

Report No.: 2403RSU002-U7 Report Version: V01 Issue Date: 2024-04-25

RF Exposure Evaluation Declaration

- FCC ID: LNQ-WF710GF
- Applicant: Actiontec Electronics Inc.
- Product: Tri-band Wi-Fi 7 Mesh AP
- Model No.: GEBE320C, WF-710GF
- FCC Rule Part(s): FCC Part 2.1091
- **Result:** Complies
- Evaluation Date: 2024-04-22

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2403RSU002-U7	V01	Initial Report	2024-04-25	Valid

CONTENTS

Des	cription		Page
1.	Gener	ral Information	4
	1.1.	Applicant	4
	1.2.	Manufacturer	4
	1.3.	Testing Facility	4
	1.4.	Product Information	5
	1.5.	Antenna Details	5
	1.6.	Device Classification	6
	1.7.	Applied Standards	6
2.	RF Ex	posure Evaluation	7
	2.1.	Limits	7
	2.2.	MPE Exemptions	8
	2.3.	Calculated Result	11

1. General Information

1.1. Applicant

Actiontec Electronics Inc.

2445 Augustine Drive Suite 501, Santa Clara, California 95054, United States

1.2. Manufacturer

Actiontec Electronics Inc.

2445 Augustine Drive Suite 501, Santa Clara, California 95054, United States

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory									
	Laboratory Location (Suzhou - Wuzhong)									
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China									
	Laboratory Location (Suzhou - SIP)									
	4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China									
	Laboratory Accre	editations								
	A2LA: 3628.01		CNAS	5: L10551						
	FCC: CN1166		ISED:	CN0001						
	MOOL	R-20025	□G-20034	C-20020	T-20020					
	VCCI:	R -20141	G -20134	C-20103	□T-20104					
	Test Site – MRT S	Shenzhen Laborat	ory							
	Laboratory Locat	tion (Shenzhen)								
	1G, Building A, Ju	nxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Di	strict, Shenzhen,					
	China									
	Laboratory Accre	editations								
	A2LA: 3628.02		CNAS	: L10551						
	FCC: CN1284		ISED:	CN0105						
	Test Site – MRT 1	Faiwan Laboratory	1							
	Laboratory Location (Taiwan) No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)									
	Laboratory Accre	editations								
	TAF: 3261									
	FCC: 291082, TW	/3261	ISED:	TW3261						

1.4. Product Information

Product Name	Tri-band Wi-Fi 7 Mesh AP
Model No.	GEBE320C, WF-710GF
Wi-Fi Specification	802.11a/b/g/n/ac/ax/be
Bluetooth Specification	BLE only
Antenna Information	Refer to selection 1.5
Power Type	AC/DC Adapter
Operating Environment	Indoor Use
Accessory	
Adapter	Model: V30-V5000R120-060K0-US
	Input: 100-240V ~ 50/60Hz 1.5A max
	Output: 12.0V = 5.0A
Notes:	

- 1. There is not any hardware or software differences between GEBE320C and WF-710GF, only for different brand.
- 2. The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

1.5. Antenna Details

Frequency	TX		Antenna Gain			Directional Gain	
(MHz)	Paths		(0	lBi)		(dBi)	
		Ant 0	Ant 1	Ant 2	Ant 3	Correlated	Uncorrelated
Wi-Fi Antenna							
2412 ~ 2462	2	3.64	3.81			4.96	2.06
5180 ~ 5825	2	4.85	4.46			6.62	3.61
5925 ~ 7125	4	4.38	4.48	3.51	3.65	5.59	-0.07
na							
2402 ~ 2480	1		2	.36			
Remark:							
	(MHz) 2412 ~ 2462 5180 ~ 5825 5925 ~ 7125 na	(MHz) Paths 2412 ~ 2462 2 5180 ~ 5825 2 5925 ~ 7125 4 na	(MHz) Paths 2412 ~ 2462 2 5180 ~ 5825 2 5925 ~ 7125 4 4.38	(MHz) Paths (c 2412 ~ 2462 2 3.64 3.81 5180 ~ 5825 2 4.85 4.46 5925 ~ 7125 4 4.38 4.48	(MHz) Paths (dBi) 2412 ~ 2462 2 3.64 3.81 5180 ~ 5825 2 4.85 4.46 5925 ~ 7125 4 4.38 4.48 3.51	(MHz) Paths (dBi) Ant 0 Ant 1 Ant 2 Ant 3 2412 ~ 2462 2 3.64 3.81 5180 ~ 5825 2 4.85 4.46 5925 ~ 7125 4 4.38 4.48 3.51 3.65	(MHz) Paths (dBi) (d Ant 0 Ant 1 Ant 2 Ant 3 Correlated 2412 ~ 2462 2 3.64 3.81 4.96 5180 ~ 5825 2 4.85 4.46 6.62 5925 ~ 7125 4 4.38 4.48 3.51 3.65 5.59

- 1. The antenna gain and directional gain refer to manufacturer's antenna specification.
- 2. The device supports CDD Mode, STBC mode and SISO mode, details refer to the table as below.
- 3. CDD signals are correlated, the directional gain as follows,

For power measurements: Array Gain = 0 dB for $N_{ANT} \le 4$, the directional gain = max antenna gain + array gain

For power spectral density (PSD) measurements: the max directional gain (each angle) = $10 \log[(10^{G1} / 20 + 10^{G2} / 20 + ... + 10^{GN} / 20)^2 / N_{ANT}]$

4. STBC signals are uncorrelated, the directional gain as follows,

the max directional gain (each angle) = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}]$

Test Mode	T _x Paths	SISO	CDD Mode	STBC Mode					
Wi-Fi 2.4G									
802.11b/g	2	Х		Х					
802.11n/ax/be	2	Х	Х	\checkmark					
Wi-Fi 5G									
802.11a	2	Х	\checkmark	Х					
802.11n/ac/ax/be	2	Х	Х						
Wi-Fi 6G									
802.11a	1 (Ant 0)		Х	Х					
802.11a	4	Х	\checkmark	Х					
802.11ax/be	4	Х	Х	\checkmark					
Remark: "√" means "Support", "X" means "Not support".									

1.6. Device Classification

According to the user manual, this device is classified as a Mobile Device. So, the RF exposure evaluation requirements of § 2.1091 for mobile device exposure conditions subject to MPE limits.

1.7. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• FCC Part 2.1091 & KDB 447498 D04 Interim General RF Exposure Guidance v01

2. RF Exposure Evaluation

2.1. Limits

According to FCC §1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time					
(MHz)	Strength (V/m)	Strength (A/m) (mW/cm ²)		(Minutes)					
(A) Limits for Occupational/ Control Exposures									
0.3-3.0	614	1.63	*(100)	≤6					
3.0-30	1842/f	4.89/f	*(900/f ²)	<6					
30-300	61.4	0.163	1.0	<6					
300-1,500			f/300	<6					
1,500-100,000	100,000 5		5	<6					
	(B) Limits for Gen	eral Population/ Uncor	trolled Exposures						
0.3-1.34	614	1.63	*(100)	<30					
1.34-30	824/f	2.19/f	*(180/f ²)	<30					
30-300	27.5	0.073	0.2	<30					
300-1,500			f/1500	<30					
1,500-100,000			1.0	<30					

Limits For Maximum Permissible Exposure (MPE)

f= frequency in MHz. * = Plane-wave equivalent power density.

2.2. MPE Exemptions

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph §1.1307(b)(2) of this section): A single RF source is exempt if:

(Option A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph §1.1307(b)(3)(ii)(A) of this section.

Medical implant devices may only use this exemption and that in paragraph §1.1307(b)(3)(ii)(A);

(Option B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P is given by:

 $P th(mW) = \{ERP_{20cm}(d / 20cm)^{x} d \le 20cm\}$

 $P th(mW) = \{ERP_{20cm} \ 20cm < d \le 40cm$

Where

 $x = -\log_{10}\left(\frac{60}{ERP_{20}cm\sqrt{f}}\right)$ and f is in GHz;

and

 $ERP_{20cm}(mW) = \{2040f \ 0.3GHz \le f < 1.5GHz \\ ERP_{20cm}(mW) = \{3060 \ 1.5GHz \le f \le 6GHz \}$

(**Option C**) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source Frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1920R ²
1.34-30	3450R ² /f ²
30-300	3.83R ²
300-1,500	0.0128R ² f
1,500-100,000	19.2R ²

Table 1 to §1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

For multiple RF sources: Multiple RF sources are exempt if:

(A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required). This exemption may not be used in conjunction with other exemption criteria other than those is paragraph \$1.1307(b)(3)(i)(A) of this section. Medical implant devices may only use this exemption and that in paragraph \$1.1307(b)(3)(i)(A).

(B) in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

1.

Where:

a = number of fixed, mobile, or portable RF sources claiming exemption using paragraph (1.1307(b)(3)(i)(B)) of this section for P_{th} , including existing exempt transmitters and those being added.

b = number of fixed, mobile, or portable RF sources claiming exemption using paragraph §1.1307(b)(3)(i)(C) of this section for Threshold ERP, including existing exempt transmitters and those being added.

c = number of existing fixed, mobile, or portable RF sources with known evaluation for the specified minimum distance including existing evaluated transmitters.

*P*_i = the available maximum time-averaged power or the ERP, whichever is greater, for fixed, mobile, or

portable RF source *i* at a distance between 0.5 cm and 40 cm (inclusive).

 $P_{th,i}$ = the exemption threshold power (P_{th}) according to paragraph §1.1307(b)(3)(i)(B) of this section for fixed, mobile, or portable RF source *i*.

ERP_{*j*} = the ERP of fixed, mobile, or portable RF source *j*.

ERP_{th,j} = exemption threshold ERP for fixed, mobile, or portable RF source *j*, at a distance of at least $\lambda/2\pi$ according to the applicable formula of paragraph §1.1307(b)(3)(i)(C) of this section.

*Evaluated*_{*k*} = the maximum reported SAR or MPE of fixed, mobile, or portable RF source *k* either in the device or at the transmitter site from an existing evaluation at the location of exposure.

*Exposure Limit*_{*k*} = either the general population/uncontrolled maximum permissible exposure (MPE) or specific absorption rate (SAR) limit for each fixed, mobile, or portable RF source *k*, as applicable from §1.1310 of this chapter.

2.3. Calculated Result

Product	Tri-band Wi-Fi 7 Mesh AP
Test Item	RF Exposure Evaluation

Test Mode	Frequency	Maximum	Tune-up	Directional Gain	Tune-up ERP	Tune-up ERP
	Band	Conducted	Conducted	(dBi)	(dBm)	(mW)
	(MHz)	Power	Power			
		(dBm)	(dBm)			
BLE	2402 ~ 2480	6.18	6.68	2.36	6.89	4.9
802.11b/g/n/ax/be	2412 ~ 2462	25.76	26.26	3.81	27.92	619.4
802.11a/n/ac/ax/be	5180 ~ 5825	26.36	26.86	4.85	29.56	903.6
802.11a/ax/be	5955 ~ 7095				27.85	609.5

Note:

- 1. Tune-up power and the tune-up EIRP of 5955 ~ 7095 band were declared by manufacturer.
- Tune-up ERP = Tune-up Conducted Power + Directional 2.15, for 5955 ~ 7095MHz band, the Tune-up ERP = Max. EIRP (dBm) + 0.5dB – 2.15, Max. EIRP is from 2312RSU008-U4.

For single RF source, Option C

Test Mode	Frequency	λ / 2 π	R	Tune-up ERP	Thresholds ERP
	Band	(m)	(m)	(mW)	(mW)
	(MHz)				
BLE	2402 ~ 2480	0.0199	0.39	4.9	2219.52
802.11b/g/n/ax/be	2412 ~ 2462	0.0198	0.39	619.4	2219.52
802.11a/n/ac/ax/be	5180 ~ 5825	0.0092	0.39	903.6	2219.52
802.11a/ax/be	5955 ~ 7095	0.0080	0.39	609.5	2219.52

Note: R is from user manual.

For multiple RF sources

The EUT supports Wi-Fi 2.4GHz + Wi-Fi 5GHz + Wi-Fi 6GHz simultaneous transmissions or BLE separate transmission.

So the Max Simultaneous Transmission = 619.4/2219.32 (DTS) + 903.6/2219.32 (NII) + 609.5/2219.32 (6ID) = 0.9609 < 1

Therefore, the device qualifies for RF exposure test exemption.

The End