.0     | -27.8  | Peak     | Vertical     |
| *    | 9228.000  | 33.4    | 13.8   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
| *    | 10231.000 | 34.8    | 14.2   | 49.0     | 68.2     | -19.2  | Peak     | Vertical     |
|      | 11540.000 | 33.4    | 17.6   | 51.0     | 74.0     | -23.0  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao             |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 60 |  |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                      |  |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                      |  |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                      |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7655.500  | 34.7    | 11.3   | 46.0     | 74.0     | -28.0  | Peak     | Horizontal   |
|      | 8352.500  | 33.5    | 11.1   | 44.6     | 74.0     | -29.4  | Peak     | Horizontal   |
| *    | 9678.500  | 35.4    | 13.5   | 48.9     | 68.2     | -19.3  | Peak     | Horizontal   |
| *    | 10435.000 | 34.1    | 15.5   | 49.6     | 68.2     | -18.6  | Peak     | Horizontal   |
|      | 8063.500  | 35.8    | 11.9   | 47.7     | 74.0     | -26.3  | Peak     | Vertical     |
| *    | 9806.000  | 34.3    | 13.8   | 48.1     | 68.2     | -20.1  | Peak     | Vertical     |
| *    | 10214.000 | 34.9    | 14.3   | 49.2     | 68.2     | -19.0  | Peak     | Vertical     |
|      | 11650.500 | 32.6    | 17.8   | 50.4     | 74.0     | -23.6  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao             |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|----------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                               | Test Mode     | 802.11a – Channel 64 |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                      |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                      |  |  |  |  |
|           | report.                                                                               |               |                      |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8276.000  | 34.4    | 11.2   | 45.6     | 74.0     | -28.4  | Peak     | Horizontal   |
|      | 9330.000  | 35.2    | 14.0   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 9874.000  | 35.0    | 13.6   | 48.6     | 68.2     | -19.6  | Peak     | Horizontal   |
| *    | 10435.000 | 34.0    | 15.5   | 49.5     | 68.2     | -18.7  | Peak     | Horizontal   |
|      | 8420.500  | 34.1    | 11.4   | 45.5     | 74.0     | -28.5  | Peak     | Vertical     |
| *    | 8650.000  | 33.8    | 12.5   | 46.3     | 68.2     | -21.9  | Peak     | Vertical     |
| *    | 9925.000  | 34.9    | 13.7   | 48.6     | 68.2     | -19.6  | Peak     | Vertical     |
|      | 11565.500 | 33.0    | 17.8   | 50.8     | 74.0     | -23.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 100 |  |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 7859.500  | 33.7    | 11.2   | 44.9     | 68.2     | -23.3  | Peak     | Horizontal   |
|      | 8386.500  | 34.0    | 11.2   | 45.2     | 74.0     | -28.8  | Peak     | Horizontal   |
|      | 9092.000  | 33.0    | 13.4   | 46.4     | 74.0     | -27.6  | Peak     | Horizontal   |
| *    | 9865.500  | 35.4    | 13.5   | 48.9     | 68.2     | -19.3  | Peak     | Horizontal   |
|      | 7536.500  | 33.2    | 11.9   | 45.1     | 74.0     | -28.9  | Peak     | Vertical     |
| *    | 8777.500  | 33.7    | 12.7   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10188.500 | 35.0    | 14.3   | 49.3     | 68.2     | -18.9  | Peak     | Vertical     |
|      | 10928.000 | 34.0    | 16.7   | 50.7     | 74.0     | -23.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer             | Karl Gao                 |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                 | 802.11a – Channel 116    |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                           |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-18GHz, | there is not show in the |  |  |  |  |
|           | report.                                                                          |                           |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9653.000  | 34.8    | 13.5   | 48.3     | 68.2     | -19.9  | Peak     | Horizontal   |
| *    | 10307.500 | 34.4    | 14.9   | 49.3     | 68.2     | -18.9  | Peak     | Horizontal   |
|      | 10911.000 | 33.5    | 16.6   | 50.1     | 74.0     | -23.9  | Peak     | Horizontal   |
|      | 11565.500 | 33.0    | 17.8   | 50.8     | 74.0     | -23.2  | Peak     | Horizontal   |
|      | 7468.500  | 33.6    | 12.1   | 45.7     | 74.0     | -28.3  | Peak     | Vertical     |
| *    | 8854.000  | 33.1    | 12.8   | 45.9     | 68.2     | -22.3  | Peak     | Vertical     |
| *    | 9814.500  | 34.1    | 13.7   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
|      | 10894.000 | 33.5    | 16.4   | 49.9     | 74.0     | -24.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 140 |  |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8165.500  | 34.0    | 11.5   | 45.5     | 74.0     | -28.5  | Peak     | Horizontal   |
|      | 9330.000  | 36.2    | 14.0   | 50.2     | 74.0     | -23.8  | Peak     | Horizontal   |
| *    | 9857.000  | 34.7    | 13.5   | 48.2     | 68.2     | -20.0  | Peak     | Horizontal   |
| *    | 10273.500 | 34.2    | 14.7   | 48.9     | 68.2     | -19.3  | Peak     | Horizontal   |
|      | 8199.500  | 34.9    | 11.4   | 46.3     | 74.0     | -27.7  | Peak     | Vertical     |
| *    | 9772.000  | 33.0    | 13.5   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
| *    | 9899.500  | 35.1    | 13.6   | 48.7     | 68.2     | -19.5  | Peak     | Vertical     |
|      | 11123.500 | 31.6    | 16.4   | 48.0     | 74.0     | -26.0  | Peak     | Vertical     |

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 144 |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |
|           | 2. Other frequency was 20dB below lir                                            | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7672.500  | 31.3    | 11.2   | 42.5     | 74.0     | -31.5  | Peak     | Horizontal   |
| *    | 8650.000  | 31.8    | 12.5   | 44.3     | 68.2     | -23.9  | Peak     | Horizontal   |
| *    | 10061.000 | 32.9    | 13.7   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
|      | 10911.000 | 32.2    | 16.6   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
| *    | 9721.000  | 31.7    | 13.5   | 45.2     | 68.2     | -23.0  | Peak     | Vertical     |
| *    | 10341.500 | 31.7    | 15.1   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 11659.000 | 31.1    | 17.7   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |
|      | 12194.500 | 31.7    | 17.8   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 149 |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 8684.000  | 33.3    | 12.5   | 45.8     | 68.2     | -22.4  | Peak     | Horizontal   |
|      | 9143.000  | 31.5    | 13.5   | 45.0     | 74.0     | -29.0  | Peak     | Horizontal   |
| *    | 10129.000 | 32.5    | 14.2   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
|      | 10902.500 | 32.1    | 16.6   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9874.000  | 33.2    | 13.6   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
| *    | 10282.000 | 32.3    | 14.8   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11157.500 | 31.2    | 16.7   | 47.9     | 74.0     | -26.1  | Peak     | Vertical     |
|      | 11565.500 | 30.5    | 17.8   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 157 |  |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8174.000  | 32.1    | 11.5   | 43.6     | 74.0     | -30.4  | Peak     | Horizontal   |
| *    | 9228.000  | 31.0    | 13.8   | 44.8     | 68.2     | -23.4  | Peak     | Horizontal   |
| *    | 10239.500 | 32.4    | 14.3   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
|      | 10894.000 | 30.8    | 16.4   | 47.2     | 74.0     | -26.8  | Peak     | Horizontal   |
| *    | 9704.000  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10486.000 | 31.7    | 15.4   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11098.000 | 31.0    | 16.8   | 47.8     | 74.0     | -26.2  | Peak     | Vertical     |
|      | 11616.500 | 31.3    | 17.4   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao              |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11a – Channel 165 |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                       |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                       |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                       |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8378.000  | 33.2    | 11.1   | 44.3     | 74.0     | -29.7  | Peak     | Horizontal   |
| *    | 8769.000  | 32.2    | 12.8   | 45.0     | 68.2     | -23.2  | Peak     | Horizontal   |
| *    | 9806.000  | 33.4    | 13.8   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 10817.500 | 32.0    | 16.5   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 9695.500  | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10324.500 | 31.7    | 15.1   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 11106.500 | 31.4    | 16.7   | 48.1     | 74.0     | -25.9  | Peak     | Vertical     |
|      | 11667.500 | 31.2    | 17.5   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao                    |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11ac-VHT20 – Channel 36 |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                             |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                             |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                             |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8361.000  | 32.8    | 11.1   | 43.9     | 74.0     | -30.1  | Peak     | Horizontal   |
|      | 9321.500  | 32.1    | 14.0   | 46.1     | 74.0     | -27.9  | Peak     | Horizontal   |
| *    | 9721.000  | 31.6    | 13.5   | 45.1     | 68.2     | -23.1  | Peak     | Horizontal   |
| *    | 10358.500 | 31.2    | 15.1   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 9848.500  | 32.4    | 13.5   | 45.9     | 68.2     | -22.3  | Peak     | Vertical     |
| *    | 10197.000 | 31.3    | 14.4   | 45.7     | 68.2     | -22.5  | Peak     | Vertical     |
|      | 10970.500 | 31.2    | 16.2   | 47.4     | 74.0     | -26.6  | Peak     | Vertical     |
|      | 11761.000 | 30.3    | 17.3   | 47.6     | 74.0     | -26.4  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer                                                                         | Karl Gao                    |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode                                                                             | 802.11ac-VHT20 – Channel 44 |  |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                                                                                       |                             |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                             |  |  |  |  |  |
|           | report.                                                                          |                                                                                       |                             |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7630.000  | 31.4    | 11.7   | 43.1     | 74.0     | -30.9  | Peak     | Horizontal   |
|      | 8403.500  | 32.2    | 11.5   | 43.7     | 74.0     | -30.3  | Peak     | Horizontal   |
| *    | 9797.500  | 32.1    | 13.7   | 45.8     | 68.2     | -22.4  | Peak     | Horizontal   |
| *    | 10197.000 | 31.3    | 14.4   | 45.7     | 68.2     | -22.5  | Peak     | Horizontal   |
| *    | 9636.000  | 31.5    | 13.4   | 44.9     | 68.2     | -23.3  | Peak     | Vertical     |
| *    | 10078.000 | 31.0    | 13.7   | 44.7     | 68.2     | -23.5  | Peak     | Vertical     |
|      | 11157.500 | 30.9    | 16.7   | 47.6     | 74.0     | -26.4  | Peak     | Vertical     |
|      | 11897.000 | 31.0    | 17.4   | 48.4     | 74.0     | -25.6  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                       |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT20 – Channel 48    |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1                                                             | 8GHz, there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                                |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9678.500  | 32.0    | 13.5   | 45.5     | 68.2     | -22.7  | Peak     | Horizontal   |
| *    | 10078.000 | 31.0    | 13.7   | 44.7     | 68.2     | -23.5  | Peak     | Horizontal   |
|      | 11183.000 | 31.1    | 17.0   | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
|      | 11633.500 | 29.3    | 17.7   | 47.0     | 74.0     | -27.0  | Peak     | Horizontal   |
| *    | 9797.500  | 32.9    | 13.7   | 46.6     | 68.2     | -21.6  | Peak     | Vertical     |
| *    | 10290.500 | 31.2    | 14.8   | 46.0     | 68.2     | -22.2  | Peak     | Vertical     |
|      | 11319.000 | 31.3    | 17.4   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |
|      | 11973.500 | 31.8    | 17.3   | 49.1     | 74.0     | -24.9  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer        | Karl Gao                       |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------|--------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode            | 802.11ac-VHT20 – Channel 52    |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                      |                                |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-1 | 8GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                      |                                |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9933.500  | 33.5    | 13.8   | 47.3     | 68.2     | -20.9  | Peak     | Horizontal   |
| *    | 10460.500 | 32.2    | 15.3   | 47.5     | 68.2     | -20.7  | Peak     | Horizontal   |
|      | 11302.000 | 31.4    | 17.2   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
|      | 11786.500 | 31.1    | 17.6   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9806.000  | 32.6    | 13.8   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10197.000 | 32.3    | 14.4   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
|      | 11582.500 | 31.6    | 17.5   | 49.1     | 74.0     | -24.9  | Peak     | Vertical     |
|      | 12254.000 | 30.6    | 17.5   | 48.1     | 74.0     | -25.9  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer        | Karl Gao                       |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------|--------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode            | 802.11ac-VHT20 – Channel 60    |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                      |                                |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-1 | 8GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                      |                                |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 8777.500  | 33.0    | 12.7   | 45.7     | 68.2     | -22.5  | Peak     | Horizontal   |
| *    | 10027.000 | 32.6    | 13.9   | 46.5     | 68.2     | -21.7  | Peak     | Horizontal   |
|      | 11327.500 | 31.1    | 17.4   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
|      | 12203.000 | 30.7    | 17.7   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
| *    | 9831.500  | 32.2    | 13.5   | 45.7     | 68.2     | -22.5  | Peak     | Vertical     |
| *    | 10188.500 | 32.1    | 14.3   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
|      | 11557.000 | 31.7    | 17.9   | 49.6     | 74.0     | -24.4  | Peak     | Vertical     |
|      | 12296.500 | 32.1    | 17.6   | 49.7     | 74.0     | -24.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer        | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode            | 802.11ac-VHT20 – Channel 64     |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                      |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-1 | I8GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                      |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9857.000  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
| *    | 10231.000 | 32.3    | 14.2   | 46.5     | 68.2     | -21.7  | Peak     | Horizontal   |
|      | 10919.500 | 31.5    | 16.7   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
|      | 11633.500 | 30.5    | 17.7   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
| *    | 9721.000  | 32.1    | 13.5   | 45.6     | 68.2     | -22.6  | Peak     | Vertical     |
| *    | 10188.500 | 32.4    | 14.3   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
|      | 10928.000 | 31.6    | 16.7   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
|      | 11642.000 | 30.8    | 17.9   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT20 – Channel 100    |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 10069.500 | 33.1    | 13.7   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
| *    | 10401.000 | 31.9    | 15.1   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
|      | 10834.500 | 31.0    | 16.4   | 47.4     | 74.0     | -26.6  | Peak     | Horizontal   |
|      | 11489.000 | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 9593.500  | 32.0    | 13.3   | 45.3     | 68.2     | -22.9  | Peak     | Vertical     |
| *    | 10035.500 | 30.5    | 13.9   | 44.4     | 68.2     | -23.8  | Peak     | Vertical     |
|      | 11225.500 | 30.9    | 16.9   | 47.8     | 74.0     | -26.2  | Peak     | Vertical     |
|      | 11633.500 | 31.2    | 17.7   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)
| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT20 – Channel 116    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9704.000  | 33.5    | 13.5   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
| *    | 10078.000 | 31.2    | 13.7   | 44.9     | 68.2     | -23.3  | Peak     | Horizontal   |
|      | 10911.000 | 31.6    | 16.6   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
|      | 11582.500 | 31.4    | 17.5   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 9806.000  | 32.9    | 13.8   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
| *    | 10120.500 | 33.6    | 14.1   | 47.7     | 68.2     | -20.5  | Peak     | Vertical     |
|      | 10902.500 | 32.2    | 16.6   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |
|      | 11642.000 | 31.9    | 17.9   | 49.8     | 74.0     | -24.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT20 – Channel 140    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7698.000  | 32.8    | 11.2   | 44.0     | 74.0     | -30.0  | Peak     | Horizontal   |
|      | 8463.000  | 31.5    | 11.7   | 43.2     | 74.0     | -30.8  | Peak     | Horizontal   |
| *    | 9772.000  | 32.3    | 13.5   | 45.8     | 68.2     | -22.4  | Peak     | Horizontal   |
| *    | 10214.000 | 32.6    | 14.3   | 46.9     | 68.2     | -21.3  | Peak     | Horizontal   |
| *    | 9687.000  | 32.1    | 13.5   | 45.6     | 68.2     | -22.6  | Peak     | Vertical     |
| *    | 10214.000 | 32.6    | 14.3   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11259.500 | 31.1    | 17.1   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |
|      | 12220.000 | 32.0    | 17.5   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT20 – Channel 144    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9780.500  | 32.0    | 13.6   | 45.6     | 68.2     | -22.6  | Peak     | Horizontal   |
| *    | 10112.000 | 31.6    | 14.0   | 45.6     | 68.2     | -22.6  | Peak     | Horizontal   |
|      | 10826.000 | 32.8    | 16.4   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
|      | 12296.500 | 31.6    | 17.6   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 9797.500  | 34.1    | 13.7   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
| *    | 10137.500 | 33.1    | 14.1   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
|      | 10911.000 | 32.0    | 16.6   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 11591.000 | 31.0    | 17.3   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                            | Test Engineer                                                                    | Karl Gao                          |  |  |  |  |
|-----------|-----------------------------------|----------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode                                                                        | 802.11ac-VHT20 – Channel 149      |  |  |  |  |
| Remark    | 1. Average measurement was not p  | 1. Average measurement was not performed if peak level lower than average limit. |                                   |  |  |  |  |
|           | 2. Other frequency was 20dB below | limit line within                                                                | 1-18GHz, there is not show in the |  |  |  |  |
|           | report.                           |                                                                                  |                                   |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9789.000  | 32.7    | 13.6   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 10307.500 | 31.0    | 14.9   | 45.9     | 68.2     | -22.3  | Peak     | Horizontal   |
|      | 11183.000 | 31.5    | 17.0   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
|      | 11786.500 | 30.4    | 17.6   | 48.0     | 74.0     | -26.0  | Peak     | Horizontal   |
| *    | 9780.500  | 33.5    | 13.6   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
| *    | 10503.000 | 32.3    | 15.5   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
|      | 11234.000 | 31.3    | 17.0   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
|      | 11786.500 | 29.2    | 17.6   | 46.8     | 74.0     | -27.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                            | Test Engineer                                                                    | Karl Gao                         |  |  |  |  |
|-----------|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode                                                                        | 802.11ac-VHT20 – Channel 157     |  |  |  |  |
| Remark    | 1. Average measurement was not pe | 1. Average measurement was not performed if peak level lower than average limit. |                                  |  |  |  |  |
|           | 2. Other frequency was 20dB below | limit line within 1                                                              | -18GHz, there is not show in the |  |  |  |  |
|           | report.                           |                                                                                  |                                  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9891.000  | 33.3    | 13.7   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
| *    | 10392.500 | 31.9    | 15.1   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
|      | 11183.000 | 31.2    | 17.0   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
|      | 11531.500 | 30.8    | 17.3   | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
| *    | 9738.000  | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10197.000 | 32.4    | 14.4   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 10732.500 | 32.3    | 15.9   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |
|      | 11540.000 | 31.4    | 17.6   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT20 – Channel 165    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1.                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9704.000  | 33.1    | 13.5   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
| *    | 10409.500 | 31.9    | 15.1   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
|      | 11106.500 | 31.5    | 16.7   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
|      | 11540.000 | 30.9    | 17.6   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 9772.000  | 31.6    | 13.5   | 45.1     | 68.2     | -23.1  | Peak     | Vertical     |
| *    | 10120.500 | 31.7    | 14.1   | 45.8     | 68.2     | -22.4  | Peak     | Vertical     |
|      | 11157.500 | 32.2    | 16.7   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |
|      | 12092.500 | 31.2    | 16.9   | 48.1     | 74.0     | -25.9  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT40 – Channel 38     |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 10078.000 | 32.7    | 13.7   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
| *    | 10562.500 | 32.2    | 15.2   | 47.4     | 68.2     | -20.8  | Peak     | Horizontal   |
|      | 11463.500 | 31.5    | 17.5   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
|      | 11990.500 | 31.6    | 17.1   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9840.000  | 33.5    | 13.5   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
| *    | 10375.500 | 32.7    | 15.1   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
|      | 10953.500 | 31.9    | 16.3   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |
|      | 11897.000 | 31.1    | 17.4   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT40 – Channel 46     |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9721.000  | 31.1    | 13.5   | 44.6     | 68.2     | -23.6  | Peak     | Horizontal   |
| *    | 10214.000 | 32.1    | 14.3   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
|      | 10834.500 | 31.9    | 16.4   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
|      | 11548.500 | 31.0    | 17.7   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9636.000  | 31.9    | 13.4   | 45.3     | 68.2     | -22.9  | Peak     | Vertical     |
| *    | 10452.000 | 32.0    | 15.4   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
|      | 11276.500 | 31.7    | 17.0   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |
|      | 12279.500 | 32.0    | 17.4   | 49.4     | 74.0     | -24.6  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT40 – Channel 54     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9678.500  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
| *    | 10282.000 | 32.5    | 14.8   | 47.3     | 68.2     | -20.9  | Peak     | Horizontal   |
|      | 10970.500 | 32.1    | 16.2   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
|      | 11565.500 | 31.7    | 17.8   | 49.5     | 74.0     | -24.5  | Peak     | Horizontal   |
| *    | 9678.500  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10282.000 | 32.5    | 14.8   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 10834.500 | 31.4    | 16.4   | 47.8     | 74.0     | -26.2  | Peak     | Vertical     |
|      | 11565.500 | 31.7    | 17.8   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT40 – Channel 62     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1.                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9721.000  | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Horizontal   |
| *    | 10460.500 | 32.4    | 15.3   | 47.7     | 68.2     | -20.5  | Peak     | Horizontal   |
|      | 11157.500 | 31.4    | 16.7   | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
|      | 11642.000 | 30.8    | 17.9   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9721.000  | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10384.000 | 32.5    | 15.1   | 47.6     | 68.2     | -20.6  | Peak     | Vertical     |
|      | 11548.500 | 30.9    | 17.7   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 11854.500 | 32.7    | 17.2   | 49.9     | 74.0     | -24.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT40 – Channel 102    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9908.000  | 32.7    | 13.6   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 10520.000 | 31.4    | 15.4   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
|      | 10851.500 | 31.9    | 16.5   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 11565.500 | 30.9    | 17.8   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9602.000  | 32.8    | 13.3   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10180.000 | 33.2    | 14.2   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
|      | 11174.500 | 30.8    | 17.0   | 47.8     | 74.0     | -26.2  | Peak     | Vertical     |
|      | 11582.500 | 31.0    | 17.5   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT40 – Channel 110    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9610.500  | 33.0    | 13.2   | 46.2     | 68.2     | -22.0  | Peak     | Horizontal   |
| *    | 10163.000 | 33.3    | 14.0   | 47.3     | 68.2     | -20.9  | Peak     | Horizontal   |
|      | 11514.500 | 31.5    | 17.3   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
|      | 11965.000 | 31.4    | 17.2   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
| *    | 9806.000  | 33.2    | 13.8   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
| *    | 10188.500 | 32.2    | 14.3   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
|      | 11106.500 | 31.0    | 16.7   | 47.7     | 74.0     | -26.3  | Peak     | Vertical     |
|      | 11514.500 | 31.4    | 17.3   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT40 – Channel 134    |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9865.500  | 33.7    | 13.5   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
| *    | 10171.500 | 31.9    | 14.1   | 46.0     | 68.2     | -22.2  | Peak     | Horizontal   |
|      | 10817.500 | 32.3    | 16.5   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
|      | 11863.000 | 31.9    | 17.2   | 49.1     | 74.0     | -24.9  | Peak     | Horizontal   |
| *    | 9636.000  | 32.4    | 13.4   | 45.8     | 68.2     | -22.4  | Peak     | Vertical     |
| *    | 10197.000 | 32.6    | 14.4   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
|      | 11098.000 | 32.0    | 16.8   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |
|      | 11650.500 | 31.1    | 17.8   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT40 – Channel 142    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9704.000  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
| *    | 10120.500 | 33.4    | 14.1   | 47.5     | 68.2     | -20.7  | Peak     | Horizontal   |
|      | 11081.000 | 32.3    | 16.7   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
|      | 11642.000 | 31.1    | 17.9   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 9695.500  | 33.9    | 13.5   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
| *    | 10477.500 | 32.0    | 15.3   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 11497.500 | 31.4    | 17.6   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |
|      | 12007.500 | 31.7    | 17.0   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                            | Test Engineer                                                                    | Karl Gao                         |  |  |  |  |
|-----------|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode                                                                        | 802.11ac-VHT40 – Channel 151     |  |  |  |  |
| Remark    | 1. Average measurement was not pe | 1. Average measurement was not performed if peak level lower than average limit. |                                  |  |  |  |  |
|           | 2. Other frequency was 20dB below | limit line within 1                                                              | -18GHz, there is not show in the |  |  |  |  |
|           | report.                           |                                                                                  |                                  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9925.000  | 32.9    | 13.7   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
| *    | 10460.500 | 32.0    | 15.3   | 47.3     | 68.2     | -20.9  | Peak     | Horizontal   |
|      | 10817.500 | 31.5    | 16.5   | 48.0     | 74.0     | -26.0  | Peak     | Horizontal   |
|      | 11557.000 | 31.1    | 17.9   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 9721.000  | 33.0    | 13.5   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
| *    | 10120.500 | 31.7    | 14.1   | 45.8     | 68.2     | -22.4  | Peak     | Vertical     |
|      | 11081.000 | 33.2    | 16.7   | 49.9     | 74.0     | -24.1  | Peak     | Vertical     |
|      | 11735.500 | 31.6    | 17.7   | 49.3     | 74.0     | -24.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                            | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |  |
|-----------|-----------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode                                                                        | 802.11ac-VHT40 – Channel 159    |  |  |  |  |  |
| Remark    | 1. Average measurement was not p  | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |  |
|           | 2. Other frequency was 20dB below | limit line within 1-                                                             | 18GHz, there is not show in the |  |  |  |  |  |
|           | report.                           |                                                                                  |                                 |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9721.000  | 32.0    | 13.5   | 45.5     | 68.2     | -22.7  | Peak     | Horizontal   |
| *    | 10265.000 | 30.1    | 14.6   | 44.7     | 68.2     | -23.5  | Peak     | Horizontal   |
|      | 11072.500 | 30.1    | 16.5   | 46.6     | 74.0     | -27.4  | Peak     | Horizontal   |
|      | 11931.000 | 32.1    | 17.0   | 49.1     | 74.0     | -24.9  | Peak     | Horizontal   |
| *    | 9687.000  | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
| *    | 10214.000 | 32.9    | 14.3   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
|      | 11642.000 | 30.4    | 17.9   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
|      | 12313.500 | 31.5    | 17.4   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                            | Test Engineer          | Karl Gao                        |
|-----------|-----------------------------------|------------------------|---------------------------------|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode              | 802.11ac-VHT80 – Channel 42     |
| Remark    | 1. Average measurement was not    | performed if peak l    | evel lower than average limit.  |
|           | 2. Other frequency was 20dB below | v limit line within 1- | 18GHz, there is not show in the |
|           | report.                           |                        |                                 |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9831.500  | 33.3    | 13.5   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
| *    | 10409.500 | 32.1    | 15.1   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11234.000 | 32.2    | 17.0   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
|      | 11667.500 | 31.2    | 17.5   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9814.500  | 33.8    | 13.7   | 47.5     | 68.2     | -20.7  | Peak     | Vertical     |
| *    | 10520.000 | 32.5    | 15.4   | 47.9     | 68.2     | -20.3  | Peak     | Vertical     |
|      | 11327.500 | 31.2    | 17.4   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 12169.000 | 30.8    | 17.4   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT80 – Channel 58     |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9899.500  | 32.8    | 13.6   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
| *    | 10350.000 | 30.8    | 15.2   | 46.0     | 68.2     | -22.2  | Peak     | Horizontal   |
|      | 11123.500 | 31.3    | 16.4   | 47.7     | 74.0     | -26.3  | Peak     | Horizontal   |
|      | 12245.500 | 30.9    | 17.6   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 9865.500  | 32.7    | 13.5   | 46.2     | 68.2     | -22.0  | Peak     | Vertical     |
| *    | 10290.500 | 32.5    | 14.8   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 11642.000 | 31.6    | 17.9   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |
|      | 12245.500 | 30.9    | 17.6   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT80 – Channel 106    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9687.000  | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
| *    | 10222.500 | 33.0    | 14.2   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11319.000 | 31.0    | 17.4   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 11557.000 | 31.6    | 17.9   | 49.5     | 74.0     | -24.5  | Peak     | Horizontal   |
| *    | 9789.000  | 33.0    | 13.6   | 46.6     | 68.2     | -21.6  | Peak     | Vertical     |
| *    | 10239.500 | 32.4    | 14.3   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
|      | 11225.500 | 31.0    | 16.9   | 47.9     | 74.0     | -26.1  | Peak     | Vertical     |
|      | 11650.500 | 30.3    | 17.8   | 48.1     | 74.0     | -25.9  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT80 – Channel 122    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9874.000  | 33.1    | 13.6   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
| *    | 10350.000 | 32.3    | 15.2   | 47.5     | 68.2     | -20.7  | Peak     | Horizontal   |
|      | 10928.000 | 31.2    | 16.7   | 47.9     | 74.0     | -26.1  | Peak     | Horizontal   |
|      | 11506.000 | 31.3    | 17.4   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9814.500  | 32.8    | 13.7   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
| *    | 10214.000 | 31.9    | 14.3   | 46.2     | 68.2     | -22.0  | Peak     | Vertical     |
|      | 10902.500 | 31.2    | 16.6   | 47.8     | 74.0     | -26.2  | Peak     | Vertical     |
|      | 11565.500 | 31.2    | 17.8   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ac-VHT80 – Channel 138    |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1.                                                              | 18GHz, there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9857.000  | 34.5    | 13.5   | 48.0     | 68.2     | -20.2  | Peak     | Horizontal   |
| *    | 10214.000 | 32.9    | 14.3   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 10962.000 | 32.6    | 16.2   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
|      | 11905.500 | 31.2    | 17.4   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
| *    | 9891.000  | 32.2    | 13.7   | 45.9     | 68.2     | -22.3  | Peak     | Vertical     |
| *    | 10477.500 | 32.1    | 15.3   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
|      | 11208.500 | 31.0    | 16.9   | 47.9     | 74.0     | -26.1  | Peak     | Vertical     |
|      | 11735.500 | 31.9    | 17.7   | 49.6     | 74.0     | -24.4  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|--------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT80 – Channel 155   |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                |  |  |  |
|           | 2. Other frequency was 20dB below lim                                            | nit line within 1-1 | 8GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9831.500  | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Horizontal   |
| *    | 10137.500 | 33.1    | 14.1   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11497.500 | 31.2    | 17.6   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
|      | 12016.000 | 30.7    | 16.9   | 47.6     | 74.0     | -26.4  | Peak     | Horizontal   |
| *    | 9933.500  | 33.5    | 13.8   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
| *    | 10452.000 | 31.7    | 15.4   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11004.500 | 31.7    | 16.5   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |
|      | 11633.500 | 31.1    | 17.7   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                       |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|--------------------------------|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT160 – Channel 50   |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                |  |  |
|           | 2. Other frequency was 20dB below lim                                            | nit line within 1-1 | 8GHz, there is not show in the |  |  |
|           | report.                                                                          |                     |                                |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9976.000  | 32.8    | 13.8   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
| *    | 10486.000 | 32.3    | 15.4   | 47.7     | 68.2     | -20.5  | Peak     | Horizontal   |
|      | 10877.000 | 32.2    | 16.3   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
|      | 11718.500 | 31.4    | 17.8   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 9891.000  | 32.1    | 13.7   | 45.8     | 68.2     | -22.4  | Peak     | Vertical     |
| *    | 10214.000 | 31.3    | 14.3   | 45.6     | 68.2     | -22.6  | Peak     | Vertical     |
|      | 11302.000 | 31.4    | 17.2   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 11803.500 | 31.2    | 17.7   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                       |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|--------------------------------|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ac-VHT160–Channel 114    |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                |  |  |
|           | 2. Other frequency was 20dB below lim                                            | nit line within 1-1 | 8GHz, there is not show in the |  |  |
|           | report.                                                                          |                     |                                |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9806.000  | 33.0    | 13.8   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
| *    | 10392.500 | 32.6    | 15.1   | 47.7     | 68.2     | -20.5  | Peak     | Horizontal   |
|      | 11234.000 | 30.9    | 17.0   | 47.9     | 74.0     | -26.1  | Peak     | Horizontal   |
|      | 11735.500 | 31.2    | 17.7   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 10010.000 | 33.6    | 13.8   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
| *    | 10435.000 | 32.1    | 15.5   | 47.6     | 68.2     | -20.6  | Peak     | Vertical     |
|      | 11200.000 | 30.9    | 16.8   | 47.7     | 74.0     | -26.3  | Peak     | Vertical     |
|      | 11642.000 | 30.7    | 17.9   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                       |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 36     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1                                                             | 8GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 10078.000 | 33.5    | 13.7   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
| *    | 10443.500 | 32.9    | 15.5   | 48.4     | 68.2     | -19.8  | Peak     | Horizontal   |
|      | 11234.000 | 31.6    | 17.0   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
|      | 12305.000 | 31.0    | 17.6   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
| *    | 9670.000  | 33.1    | 13.4   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
| *    | 10137.500 | 31.7    | 14.1   | 45.8     | 68.2     | -22.4  | Peak     | Vertical     |
|      | 10970.500 | 29.9    | 16.2   | 46.1     | 74.0     | -27.9  | Peak     | Vertical     |
|      | 12186.000 | 32.0    | 17.7   | 49.7     | 74.0     | -24.3  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 44      |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1.                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9704.000  | 33.4    | 13.5   | 46.9     | 68.2     | -21.3  | Peak     | Horizontal   |
| *    | 10452.000 | 32.3    | 15.4   | 47.7     | 68.2     | -20.5  | Peak     | Horizontal   |
|      | 11251.000 | 31.1    | 17.2   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
|      | 12305.000 | 30.9    | 17.6   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 9712.500  | 33.8    | 13.5   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
| *    | 10137.500 | 32.4    | 14.1   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
|      | 11055.500 | 31.9    | 16.3   | 48.2     | 74.0     | -25.8  | Peak     | Vertical     |
|      | 11650.500 | 31.2    | 17.8   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                       |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 48     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1                                                             | 8GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9814.500  | 32.5    | 13.7   | 46.2     | 68.2     | -22.0  | Peak     | Horizontal   |
| *    | 10248.000 | 32.7    | 14.3   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
|      | 11268.000 | 32.3    | 17.0   | 49.3     | 74.0     | -24.7  | Peak     | Horizontal   |
|      | 12305.000 | 30.8    | 17.6   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
| *    | 9636.000  | 32.9    | 13.4   | 46.3     | 68.2     | -21.9  | Peak     | Vertical     |
| *    | 10095.000 | 32.8    | 13.8   | 46.6     | 68.2     | -21.6  | Peak     | Vertical     |
|      | 10843.000 | 32.7    | 16.5   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |
|      | 11557.000 | 31.4    | 17.9   | 49.3     | 74.0     | -24.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer        | Karl Gao                       |
|-----------|-------------------------------------|----------------------|--------------------------------|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode            | 802.11ax-HE20 – Channel 52     |
| Remark    | 1. Average measurement was not pe   | rformed if peak lev  | vel lower than average limit.  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1 | 8GHz, there is not show in the |
|           | report.                             |                      |                                |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9814.500  | 32.6    | 13.7   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 10282.000 | 32.0    | 14.8   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
|      | 10919.500 | 31.7    | 16.7   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 11548.500 | 32.0    | 17.7   | 49.7     | 74.0     | -24.3  | Peak     | Horizontal   |
| *    | 9644.500  | 32.7    | 13.5   | 46.2     | 68.2     | -22.0  | Peak     | Vertical     |
| *    | 10129.000 | 32.7    | 14.2   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11174.500 | 31.7    | 17.0   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |
|      | 12254.000 | 32.4    | 17.5   | 49.9     | 74.0     | -24.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                       |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 60     |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1                                                             | 8GHz, there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                                |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9721.000  | 33.1    | 13.5   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
| *    | 10120.500 | 34.1    | 14.1   | 48.2     | 68.2     | -20.0  | Peak     | Horizontal   |
|      | 10996.000 | 31.9    | 16.5   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 11591.000 | 32.0    | 17.3   | 49.3     | 74.0     | -24.7  | Peak     | Horizontal   |
| *    | 9823.000  | 32.7    | 13.5   | 46.2     | 68.2     | -22.0  | Peak     | Vertical     |
| *    | 10469.000 | 32.1    | 15.3   | 47.4     | 68.2     | -20.8  | Peak     | Vertical     |
|      | 11302.000 | 31.1    | 17.2   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
|      | 11633.500 | 30.9    | 17.7   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 64      |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-1                                                             | I8GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9840.000  | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
| *    | 10205.500 | 32.0    | 14.3   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
|      | 11106.500 | 32.0    | 16.7   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
|      | 11557.000 | 31.1    | 17.9   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 10112.000 | 32.4    | 14.0   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10494.500 | 32.2    | 15.4   | 47.6     | 68.2     | -20.6  | Peak     | Vertical     |
|      | 11497.500 | 32.7    | 17.6   | 50.3     | 74.0     | -23.7  | Peak     | Vertical     |
|      | 12279.500 | 31.4    | 17.4   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE20 – Channel 100     |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9942.000  | 33.2    | 13.8   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
| *    | 10307.500 | 31.5    | 14.9   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
|      | 11081.000 | 32.2    | 16.7   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
|      | 11497.500 | 31.0    | 17.6   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
| *    | 9967.500  | 33.3    | 13.9   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
| *    | 10265.000 | 30.7    | 14.6   | 45.3     | 68.2     | -22.9  | Peak     | Vertical     |
|      | 11234.000 | 31.5    | 17.0   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |
|      | 11684.500 | 32.5    | 17.3   | 49.8     | 74.0     | -24.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE20 – Channel 116     |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9602.000  | 33.3    | 13.3   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
| *    | 9942.000  | 32.7    | 13.8   | 46.5     | 68.2     | -21.7  | Peak     | Horizontal   |
|      | 10928.000 | 31.8    | 16.7   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
|      | 11744.000 | 31.1    | 17.6   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9636.000  | 33.2    | 13.4   | 46.6     | 68.2     | -21.6  | Peak     | Vertical     |
| *    | 10103.500 | 33.3    | 13.9   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
|      | 11208.500 | 31.7    | 16.9   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 11905.500 | 31.1    | 17.4   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE20 – Channel 140     |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9848.500  | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
| *    | 10460.500 | 32.5    | 15.3   | 47.8     | 68.2     | -20.4  | Peak     | Horizontal   |
|      | 11302.000 | 31.4    | 17.2   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
|      | 11922.500 | 32.0    | 17.1   | 49.1     | 74.0     | -24.9  | Peak     | Horizontal   |
| *    | 9899.500  | 33.2    | 13.6   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
| *    | 10520.000 | 31.9    | 15.4   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 10945.000 | 31.9    | 16.4   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
|      | 11548.500 | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 144     |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9916.500  | 33.5    | 13.7   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
| *    | 10375.500 | 32.1    | 15.1   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11506.000 | 31.7    | 17.4   | 49.1     | 74.0     | -24.9  | Peak     | Horizontal   |
|      | 11795.000 | 30.9    | 17.7   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
| *    | 9857.000  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10435.000 | 31.4    | 15.5   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 10970.500 | 31.0    | 16.2   | 47.2     | 74.0     | -26.8  | Peak     | Vertical     |
|      | 11591.000 | 31.2    | 17.3   | 48.5     | 74.0     | -25.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                            | Test Engineer       | Karl Gao                          |
|-----------|-----------------------------------|---------------------|-----------------------------------|
| Test Date | 2024-01-22 ~ 2024-01-23           | Test Mode           | 802.11ax-HE20 – Channel 149       |
| Remark    | 1. Average measurement was not    | performed if peak   | level lower than average limit.   |
|           | 2. Other frequency was 20dB below | w limit line within | 1-18GHz, there is not show in the |
|           | report.                           |                     |                                   |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9806.000  | 33.3    | 13.8   | 47.1     | 68.2     | -21.1  | Peak     | Horizontal   |
| *    | 10443.500 | 33.1    | 15.5   | 48.6     | 68.2     | -19.6  | Peak     | Horizontal   |
|      | 10945.000 | 32.2    | 16.4   | 48.6     | 74.0     | -25.4  | Peak     | Horizontal   |
|      | 11633.500 | 31.2    | 17.7   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 9619.000  | 33.2    | 13.2   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10460.500 | 32.9    | 15.3   | 48.2     | 68.2     | -20.0  | Peak     | Vertical     |
|      | 11072.500 | 31.5    | 16.5   | 48.0     | 74.0     | -26.0  | Peak     | Vertical     |
|      | 12058.500 | 31.3    | 17.0   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                         |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|----------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE20 – Channel 157      |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                  |  |  |  |  |
|           | 2. Other frequency was 20dB below                                                | limit line within 1 | -18GHz, there is not show in the |  |  |  |  |
|           | report.                                                                          |                     |                                  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9568.000  | 32.3    | 13.3   | 45.6     | 68.2     | -22.6  | Peak     | Horizontal   |
| *    | 10120.500 | 31.9    | 14.1   | 46.0     | 68.2     | -22.2  | Peak     | Horizontal   |
|      | 10970.500 | 31.1    | 16.2   | 47.3     | 74.0     | -26.7  | Peak     | Horizontal   |
|      | 11710.000 | 31.0    | 17.8   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
| *    | 9695.500  | 33.3    | 13.5   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
| *    | 10197.000 | 32.4    | 14.4   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 10970.500 | 29.8    | 16.2   | 46.0     | 74.0     | -28.0  | Peak     | Vertical     |
|      | 11659.000 | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)
| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE20 – Channel 165     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9823.000  | 33.4    | 13.5   | 46.9     | 68.2     | -21.3  | Peak     | Horizontal   |
| *    | 10486.000 | 32.1    | 15.4   | 47.5     | 68.2     | -20.7  | Peak     | Horizontal   |
|      | 10894.000 | 31.6    | 16.4   | 48.0     | 74.0     | -26.0  | Peak     | Horizontal   |
|      | 11633.500 | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 9806.000  | 33.4    | 13.8   | 47.2     | 68.2     | -21.0  | Peak     | Vertical     |
| *    | 10205.500 | 32.8    | 14.3   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 10928.000 | 32.0    | 16.7   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |
|      | 11565.500 | 31.4    | 17.8   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE40 – Channel 38      |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9772.000  | 32.4    | 13.5   | 45.9     | 68.2     | -22.3  | Peak     | Horizontal   |
| *    | 10180.000 | 32.6    | 14.2   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
|      | 11293.500 | 31.3    | 17.1   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 12305.000 | 31.2    | 17.6   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
| *    | 9950.500  | 32.6    | 13.8   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10443.500 | 31.6    | 15.5   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11004.500 | 31.4    | 16.5   | 47.9     | 74.0     | -26.1  | Peak     | Vertical     |
|      | 11727.000 | 30.9    | 17.9   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE40 – Channel 46      |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9619.000  | 33.0    | 13.2   | 46.2     | 68.2     | -22.0  | Peak     | Horizontal   |
| *    | 10307.500 | 30.3    | 14.9   | 45.2     | 68.2     | -23.0  | Peak     | Horizontal   |
|      | 10928.000 | 31.4    | 16.7   | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
|      | 11650.500 | 31.0    | 17.8   | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
| *    | 9687.000  | 32.9    | 13.5   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
| *    | 10112.000 | 32.5    | 14.0   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
|      | 11217.000 | 31.1    | 16.8   | 47.9     | 74.0     | -26.1  | Peak     | Vertical     |
|      | 11650.500 | 31.1    | 17.8   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE40 – Channel 54      |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9780.500  | 32.5    | 13.6   | 46.1     | 68.2     | -22.1  | Peak     | Horizontal   |
| *    | 10469.000 | 31.9    | 15.3   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 10996.000 | 31.8    | 16.5   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
|      | 11769.500 | 31.3    | 17.4   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 10018.500 | 32.7    | 13.8   | 46.5     | 68.2     | -21.7  | Peak     | Vertical     |
| *    | 10426.500 | 31.0    | 15.4   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
|      | 11089.500 | 31.3    | 16.8   | 48.1     | 74.0     | -25.9  | Peak     | Vertical     |
|      | 11965.000 | 31.7    | 17.2   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Karl Gao                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                          | Test Mode           | 802.11ax-HE40 – Channel 62      |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9814.500  | 33.2    | 13.7   | 46.9     | 68.2     | -21.3  | Peak     | Horizontal   |
| *    | 10214.000 | 32.9    | 14.3   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11038.500 | 32.2    | 16.2   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
|      | 11676.000 | 31.1    | 17.3   | 48.4     | 74.0     | -25.6  | Peak     | Horizontal   |
| *    | 9678.500  | 31.5    | 13.5   | 45.0     | 68.2     | -23.2  | Peak     | Vertical     |
| *    | 10078.000 | 31.5    | 13.7   | 45.2     | 68.2     | -23.0  | Peak     | Vertical     |
|      | 10885.500 | 31.7    | 16.3   | 48.0     | 74.0     | -26.0  | Peak     | Vertical     |
|      | 11897.000 | 31.9    | 17.4   | 49.3     | 74.0     | -24.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Karl Gao                        |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23             | Test Mode                                                                        | 802.11ax-HE40 – Channel 102     |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                                 |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-                                                              | 18GHz, there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                                 |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9687.000  | 33.3    | 13.5   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
| *    | 10273.500 | 32.8    | 14.7   | 47.5     | 68.2     | -20.7  | Peak     | Horizontal   |
|      | 10936.500 | 31.6    | 16.6   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
|      | 11897.000 | 31.1    | 17.4   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 9670.000  | 32.7    | 13.4   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10205.500 | 32.6    | 14.3   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11072.500 | 32.2    | 16.5   | 48.7     | 74.0     | -25.3  | Peak     | Vertical     |
|      | 11667.500 | 31.3    | 17.5   | 48.8     | 74.0     | -25.2  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao                    |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|-----------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                               | Test Mode     | 802.11ax-HE40 – Channel 110 |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                             |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                             |  |  |  |
|           | report.                                                                               |               |                             |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 9670.000  | 32.7    | 13.4   | 46.1     | 68.2     | -22.1  | Peak     | Horizontal   |
| *    | 10095.000 | 32.6    | 13.8   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
|      | 11242.500 | 31.0    | 17.1   | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
|      | 11735.500 | 31.0    | 17.7   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
| *    | 9619.000  | 33.7    | 13.2   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
| *    | 9857.000  | 33.3    | 13.5   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 10851.500 | 32.1    | 16.5   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
|      | 11531.500 | 31.6    | 17.3   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Karl Gao                    |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|-----------------------------|--|--|--|
| Test Date | 2024-01-22 ~ 2024-01-23                                                               | Test Mode     | 802.11ax-HE40 – Channel 134 |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                             |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                             |  |  |  |
|           | report.                                                                               |               |                             |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
| *    | 10027.000 | 32.3    | 13.9   | 46.2     | 68.2     | -22.0  | Peak     | Horizontal   |
| *    | 10511.500 | 31.6    | 15.4   | 47.0     | 68.2     | -21.2  | Peak     | Horizontal   |
|      | 11217.000 | 31.9    | 16.8   | 48.7     | 74.0     | -25.3  | Peak     | Horizontal   |
|      | 12135.000 | 31.0    | 17.3   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
| *    | 9610.500  | 32.9    | 13.2   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
| *    | 10010.000 | 33.5    | 13.8   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 11208.500 | 31.1    | 16.9   | 48.0     | 74.0     | -26.0  | Peak     | Vertical     |
|      | 11548.500 | 31.8    | 17.7   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)