

 Elliott Laboratories Inc.
 684 West Maude Avenue
 408-245-7800 Phone

 www.elliottlabs.com
 Sunnyvale, CA 94086-3518
 408-245-3499 Fax

October 31, 2002

ATCB 6731 Whittier Ave Suite C110 McLean, Va. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart C of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan mare

Juan Martinez Sr. EMC Engineer

JM/bab Enclosures:

Application Fee FCC Form 731 Agent Authorization Letter Emissions Test Report with Exhibits

Elliott Laboratories Inc. 684 West Maude Avenue www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the ActionTec Electronics, Inc. Model: BMDC200

FCC ID:	LNQ-BMDC200
GRANTEE:	ActionTec Electronics, Inc. 760 North Mary Ave. Sunnyvale, CA 94087
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	October 31, 2002
FINAL TEST DATE:	October 28, 2002
	an

AUTHORIZED SIGNATORY:

turn Ø

Juan Martinez Sr. EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS 2 SCOPE 3 OBJECTIVE 3 STATEMENT OF COMPLIANCE 3 EMISSION TEST RESULTS 4 LIMITS OF CONDUCTED INTERFERENCE VOLTAGE 4 LIMITS OF ANTENNA CONDUCTED POWER 4 LIMITS OF ANTENNA CONDUCTED POWER 4 LIMITS OF POWER AND BANDWIDTH. 5 MEASUREMENT UNCERTISTERFERENCE FIELD STRENGTH. 4 LIMITS OF POWER AND BANDWIDTH. 5 MEASUREMENT UNCERTISTINGTIST. 6 GENERAL 6 MODIFICATIONS. 6 SUPPORT EQUIPMENT. 6 EXTERNAL 10 CABLING. 7 GENERAL INFORMATION 7 GENERAL INFORMATION 7 GENERAL INFORMATION 7 RADIATED EMISSIONS CONSIDERATIONS. 7 RADIATED EMISSIONS CONSIDERATIONS. 7 RADIATED EMISSIONS CONSIDERATIONS. 7 RASTRUEMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 INSTRUMENT CONTROL COMPUTER 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION <th>COVER PAGE</th> <th></th>	COVER PAGE	
OBJECTIVE 3 STATEMENT OF COMPLIANCE 3 EMISSION TEST RESULTS 4 LIMITS OF CONDUCTED INTERFERENCE VOLTAGE 4 LIMITS OF ANDIATED INTERFERENCE HELD STRENGTH 4 LIMITS OF ANDIATED INTERFERENCE HELD STRENGTH 4 LIMITS OF POWER AND BANDWIDTH 5 MEASUREMENT UNCERTAINTIES 5 EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 SUPPORT EQUIPMENT 6 SUPPORT EQUIPMENT 6 EXTERNAL IO CABLING. 6 TEST SUFT WARE 6 TEST SUFT BOURDENT 6 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS. 7 RADUTED EMISSIONS CONSIDERATIONS. 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 INSTRUMENT CONTROL COMPUTER 8 NISTRUMENT CONTROL COMPUTER 9 INSTRUMENT CALIBRATION NETWORK (LISN) 9 PULTERS/ATTENUATORS 9 INSTRUMENT CALIBRATION NETWORK (LISN) 9 INSTRUMENT CALIBRATION NETWORK (LISN) 9	TABLE OF CONTENTS	2
STATEMENT OF COMPLIANCE	SCOPE	3
EMISSION TEST RESULTS 4 LIMITS OF CONDUCTED INTERFERENCE VOLTAGE 4 LIMITS OF ANDTENNA CONDUCTED POWER 4 LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH	OBJECTIVE	3
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	STATEMENT OF COMPLIANCE	3
LIMITS OF ANTENNA CONDUCTED POWER 4 LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH 4 LIMITS OF POWER AND BANDWIDTH 5 MEASUREMENT UNCERTANTIES 5 EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 GENERAL 6 SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING 6 EXTERNAL I/O CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST STIE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION. 8 INSTRUMENT CONTROL COMPUTER 8 INSTRUMENT CONTROL COMPUTER 8 NATENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 NATENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9	EMISSION TEST RESULTS	4
LIMITS OF ANTENNA CONDUCTED POWER 4 LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH 4 LIMITS OF POWER AND BANDWIDTH 5 MEASUREMENT UNCERTANTIES 5 EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 GENERAL 6 SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING 6 EXTERNAL I/O CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST STIE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION. 8 INSTRUMENT CONTROL COMPUTER 8 INSTRUMENT CONTROL COMPUTER 8 NATENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 NATENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9	LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	4
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH. 4 LIMITS OF POWER AND BANDWIDTH. 5 MEASUREMENT UNDER TEST (EUT) DETAILS 5 EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 ENCLOSURE. 6 MODIFICATIONS 6 SUPPORT EQUIPMENT 6 EXTERNAL IO CABLING. 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST SOFTWARE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS PROCHUTER 8<		
MEASUREMENT UNCERTAINTIES 5 EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 MODIFICATIONS 6 SUPPORT EQUIPMENT 6 SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING. 6 TEST SOFTWARE 6 TEST SOFTWARE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 RADIATE MUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 INSTRUMENT CALIBRATION 9 INTERNAM AST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION 9 <td< td=""><td></td><td></td></td<>		
EQUIPMENT UNDER TEST (EUT) DETAILS 6 GENERAL 6 ENCLOSURE 6 MODIFICATIONS 6 SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 90 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS ROM ANTENNA PORT. 10 EONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209. 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209. 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209. 13 SAMPLE CALCULATIONS - RADIATED EMISSIONS 14 <td< td=""><td>LIMITS OF POWER AND BANDWIDTH</td><td>5</td></td<>	LIMITS OF POWER AND BANDWIDTH	5
GENERAL 6 ENCLOSURE 6 MODIFICATIONS 6 SUPPORT EQUIPMENT 6 EXTERNAL IO CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST SOFTWARE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METRE 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	MEASUREMENT UNCERTAINTIES	5
ENCLOSURE 6 MODIFICATIONS 6 SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 6 GENERAL INFORMATION 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALBRATION 9 INSTR	EQUIPMENT UNDER TEST (EUT) DETAILS	6
MODIFICATIONS 6 SUPPORT EQUIPMENT 6 EXTERNAL IO CABLING 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST STRE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 90 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS 11 CONDUCTED EMISSIONS 11 CONDUCTED EMISSIONS RECHECATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 </td <td>GENERAL</td> <td>6</td>	GENERAL	6
SUPPORT EQUIPMENT 6 EXTERNAL I/O CABLING 6 TEST SITE 6 TEST SITE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS. 7 RADIATED EMISSIONS CONSIDERATIONS. 7 MEASUREMENT INSTRUMENT ATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER. 9 PILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS FROM ANTENNA PORT. 11 SPECIFICATION LIMITS AND SAMPLE CALCULATIONS 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207. 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209. 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	ENCLOSURE	6
EXTERNAL I/O CABLING. 6 TEST SOFTWARE 6 TEST SOFTWARE 6 TEST SITE. 7 GENERAL INFORMATION. 7 CONDUCTED EMISSIONS CONSIDERATIONS. 7 RADIATED EMISSIONS CONSIDERATIONS. 7 RADIATED EMISSIONS CONSIDERATIONS. 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 ILINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER. 9 PITLTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION. 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTE		
TEST SOFTWARE 6 TEST SITE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 17 EXHIBIT 2: Test Data Log		
TEST SITE 7 GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNA 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 INSTRUMENT CALIBRATION 9 ITEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT. 11 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 17 EXHIBIT 2: Test Data Log Sheets 22 EXHIBIT 3: Photographs of Test Configurations <t< td=""><td></td><td></td></t<>		
GENERAL INFORMATION 7 CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT. 11 SPECIFICATION LIMITS AND SAMPLE CALCULATIONS 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 11 EXHIBIT 2: Test Data Log Sheets 2		
CONDUCTED EMISSIONS CONSIDERATIONS 7 RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 7 MEASUREMENT INSTRUMENTATION 8 INNSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER. 9 ANTENNAS 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT 11 SONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 11 EXHIBIT 2: Test Data Log Sheets 2 EXHIBIT 3: Photographs of ActionTec Electronics, Inc. 4 Model BMDC200 Construction 4 Model BMDC200 Construction 4 EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200 6 <tr< td=""><td>TEST SITE</td><td>7</td></tr<>	TEST SITE	7
RADIATED EMISSIONS CONSIDERATIONS 7 MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER. 9 FILTERS/ATTENUATORS. 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION. 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT 11 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207. 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209. 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 12 SAMPLE CALCULATIONS - RADIATED EMISSIONS 13 SAMPLE CALCULATIONS - RADIATED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 1 EXHIBIT 2: Test Data Log Sheets 2 EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc. Model BMDC200 5	GENERAL INFORMATION	7
MEASUREMENT INSTRUMENTATION 8 INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNAS 9 INSTRUMENT CALIBRATION 9 ITEST PROCEDURES 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT 11 SPECIFICATION LIMITS AND SAMPLE CALCULATIONS 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 12 EXHIBIT 2: Test Data Log Sheets 22 EXHIBIT 3: Photographs of Test Configurations 3 EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc. 4 <td>CONDUCTED EMISSIONS CONSIDERATIONS</td> <td>7</td>	CONDUCTED EMISSIONS CONSIDERATIONS	7
INSTRUMENT CONTROL COMPUTER 8 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 8 POWER METER. 9 FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS FROM ANTENNA PORT. 11 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 11 EXHIBIT 2: Test Data Log Sheets 22 EXHIBIT 3: Photographs of Test Configurations 3 EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc. Model BMDC200 4 EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200 6 EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200 7 <td>RADIATED EMISSIONS CONSIDERATIONS</td> <td>7</td>	RADIATED EMISSIONS CONSIDERATIONS	7
LINE IMPEDANCE STABILIZATION NETWORK (LISN)8POWER METER.9FILTERS/ATTENUATORS9ANTENNAS9ANTENNAS9ANTENNA MAST AND EQUIPMENT TURNTABLE9INSTRUMENT CALIBRATION.9TEST PROCEDURES10EUT AND CABLE PLACEMENT.10CONDUCTED EMISSIONS10RADIATED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT.11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data14EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC2005EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	MEASUREMENT INSTRUMENTATION	8
LINE IMPEDANCE STABILIZATION NETWORK (LISN)8POWER METER.9FILTERS/ATTENUATORS9ANTENNAS9ANTENNAS9ANTENNA MAST AND EQUIPMENT TURNTABLE9INSTRUMENT CALIBRATION.9TEST PROCEDURES10EUT AND CABLE PLACEMENT.10CONDUCTED EMISSIONS10RADIATED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT.11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data14EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC2005EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	INSTRUMENT CONTROL COMPLITER	8
POWER METER.9FILTERS/ATTENUATORS9ANTENNAS9ANTENNA MAST AND EQUIPMENT TURNTABLE9INSTRUMENT CALIBRATION9TEST PROCEDURES10EUT AND CABLE PLACEMENT.10CONDUCTED EMISSIONS10RADIATED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT.11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data14EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC2004EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
FILTERS/ATTENUATORS 9 ANTENNAS 9 ANTENNA MAST AND EQUIPMENT TURNTABLE 9 INSTRUMENT CALIBRATION 9 TEST PROCEDURES 10 EUT AND CABLE PLACEMENT. 10 CONDUCTED EMISSIONS 10 RADIATED EMISSIONS 10 RADIATED EMISSIONS 10 CONDUCTED EMISSIONS FROM ANTENNA PORT. 11 SPECIFICATION LIMITS AND SAMPLE CALCULATIONS 12 CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 12 RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 12 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 13 SAMPLE CALCULATIONS - RADIATED EMISSIONS 14 EXHIBIT 1: Test Equipment Calibration Data 11 EXHIBIT 2: Test Data Log Sheets 2 EXHIBIT 3: Photographs of Test Configurations 3 EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc. 4 Model BMDC200 5 EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200 6 EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200 7		
ANTENNA MAST AND EQUIPMENT TURNTABLE9INSTRUMENT CALIBRATION9 TEST PROCEDURES 10EUT AND CABLE PLACEMENT10CONDUCTED EMISSIONS10RADIATED EMISSIONS10RADIATED EMISSIONS FROM ANTENNA PORT11CONDUCTED EMISSIONS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20913SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC2005EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2007		
INSTRUMENT CALIBRATION9TEST PROCEDURES10EUT AND CABLE PLACEMENT10CONDUCTED EMISSIONS10RADIATED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc.4Model BMDC2005EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2007	ANTENNAS	9
TEST PROCEDURES10EUT AND CABLE PLACEMENT.10CONDUCTED EMISSIONS10RADIATED EMISSIONS10CONDUCTED EMISSIONS FROM ANTENNA PORT.11CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207.12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.12SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.13SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data.1IEXHIBIT 2: Test Data Log Sheets2EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200.5EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200.7		
EUT AND CABLE PLACEMENT10CONDUCTED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
CONDUCTED EMISSIONS10RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	TEST PROCEDURES	10
RADIATED EMISSIONS11CONDUCTED EMISSIONS FROM ANTENNA PORT.11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207.12RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.12SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data.1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200.5EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200.7	EUT AND CABLE PLACEMENT	10
CONDUCTED EMISSIONS FROM ANTENNA PORT.11SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	CONDUCTED EMISSIONS	10
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS12CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20712RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.20912SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	RADIATED EMISSIONS	11
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207.12RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.12SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data.1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.12SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data.1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	12
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS13SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
SAMPLE CALCULATIONS - RADIATED EMISSIONS14EXHIBIT 1: Test Equipment Calibration Data1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
EXHIBIT 1: Test Equipment Calibration Data.1EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
EXHIBIT 2: Test Data Log Sheets2EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
EXHIBIT 3: Photographs of Test Configurations3EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc.4Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
Model BMDC200 Construction4EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC2005EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC2006EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007	EXHIBIT 4: Detailed Photographs of Action Teo Floatnamics, Inc.	5 1
EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200		
EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC200		
EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC2007		
	EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200	7

SCOPE

An electromagnetic emissions test has been performed on the ActionTec Electronics, Inc. model BMDC200 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the ActionTec Electronics, Inc. model BMDC200 and therefore apply only to the tested sample. The sample was selected and prepared by Angela Yao of ActionTec Electronics, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of ActionTec Electronics, Inc. model BMDC200 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the ActionTec Electronics, Inc. model BMDC200. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

120 (, 00112							
Frequency	Level	Power	EN55	022 B	Detector	Comments	
MHz	dBuV	Lead	Limit	Margin	QP/Ave		
0.150	54.0	Line	66.0	-12.0	QP		

120V, 60Hz

LIMITS OF ANTENNA CONDUCTED POWER

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The highest out-of-band (Un-restricted) emission recorded in any 100 kHz band was -50 dB below the in-band level at 1000 MHz. The actual test data and any correction factors are contained an exhibit of this report.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency	Level	Pol	15.24	47(c)	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4803.975	46.2	V	54.0	-7.8	Avg	0	1.0	

LIMITS OF POWER AND BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The maximum power output was 3.74dBm on 2441 MHz. The minimum 20-dB bandwidth was .825 Megahertz on 2480. The actual test data and any correction factors are contained in an exhibit of this report.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The ActionTec Electronics, Inc. model BMDC200 is a Bluetooth FHSS transmitter, which is designed to provide wireless networking for home or office environment use.

The sample was received on October 28, 2002 and tested on October 28, 2002.

The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
ActionTec/BMDC200/Bluetooth Module	N/A

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

N/A

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
IBM/Model ThinkPad R40/Laptop	FX-00412	DoC
Logitec/N/A/Mouse	LNA20956436	DoC
HP/2225C/Printer	2714S40166	

No support equipment was used during emissions testing.

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Parallel	2	Printer	Laptop
USB	3	Mouse	Laptop

TEST SOFTWARE

During testing the EUT was continuously transmitting at full power on the channel(s) specified in the test data log.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 28, 2002 at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions' testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection program, which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz ranges for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

Frequency Range (MHz)	Limit (QP) (dBuV)	Limit (Avg) (dBuV)	
.150 to .500	66 – 56	56 - 46	
.500 to 5	56	46	
5 to 30	60	50	
RADIATE	D EMISSIONS SPECIFIC	CATION LIMITS, SE	CTION 15.209
Frequency			
Range	Lin	nit	Limit
(MHz)	(uV/m	@ 3m)	(dBuV/m @ 3m)
0.009-0.490		_z @ 300m _{Hz} @ 30m	
01170 11700	21000/1 Ki		
1.705 to 30	30 @	30m	29.5 @ 30m
30 to 88	10	0	40
88 to 216	15	0	43.5
216 to 960	20	0	46.0
Above 960	50	0	54.0

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 1000 - 25,000 MHz, 29-Oct-02 Engineer: imartinez

Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	12	3/2/2002	3/2/2003
Hewlett Packard	Microwave EMI test system (SA40, 9Hz - 40GHz), system 2	84125C	1410	12	4/2/2002	4/2/2003
Miteq	Preamplifier, 1-18GHz	AFS44	1346	12	1/7/2002	1/7/2003
	Emissions, 29-Oct-02					
Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #		Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 9Hz - 40GHz), system 2	84125C	1410	12	4/2/2002	4/2/2003
	iated Emissions, 30-Oct-02					
Engineer: Vishal						
Manufacturer	Description	Model #		Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	12	1/4/2002	1/4/2003
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 9 KHz -26.5GHz	8593EM	1141	12	3/11/2002	3/11/2003
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	957	12	3/25/2002	3/25/2003
EMCO	LISN, 10kHz-100MHz	3825/2	1293	12	6/2/2002	6/2/2003
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	12	9/12/2002	9/12/2003
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12	1/15/2002	1/15/2003
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12	2/7/2002	2/7/2003
Solar Electronics	Support Equipment LISN, 0.150-30.0 MHz	8012-50-R-24-BNC	305	12	8/20/2002	8/20/2003
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12	12/26/2001	12/26/2002
Output Power, 15-N	ov-02					
Engineer: Mark						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde & Schwarz	Power Meter	NRVS	1422	12	9/6/2002	9/6/2003
Rohde & Schwarz	Power Sensor 100uW - 2 Watts	NRV-Z32	1423	12	9/6/2002	9/6/2003

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

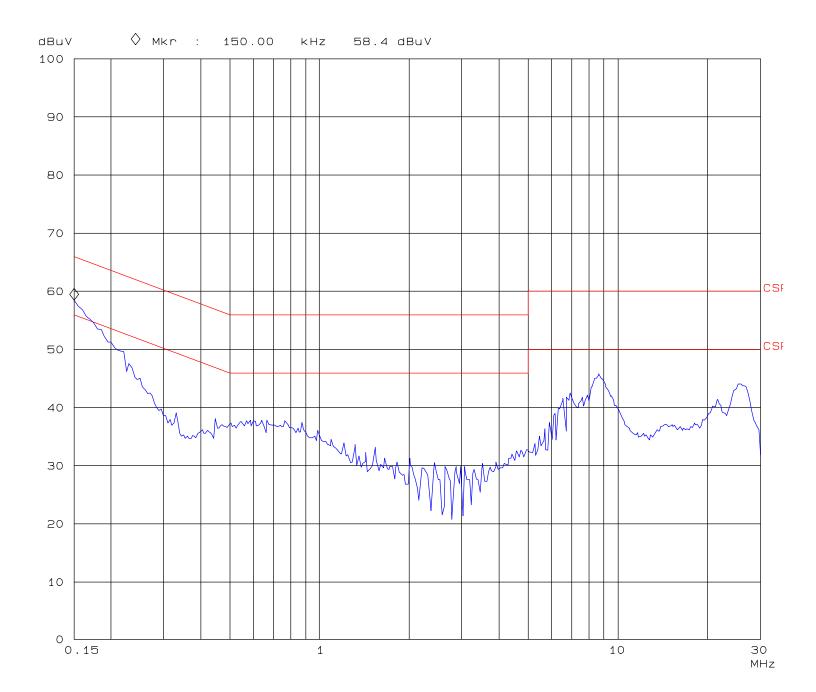
TEST LOG SHEETS

AND

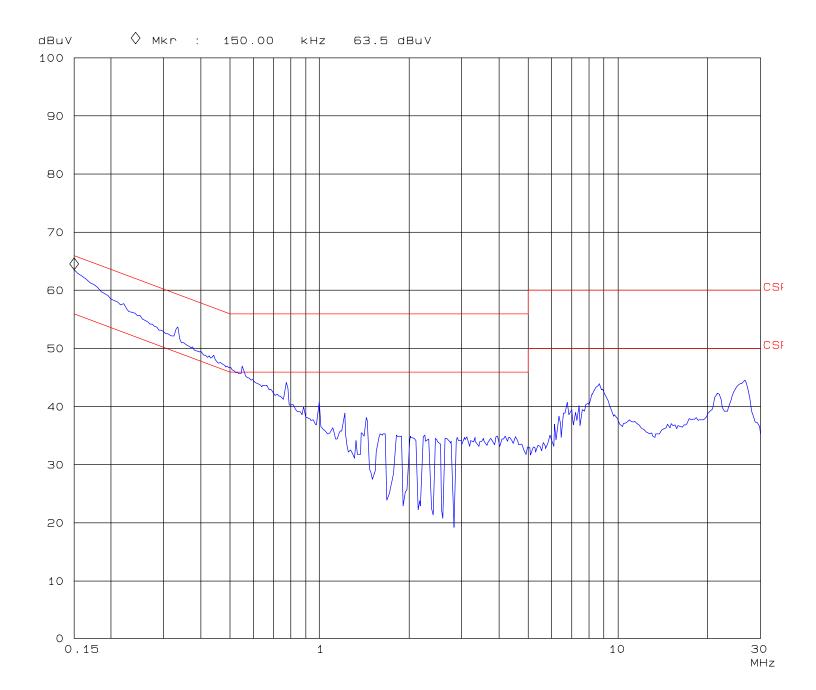
MEASUREMENT DATA

T49181_Radio 26 Pages

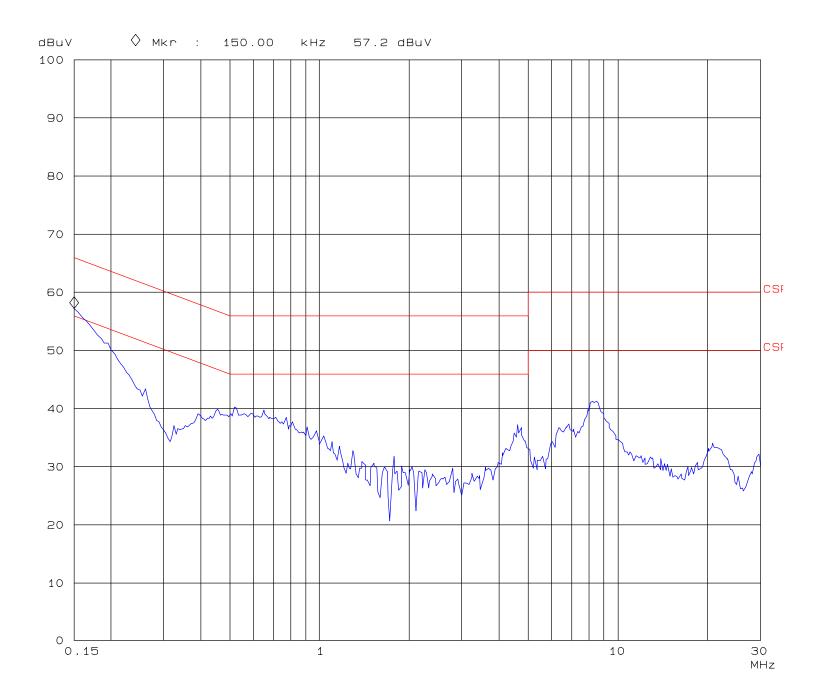
Elliott		
	EM	C Test Data
Client: ActionTec	Job Number:	
Model: BMDC200	T-Log Number:	
		Mark Briggs
Contact: Angela Yao	i toj Liig.	Mark Diggs
Emissions Spec: FCC15.247(FHSS), 15.109	Class:	-
Immunity Spec: -	Environment:	
	Environmenta	
EMC Test Dat	ia	
For The		
i di file		
ActionTec		
Model		
BMDC200		

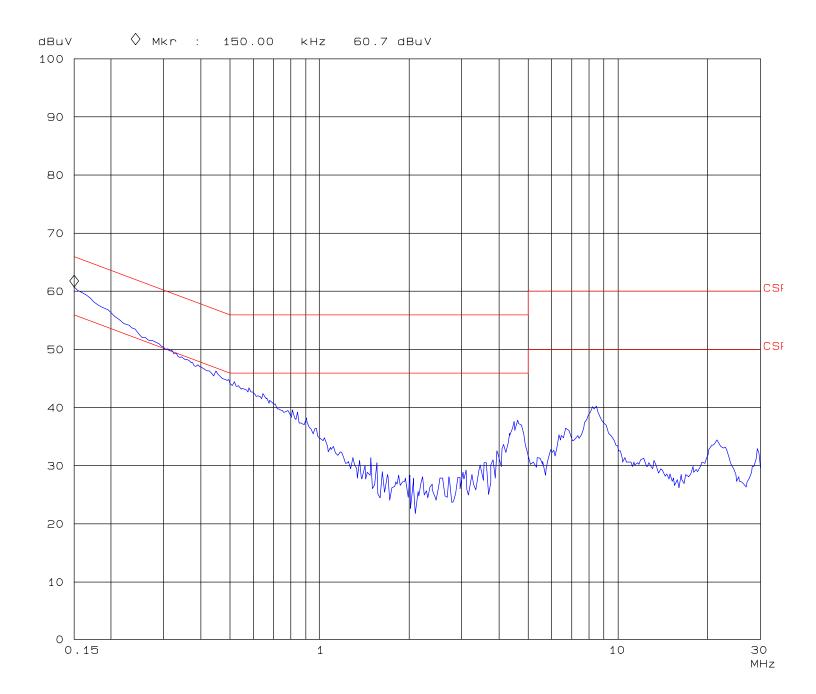

Elliott EMC Test Data								
Client:	ActionTec		Job Number:	J49140				
	BMDC200		T-Log Number:					
				Mark Briggs				
Contact:	Angela Yao		j	55				
	FCC15.247(FHSS), 15.	109	Class:	-				
Immunity Spec:			Environment:	-				
	E	UT INFORMATIO	ON					
The device is designed host laptop provides bo laptop screen. For testi table top during operati	General Description The EUT is a Bluetooth FHSS transmitter, which is designed to provide wireless networking environment for home or office use. The device is designed to be installed into a laptop PC and connected to the internal USB interface bus. The USB bus of the host laptop provides both power and data/control signals to the EUT. The EUT's antenna is integrated into the enclosure for the laptop screen. For testing purposes the EUT was installed into an IBM laptop. Normally, the host system would be placed on a table top during operation. The host IBM laptop was, therefore, treated as table-top equipment during testing to simulate the end user environment. The electrical rating of the host system's external AC-DC adapter was 120/240 V, 50/60 Hz, 1 Amp.							
Manufacturer	Model	Equipment Under Tes	Serial Number	FCC ID				
Actiontec	BMDC200	MPCI card	N/A	LNQ-BMDC200				
Actiontec	BMDC200 BMDC200	MPCI card	N/A N/A	2496A-BMDC200				
Antenna The maximum gain of the antenna is approximately 1.5 dBi. EUT Enclosure The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer. Modification History								
Mod. #	Test	Date	Modification					
1	-	-	None					

Ellio	ActionTec		Job Number: J	C Test D a	
	BMDC200		T-Log Number: 1		
model.			Proj Eng: N		
Contact:	Angela Yao		j		
	FCC15.247(FHSS), 15.109)	Class:	-	
Immunity Spec:	-		Environment:	-	
		Configuratio	ent		
Manufacturer	Model	Description	Serial Number	FCC ID	
IBM	IBM ThinkPad R40	Laptop	FX-00412	DoC	
Logitec	N/A	Mouse	LNA20956436	DoC	
HP	2225C	Printer	2714S40166		
	Rem	ote Support Equipr	nent		
Manufacturer	Model	Description	Serial Number	FCC ID	
None					
	Inter	face Cabling and P	orts		
		luce eubling and i	Cable(s)		
Port	Connected To	Description	Shielded or Unshielde	ed Length	
Parallel	Printer	Parallel Cable	Shielded	2	
USB	Mouse	USB Cable	Shielded	3	
ote: No external conn he EUT was in a conti equired.	EUT Op	peration During Emi e frequency specified in th	i ssions he 2400-2483.5 MHz band c	or set to hopping a	


Model: BMDC200 T-Log Number: T49181 Proj Eng: Mark Briggs Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109 Class: - Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109 Class: - Conducted Emissions - Power Ports Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config.Used: 1 Test Enginee: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration ISO a second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results 1 CE, AC Power 120V/60Hz FCC B Pass -10.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass <th>Client: ActionTe</th> <th></th> <th></th> <th></th> <th>EMC Test</th> <th></th>	Client: ActionTe				EMC Test	
Proj Eng: Mark Briggs Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109 Class: - Conducted Emissions - Power Ports Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm fron LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Modifications Made During Testing: No modifications were made to the EUT during testing No modifications From The Standard No modifications From The Standard						
Spec: FCC15.247(FHSS), 15.109 Class: - Conducted Emissions - Power Ports Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm fron LISN. A second LISN was used for all local support equipment. Ambient Conditions: Test Performed Limit Result Margin 1 CE, AC Power 230V/50Hz EN 301 489-1 Pass -10.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing					0	
Conducted Emissions - Power Ports Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm fron LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard	Contact: Angela Y	80				
Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Rel. Humidity: 75% Summary of Results Imit Result Margin 1 CE, AC Power 230V/50Hz FCC B Pass -10.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard	Spec: FCC15.2	47(FHSS), 15.109			Class: -	-
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from LISN. A second LISN was used for all local support equipment. Ambient Conditions: Test Performed Limit Run # Test Performed 1 CE, AC Power 120V/50Hz 2 CE, AC Power 120V/60Hz FCC B Pass -110.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz No modifications were made to the E		Conducted E	missions - P	ower P	orts	
Specification listed above. Date of Test: 10/29/2002 Config. Used: 1 Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm fron LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Modifications Made During Testing: Not the EUT during testing Modifications were made to the EUT during testing	Test Specifics					
Test Engineer: Vishal Config Change: None Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard	Objective	-	is to perform final qua	ification testi	ng of the EUT with respec	t to I
Test Location: SVOATS #1 EUT Voltage: 230V/50Hz and 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Margin 1 CE, AC Power 230V/50Hz EN 301 489-1 Pass 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard EUT Voltage: 230V/50Hz EUT Voltage: 230V/50Hz			0			
General Test Configuration For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 12°C Rel. Humidity: 75% Summary of Results Test Performed Limit Result Margin 1 CE, AC Power 230V/50Hz EN 301 489-1 Pass -10.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard Extended to the Standard					and 100/// 01-	
1 CE, AC Power 230V/50Hz EN 301 489-1 Pass -10.0dB @ 0.150MHz 2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard		ons: Temperature: 1	12°C			rom
2 CE, AC Power 120V/60Hz FCC B Pass -12.0dB @ 0.150MHz Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard	Ambient Conditi	ons: Temperature: 1 Rel. Humidity: 7	12°C			rom
Modifications Made During Testing: No modifications were made to the EUT during testing Deviations From The Standard	Ambient Conditi Summary of Res	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed	12°C 75% Limit	Result		rom
No modifications were made to the EUT during testing Deviations From The Standard	Ambient Conditi Summary of Res Run # 1	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz	12°C 75% Limit EN 301 489-1	Pass	-10.0dB @ 0.150MHz	rom
	Ambient Conditi Summary of Res Run # 1	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz	12°C 75% Limit EN 301 489-1	Pass	-10.0dB @ 0.150MHz	rom
No deviations were made from the requirements of the standard.	Ambient Conditi Summary of Res Run # 1 2 Modifications M	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing:	12°C 75% Limit EN 301 489-1 FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w	ons: Temperature: 1 Rel. Humidity: 7 Sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing	12°C 75% Limit EN 301 489-1 FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	
	Ambient Conditi Summary of Res Run # 1 2 Modifications M No modifications w Deviations From	ons: Temperature: 1 Rel. Humidity: 7 sults Test Performed CE, AC Power 230V/50Hz CE, AC Power 120V/60Hz ade During Testing: rere made to the EUT during testing The Standard	12°C 75% <u>Limit</u> <u>EN 301 489-1</u> FCC B	Pass	-10.0dB @ 0.150MHz	

	Elli						Job Numb	er: J49140
	BMDC20				T-Log Numb			
model	DINDOLO	0						ng: Mark Briggs
Contact	Angela Y	20					110 21	ig. Mark Driggs
	FCC15.2		15 100				Clas	201
Spec.	10015.2	47(11133)	, 13.107				Cida	55
un #1: A(C Power F	Port Cond	lucted Em	ssions. 0.1	5 - 30MHz,	230V/50Hz		
requency	Level	AC		022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.150	56.0	Neutral	66.0	-10.0	QP			
0.327	38.7	Neutral	49.5	-10.8	Average			
0.150	52.6	Line	66.0	-13.4	QP			
0.327	43.9	Neutral	59.5	-15.6	QP			
8.650	39.5	Line	60.0	-20.5	QP			
8.6600	37.4	Neutral	60.0	-22.6	QP			
0.740	29.1	Line	56.0	-26.9	QP			
0.740	16.5	Line	46.0	-29.5	Average			
0.150	26.4	Neutral	56.0	-29.6	Average			
0.150	24.2	Line	56.0	-31.8	Average			
8.650	16.2	Line	50.0	-33.8	Average			
8.6600	13.5	Neutral	50.0	-36.5	Average			
		Port Cond	lucted Em	ssions, 0.1	<u>5 - 30MHz,</u>			
	Level	AC		022 B	Detector	Comments		
				022 B Margin	Detector QP/Ave	Comments		
requency	Level	AC	EN55	1		Comments		
requency MHz	Level dBµV	AC Line	EN55 Limit	Margin	QP/Ave	Comments		
requency MHz 0.150	Level dBµV 54.0	AC Line Line	EN55 Limit 66.0	Margin -12.0	QP/Ave QP	Comments		
requency MHz 0.150 0.190	Level dBµV 54.0 50.0	AC Line Line Line	EN55 Limit 66.0 64.0	Margin -12.0 -14.0	QP/Ave QP QP	Comments		
requency MHz 0.150 0.190 0.190	Level dBµV 54.0 50.0 33.9	AC Line Line Line Line	EN55 Limit 66.0 64.0 54.0	Margin -12.0 -14.0 -20.1	QP/Ave QP QP Average	Comments		
requency MHz 0.150 0.190 0.190 0.190	Level dBµV 54.0 50.0 33.9 33.7	AC Line Line Line Neutral	EN55 Limit 66.0 64.0 54.0 54.0	Margin -12.0 -14.0 -20.1 -20.3	QP/Ave QP QP Average Average	Comments		
requency MHz 0.150 0.190 0.190 0.190 0.190	Level dBµV 54.0 50.0 33.9 33.7 43.4	AC Line Line Line Neutral Neutral	EN55 Limit 66.0 64.0 54.0 54.0 64.0	Margin -12.0 -14.0 -20.1 -20.3 -20.6	QP/Ave QP QP Average Average QP	Comments		
requency MHz 0.150 0.190 0.190 0.190 0.190 8.2450	Level dBµV 54.0 33.9 33.7 43.4 36.8	AC Line Line Line Neutral Neutral Neutral	EN55 Limit 66.0 64.0 54.0 54.0 64.0 60.0	Margin -12.0 -14.0 -20.1 -20.3 -20.6 -23.2	QP/Ave QP QP Average Average QP QP	Comments		
requency MHz 0.150 0.190 0.190 0.190 0.190 0.190 8.2450 0.585	Level dBµV 54.0 50.0 33.9 33.7 43.4 36.8 30.6	AC Line Line Line Neutral Neutral Neutral Neutral	EN55 Limit 66.0 64.0 54.0 54.0 64.0 60.0 56.0	Margin -12.0 -14.0 -20.1 -20.3 -20.6 -23.2 -25.4	QP/Ave QP QP Average Average QP QP QP	Comments		
requency MHz 0.150 0.190 0.190 0.190 0.190 8.2450 0.585 8.320	Level dBµV 54.0 50.0 33.9 33.7 43.4 36.8 30.6 34.0	AC Line Line Line Neutral Neutral Neutral Neutral Line	EN55 Limit 66.0 64.0 54.0 54.0 64.0 60.0 56.0 60.0	Margin -12.0 -14.0 -20.1 -20.3 -20.6 -23.2 -25.4 -25.4 -26.0	QP/Ave QP QP Average Average QP QP QP QP	Comments		
requency MHz 0.150 0.190 0.190 0.190 0.190 0.190 8.2450 0.585 8.320 0.585	Level dBµV 54.0 50.0 33.9 33.7 43.4 36.8 30.6 34.0 16.5	AC Line Line Line Neutral Neutral Neutral Neutral Line Neutral	EN55 Limit 66.0 64.0 54.0 54.0 64.0 60.0 56.0 60.0 46.0	Margin -12.0 -14.0 -20.1 -20.3 -20.6 -23.2 -25.4 -26.0 -29.5	QP/Ave QP QP Average Average QP QP QP QP QP Average	Comments		


EUT:	BMD C200
Manuf:	Action Tec
Op Cond:	Run 1 230V/50Hz Line
Operator:	Vishal Narayan
Test Spec:	EN55022 Class B
Comment:	J49140 / T49181
File name:	120line.RES


BMD C200	
Action Tec	
Run 1 230V/50Hz	Neutral
Vishal Narayan	
EN55022 Class B	
J49140 / T49181	
120line.RES	
	Action Tec Run 1 230V/50Hz Vishal Narayan EN55022 Class B J49140 / T49181

MD C200
ction Tec
un 2 120V/60Hz Line
ishal Narayan
N55022 Class B
49140 / T49181
20line.RES

BMD C200	
Action Tec	
Run 2 120V/60Hz	Neutral
Vishal Narayan	
EN55022 Class B	
J49140 / T49181	
120line.RES	
	Action Tec Run 2 120V/60Hz Vishal Narayan EN55022 Class B J49140 / T49181

Elliott

EMC Test Data

Client: ActionTec

Model: BMDC200

Job Number: J49140 T-Log Number: T49181

Proj Eng: Mark Briggs

Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109

Class: -

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/29/2002 Test Engineer: Vishal Test Location: SVOATS #1 Config. Used: 1 Config Change: None EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 2 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions:	Temperature: 12°C
	Rel. Humidity: 75%

Summary of Results

Run #	Test Performed	Test Performed Limit		
1	RE, Preliminary Scan 30 -	EN 55022 / FCC Class	Pass	-2.9dB @ 190.470MHz
	1000 MHz	В		
2	RE, 30 - 1000MHz - Maximized	EN 55022 / FCC Class	Pass	-2.7dB @ 150.490MHz
	Emissions	В		
3	RE, 1000 - 2000MHz	FCC B	Pass	-18.3dB @ 1195.0MHz
	Maximized Emissions			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

1/01/0	ob Number:								
								BMDC200	
	og Number:	I-L						BINDC200	woder:
Mark Briggs	Proj Eng:								
								Angela Ya	
-	Class:), 15.109	7(FHSS	FCC15.24	Spec:
						ed Emissior			
	Comments	Height	Azimuth	Detector	B/FCC B	EN 55022	Pol	Level	requency
		meters	degrees	Pk/QP/Avg	Margin		v/h	dBµV/m	MHz
		1.0	190	QP	-2.9	30.0	V	27.1	190.470
		1.0	30	QP	-3.3	30.0	V	26.7	150.490
		1.0	40	QP	-3.9	37.0	V	33.1	256.000
		1.0	200	QP	-3.9	37.0	V	33.1	299.010
		3.5	120	QP	-4.4	30.0	H	25.6	223.240
		4.0	110	QP	-4.6	30.0	H	25.4	215.040
		1.0	80	QP	-4.7	30.0	V	25.3	210.000
		3.5	120	QP	-4.8	37.0	H	32.2	256.000
		1.0	180	QP	-4.8	30.0	V	25.2	198.660
		4.0	130	QP	-5.5	30.0	H	24.5	150.490
		1.6	220	QP	-5.9	37.0	H	31.1	432.070
		1.0	180	QP	-6.0	30.0	V	24.0	223.240
		3.2	240	QP	-6.0	30.0	H	24.0	198.660
		1.3	180	QP	-6.3	30.0	V	23.7	215.040
		1.0	180	QP	-6.9	37.0	V	30.1	364.325
		3.5	230	QP	-7.4	37.0	H	29.6	364.325
		4.0	120	QP QP	-7.5	37.0	H V	29.5	243.720
		<u>1.0</u> 1.0	190 360	QP QP	-7.7 -8.1	37.0 30.0	V	29.3 21.9	243.720 165.140
		1.0	360 280	QP QP	-8.1 -8.5	30.0	V	21.9	36.920
		3.0	280	QP QP	-8.5 -8.7	30.0	V H	21.5	30.920
		1.0	330	QP QP	-8.8	37.0	п V	20.3	299.010
	Signal Sub	2.1	260	QP	-9.3	30.0	V	20.7	162.530
		1.0	320	QP	-9.8	37.0	V	20.7	432.070
	Signal Sub	3.0	360	QP	-10.0	30.0	H	20.0	210.000
		1.8	320	QP	-10.0	37.0	H	26.1	528.100
		1.0	20	QP	-10.9	37.0	V	25.5	528.100
		1.0	260	QP	-12.5	37.0	V	24.5	326.695
		1.0	200	QP	-12.5	37.0	V	24.3	380.755
		1.0	360	QP	-12.0	37.0	V	24.4	272.390

Elliott

EMC Test Data

Client: ActionTec

Model: BMDC200

Job Number: J49140

T-Log Number: T49181 Proj Eng: Mark Briggs

Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109

Class: -

Run #2: Maximized Readings From Run #1

Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
150.490	27.3	V	30.0	-2.7	QP	30	1.0	
190.470	27.1	V	30.0	-2.9	QP	190	1.0	
256.000	33.1	V	37.0	-3.9	QP	40	1.0	
299.010	33.1	V	37.0	-3.9	QP	200	1.0	
223.240	25.6	Н	30.0	-4.4	QP	120	3.5	
215.040	25.4	Н	30.0	-4.6	QP	110	4.0	

Run #3: Maximized readings, 1000 - 2000 MHz

Measurements made at 3m per FCC requirements.

medsurements made at on per 1 00 requirements.										
Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1195.000	55.7	V	74.0	-18.3	Pk	210	1.0			
1097.000	33.0	V	54.0	-21.0	Avg	230	1.0			
1195.000	32.7	V	54.0	-21.3	Avg	210	1.0			
1198.000	30.7	Н	54.0	-23.3	Avg	360	3.5			
1097.000	45.5	V	74.0	-28.5	Pk	230	1.0			
1198.000	44.4	Н	74.0	-29.6	Pk	360	3.5			

Elliott

EMC Test Data

Client: ActionTec

Model: BMDC200

Job Number: J49140 T-Log Number: T49181

Proj Eng: Mark Briggs

Contact: Angela Yao Spec: FCC15.247(FHSS), 15.109

Class: N/A

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/28/2002 Test Engineer: jmartinez Test Location: SVOATS #4 Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

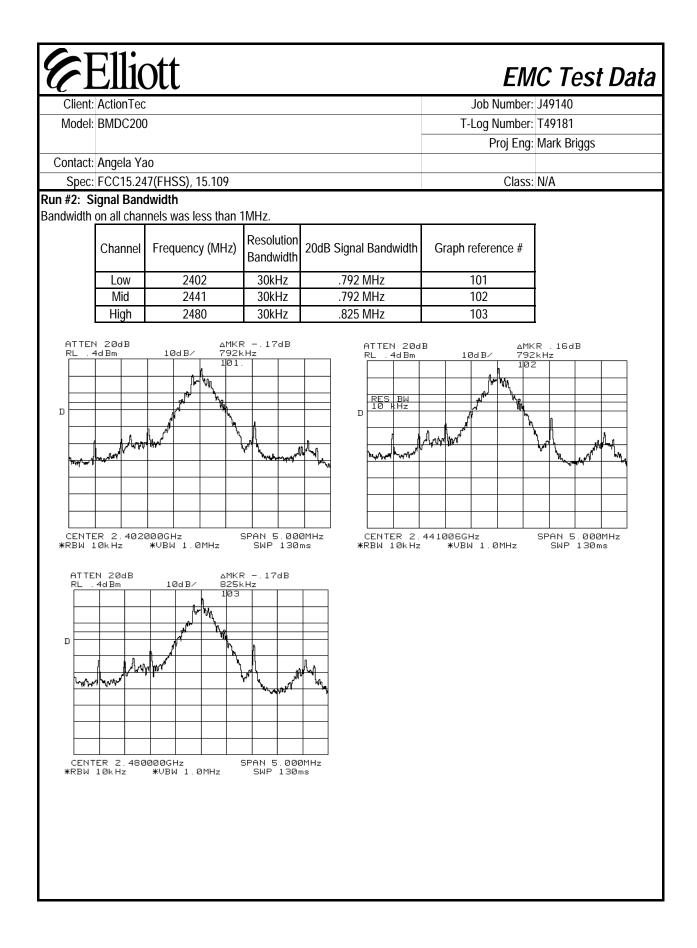
Ambient Conditions:

Temperature: 13°C Rel. Humidity: 72%

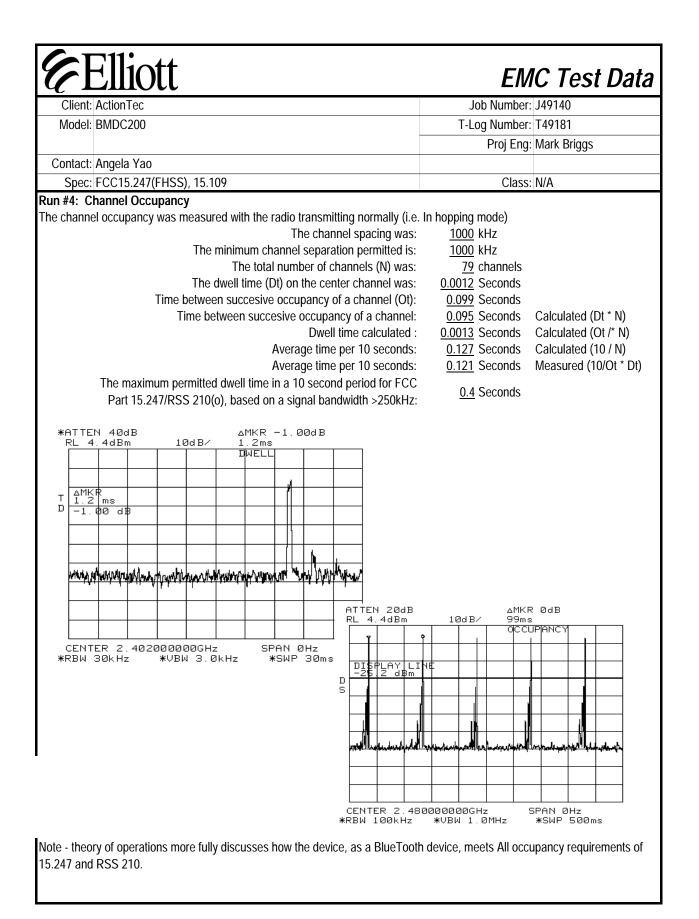
Client: ActionTe	ec		lob Number: J49140		
Model: BMDC20	00	T-Log Number: T49181			
				Proj Eng: Mark Briggs	
Contact: Angela	/ao				
Spec: FCC15.2	247(FHSS), 15.109		Class: N/A		
mmary of Re	sults				
Dur //	Task Darfarra d	1 : 14	Desult	Manaia	
Run #	Test Performed	Limit	Result	Margin	
1a	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-7.8dB @ 4804.0MHz	
1b	Spurious Emissions RE, 30 - 25,000 MHz -	15.247(c) FCC Part 15.209 /	Pass	-15.3dB @ 9764.0MHz	
10	Spurious Emissions	15.247(c)	F 033	-15.50D @ 7704.00011Z	
1c	RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-10.9dB @ 7439.9MHz	
10	Spurious Emissions	15.247(c)	1 400		
2	20dB Bandwidth	15.247(a)	Pass	.825 MHz	
3	Output Power	15.247(b)	Pass	3.7 dBm	
4	Channel Occupancy	15.247(a)	Pass	0.127 Sec	
5	Channel Seperation	15.247(a)	Pass	1.008 MHz	
6	Number of Channels	15.247(a)	Pass	79 Channels	
7	Out-of-Band	15.247(a)	Pass	Refer to Plots	
8	Bandages	15.247(a)	Pass	Refer to run	

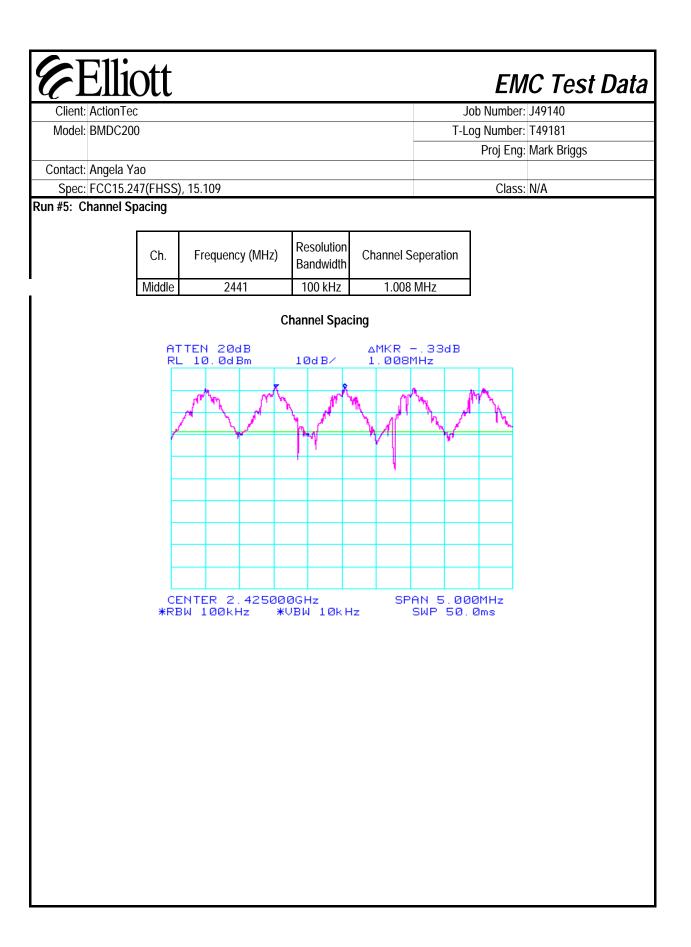
Modifications Made During Testing:

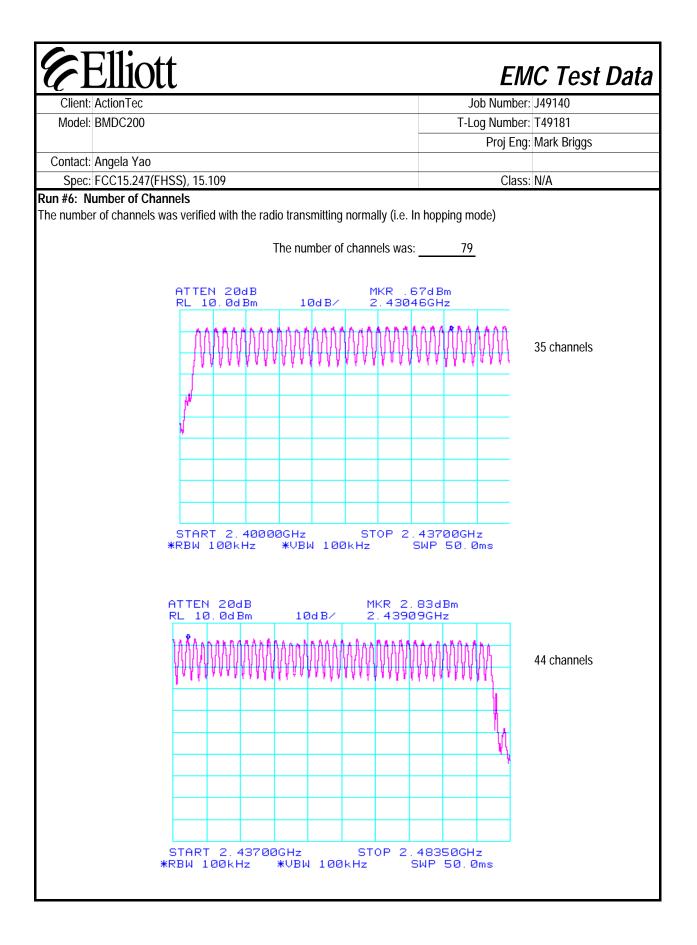
No modifications were made to the EUT during testing

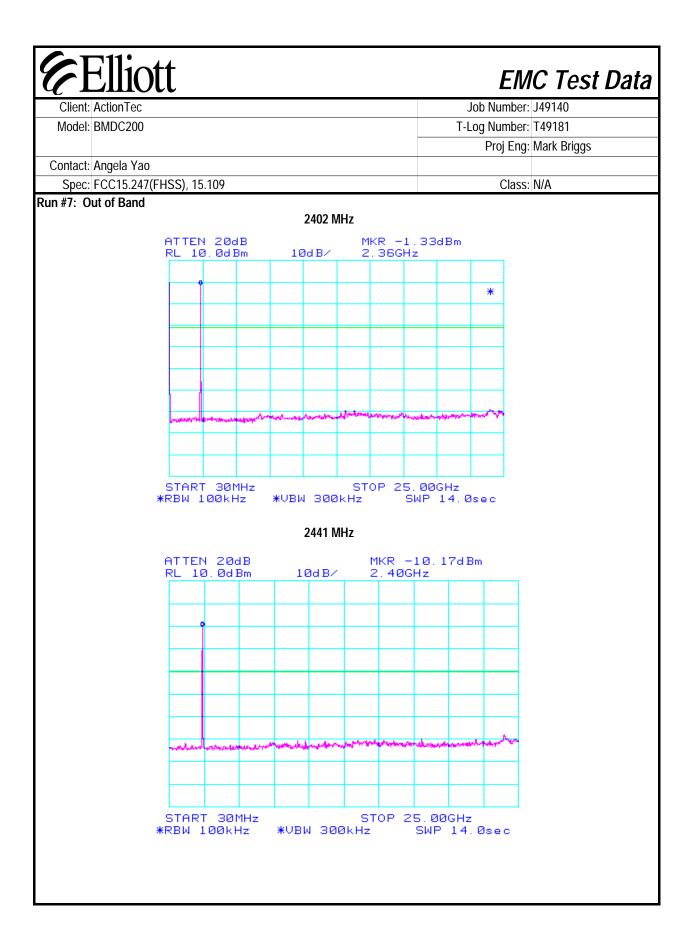

Deviations From The Standard

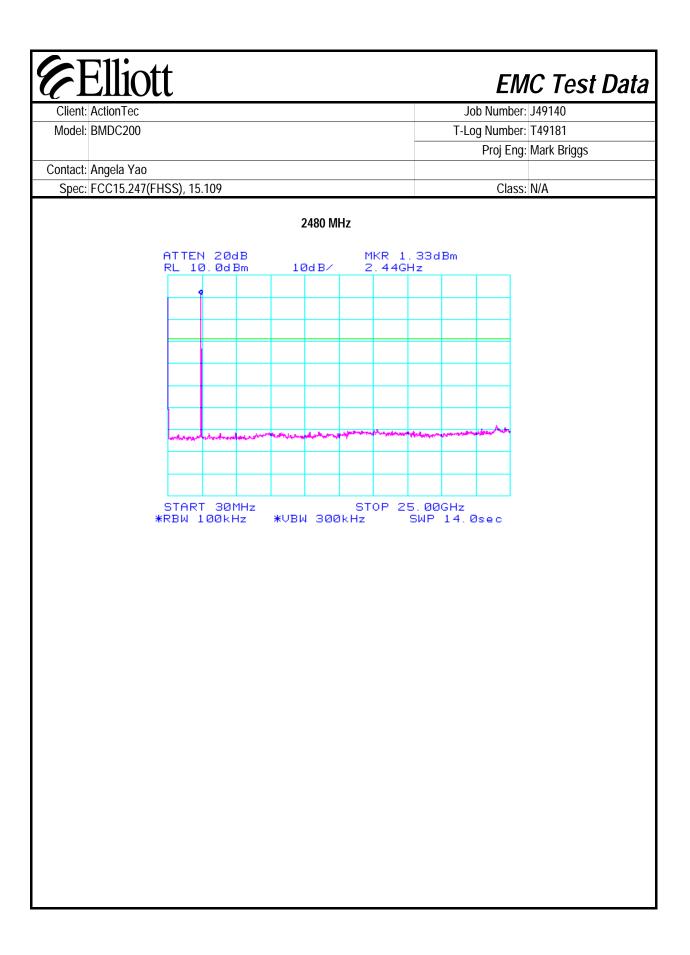
No deviations were made from the requirements of the standard.

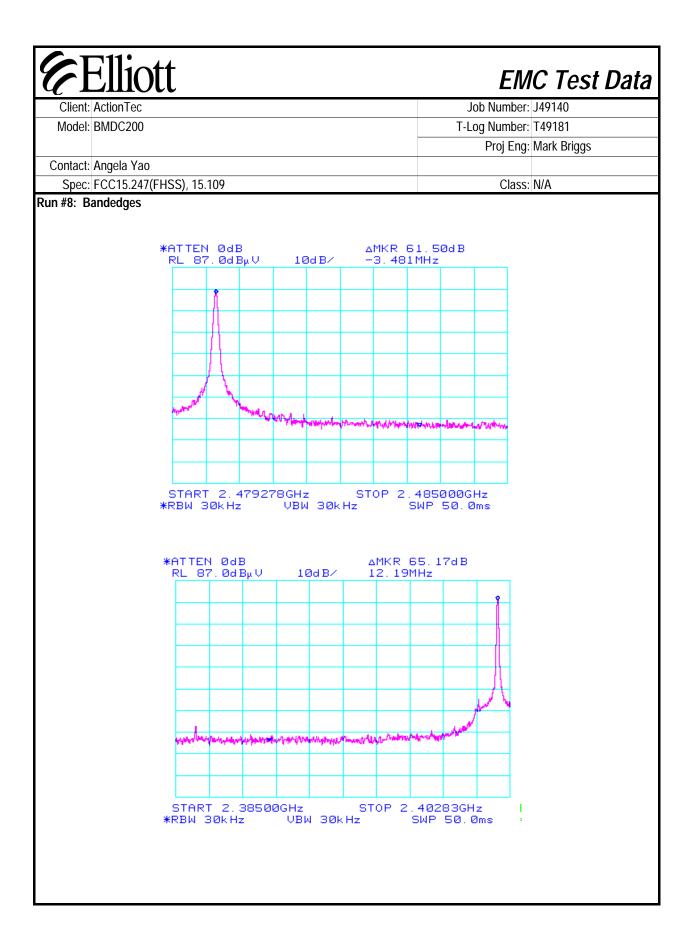

H V Fundamental emission level @ 3m in 1 MHz RBW: 91.4 99.6 Limit for emissions outside of restricted bands: 79.6 dBµV/m requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -13.8 Avg 0 1.0 12010.24 41.2 H 54.0 -13.8 Avg 0
Proj Eng: Mark Briggs Proj Eng: Mark Briggs Spec: FCC15.247(FHSS), 15.109 Class: N/A n #1a: Radiated Spurious Emissions, 30-12,000 MHz. Low Channel @ 2402 MHz Example a state of the st
Contact: Angela Yao Class: N/A Spec: FCC15.247(FHSS), 15.109 Class: N/A In #1a: Radiated Spurious Emissions, 30-12,000 MHz. Low Channel @ 2402 MHz Fundamental emission level @ 3m in 1 MHz RBW: 91.4 99.6 Limit for emissions outside of restricted bands: 79.6 dBμV/m Metain Margin MHz dBμV/m v/h Limit Margin MHz dBμV/m v/h Limit Margin NHz dBμV/m v/h Limit Margin 205.979 45.8 V 54.0 -7.8 Avg 0 1.0 205.979 45.8 V 54.0 -12.8 Avg 0 1.2 2010.24 43.2 V 54.0 -12.8 Avg 0 1.0 2010.24 41.2 H 54.0 -12.8 Avg 0 1.0 2010.42 41.2 H 54.0 -12.9 Avg 0 1.0 919.685
Spec: FCC15.247(FHSS), 15.109 Class: N/A In #1a: Radiated Spurious Emissions, 30-12,000 MHz. Low Channel @ 2402 MHz Im #1a: Radiated Spurious Emissions, 30-12,000 MHz. Low Channel @ 2402 MHz Fundamental emission level @ 3m in 1 MHz RBW: 91.4 99.6 Limit for emissions outside of restricted bands: 79.6 dBµV/m MHz dBµV/m v/h Limit MHz dBµV/m v/h Limit Margin 803.975 46.2 V 54.0 -7.8 Avg 0 1.0 205.979 45.8 V 54.0 -8.2 Avg 0 1.2 2010.24 43.2 V 54.0 -12.8 Avg 0 1.0 2010.24 41.2 H 54.0 -12.8 Avg 0 1.0 2010.24 41.2 H 54.0 -12.8 Avg 0 1.0 919.081 39.5 H 54.0 -12.8 Avg 0 1.0 <
In #1a: Radiated Spurious Emissions, 30-12,000 MHz. Low Channel @ 2402 MHz H V Fundamental emission level @ 3m in 1 MHz RBW: 91.4 99.6 Limit for emissions outside of restricted bands: 79.6 dBµV/m Comments requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 9919.685 40.2 H 54.0 -12.9 Avg 0 1.0 7439.275 58.7 H 74.0 -
HVFundamental emission level @ $3m$ in 1 MHz RBW:91.499.6Limit for emissions outside of restricted bands:79.6 dB μ V/mrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmeters1803.97546.2V54.0-7.8Avg01.0205.97945.8V54.0-8.2Avg01.212010.2443.2V54.0-10.8Avg901.22010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.8Avg01.02010.2441.2H54.0-12.9Avg01.02010.2555.7H74.0-16.8Pk01.02010.4957.2H74.0-16.8Pk3601.12010.4956.5V74.0-17.5Pk901.22010.4955.2V74.0-18.2Pk01.22010.4955.2<
Fundamental emission level @ 3m in 1 MHz RBW: 91.4 99.6 Limit for emissions outside of restricted bands: 79.6 dBµV/m requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 12010.49
Limit for emissions outside of restricted bands: 79.6 dBμV/m requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 9608.491 41.1 V 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0
requencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmeters4803.97546.2V54.0-7.8Avg01.07205.97945.8V54.0-8.2Avg01.212010.2412.212010.2443.2V54.0-10.8Avg901.212.27439.39941.2H54.0-12.8Avg01.012010.2441.2H54.0-12.8Avg3601.19608.49141.1V54.0-12.9Avg3191.29919.68540.2H54.0-13.8Avg01.09919.08139.5H54.0-15.3Pk01.012010.4957.2H74.0-16.8Pk3601.112010.4956.5V74.0-17.5Pk901.27205.95255.8V74.0-18.2Pk01.29608.71955.2V74.0-18.8Pk3191.29919.33053.8H74.0-20.2Pk01.0
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 12010.24 41.1 V 54.0 -12.8 Avg 0 1.0 12010.24 41.1 V 54.0 -13.8 Avg 0 1.0 9919.685 40.2 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 12010.24 41.1 V 54.0 -12.8 Avg 0 1.0 12010.24 41.1 V 54.0 -13.8 Avg 0 1.0 9919.685 40.2 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0
4803.975 46.2 V 54.0 -7.8 Avg 0 1.0 7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 9608.491 41.1 V 54.0 -12.9 Avg 319 1.2 9919.685 40.2 H 54.0 -14.5 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 12010.49 57.2 H 74.0 -15.3 Pk 0 1.2 12010.49 56.5 V 74.0
7205.979 45.8 V 54.0 -8.2 Avg 0 1.2 12010.24 43.2 V 54.0 -10.8 Avg 90 1.2 7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 9608.491 41.1 V 54.0 -12.9 Avg 319 1.2 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0
7439.399 41.2 H 54.0 -12.8 Avg 0 1.0 12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 9608.491 41.1 V 54.0 -12.9 Avg 319 1.2 9919.685 40.2 H 54.0 -12.9 Avg 0 1.0 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0
12010.24 41.2 H 54.0 -12.8 Avg 360 1.1 9608.491 41.1 V 54.0 -12.9 Avg 319 1.2 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
9608.491 41.1 V 54.0 -12.9 Avg 319 1.2 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.685 40.2 H 54.0 -14.5 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
9919.685 40.2 H 54.0 -13.8 Avg 0 1.0 9919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
AP919.081 39.5 H 54.0 -14.5 Avg 0 1.0 7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
7439.275 58.7 H 74.0 -15.3 Pk 0 1.0 12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
12010.49 57.2 H 74.0 -16.8 Pk 360 1.1 12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
12010.49 56.5 V 74.0 -17.5 Pk 90 1.2 7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
7205.952 55.8 V 74.0 -18.2 Pk 0 1.2 9608.719 55.2 V 74.0 -18.8 Pk 319 1.2 9919.330 53.8 H 74.0 -20.2 Pk 0 1.0
P919.330 53.8 H 74.0 -20.2 Pk 0 1.0
9919 935 53 A H 74 O -20 6 Pk 0 10
4959.968 33.1 H 54.0 -20.9 Avg 0 1.3
4803.876 50.7 V 74.0 -23.3 Pk 0 1.0
1960.188 46.2 H 74.0 -27.8 Pk 0 1.3 Interpretation of the function o


Model: E	ActionTec						J	ob Number:	J49140	
	Model: BMDC200							T-Log Number: T49181		
								.	Mark Briggs	
Contact: A	Angela Ya	0						-1 3		
	FCC15.24). 15.109					Class:	N/A	
		· · ·		s, 30-25,000) MHz. Cent	er Channel	@ 2441 MF			
		•					_			
					Н	V				
			@ 3m in 1		100	102				
Limit f	for emissi	ons outs	ide of restric	cted bands:	82	dBµV/m				
equency	Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments		
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
764.000	38.7	H	54.0	-15.3	Avg	360	1.0			
2205.00	42.2	V	54.0	-11.8	Avg	0	1.2	Ì		
2205.00	42.1	Н	54.0	-11.9	Avg	293	1.0			
/323.000	41.8	Н	54.0	-12.2	Avg	258	1.0			
323.000	41.8	V	54.0	-12.2	Avg	130	1.0			
764.000	40.2	V	54.0	-13.8	Avg	0	1.1			
882.000	36.2	V	54.0	-17.8	Avg	0	1.0			
/323.000 2205.00	55.9 55.7	V H	74.0 74.0	-18.1 -18.3	Pk Pk	130 293	1.0 1.0			
2205.00	55.7 55.5	н V	74.0	-18.3	PK Pk	293	1.0			
764.000	54.7	H	74.0	-18.5	Pk	360	1.2			
/323.000	54.5	H	74.0	-19.5	Pk	258	1.0			
9764.000	54.3	V	74.0	-19.7	Pk	0	1.1			
882.000	31.4	Н	54.0	-22.6	Avg	121	1.0			
882.000	46.2	V	74.0	-27.8	Pk	0	1.0			
882.000	45.7	Н	74.0	-28.3	Pk	121	1.0			
nto 1:		ons in re	estricted bar					missions, the	e limit was set 20dB b	


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Client:	Action Tec						J	lob Number:	J49140
Original and the second								T-I	og Number:	T49181
Contact: Angela Yao Class: N/A Spec: FCC15.247(FHSS), 15.109 Class: N/A un #1c: Radiated Spurious Emissions, 30-25,000 MHz. High Channel @ 2480 MHz Fundamental emission level @ 3m in 1 MHz RBW: 94.7 99 Limit for emissions outside of restricted bands: 79 dBµV/m equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.996 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 919.72 40.5 V 74.0 -17.5 Pk 239 1.2 2399.	mouon	51115 0200							<u> </u>	
Spec: FCC15.247(FHSS), 15.109 Class: N/A an #1c: Radiated Spurious Emissions, 30-25,000 MHz. High Channel @ 2480 MHz H V Fundamental emission level @ 3m in 1 MHz RBW: 94.7 99 Limit for emissions outside of restricted bands: 79 dBµV/m equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.996 43.1 H 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.0 2399.85 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 0 1.0	Contact.	Angela Ya	0							
Im #1c: Radiated Spurious Emissions, 30-25,000 MHz. High Channel @ 2480 MHz H V Fundamental emission level @ 3m in 1 MHz RBW: 94.7 99 Limit for emissions outside of restricted bands: 79 dBµV/m equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.392 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.081 40.4 H 54.0 -13.6 Avg 0 1.0 2399.65 55.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -17.5 Pk 239 1.2 2399.89 54.8 H 74.0 -18.2 Pk 0 1.0 <		-) 15 109					Class.	N/A
H V Fundamental emission level @ 3m in 1 MHz RBW: 94.7 99 Limit for emissions outside of restricted bands: 79 dBµV/m equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.392 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 55.5 V 74.0 -17.5 Pk 239			· · ·		s, 30-25,000) MHz. Hiah	Channel @	2480 MHz	010001	
Fundamental emission level @ 3m in 1 MHz RBW: 94.7 99 Limit for emissions outside of restricted bands: 79 dBµV/m MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.915 43.1 V 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.5 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.0 919.081 40.4 H 54.0 -13.6 Avg 0 1.1 999.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 54.8					,	5				
Limit for emissions outside of restricted bands: 79 dBµV/m equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters '439.915 43.1 V 54.0 -10.9 Avg 239 1.2 '439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 '919.772 40.5 V 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 '439.925 55.7 V 74.0 -17.5 Pk 239 1.2 '2399.89 54.8 H 74.0 -18.2 Pk 0										
equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters '439.915 43.1 V 54.0 -10.9 Avg 239 1.2 '439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 '919.772 40.5 V 54.0 -13.5 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 919.081 40.4 H 54.0 -13.6 Avg 0 1.1 929.993 39.8 V 54.0 -14.2 Avg 242 1.4 '439.275 55.7 H 74.0 -18.2 Pk 360 1.2 '2399.89 54.8 H										
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.5 Avg 0 1.0 919.772 40.4 H 54.0 -13.6 Avg 0 1.0 919.081 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 0 1.0 2399.89 54.8 H 74.0 -1	Limit	for emissi	ons outs	ide of restric	cted bands:	79	dBµV/m			
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.5 Avg 0 1.0 919.772 40.4 H 54.0 -13.6 Avg 0 1.0 919.081 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 0 1.0 2399.89 54.8 H 74.0 -1	oguopov	Loval	Dol	15 200	15 217	Dotoctor	Azimuth	Hoight	Commonte	
439.915 43.1 V 54.0 -10.9 Avg 239 1.2 439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.5 Avg 125 1.0 919.081 40.4 H 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 9959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.977 54.3 H 74.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td><td>Comments</td><td></td></td<>								Ŭ	Comments	
439.399 43.1 H 54.0 -10.9 Avg 0 1.0 2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 919.772 40.5 V 54.0 -13.5 Avg 125 1.0 919.772 40.4 H 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.2 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3					¥	v	<u> </u>			
2399.65 42.3 V 54.0 -11.7 Avg 360 1.2 9919.772 40.5 V 54.0 -13.5 Avg 125 1.0 9919.081 40.4 H 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.7 Pk 0 1.0 949.976 83.2.7 H 54.0 -21.3 Avg 0 1.3 959.968 32.7 H 54.0 -						v				
919.081 40.4 H 54.0 -13.6 Avg 0 1.0 2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.2 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.930 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 960.188 45.7 H 74.0 -28.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td>v</td> <td></td> <td></td> <td></td> <td></td>						v				
2399.65 40.4 H 54.0 -13.6 Avg 0 1.1 9959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.930 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Avg</td> <td></td> <td></td> <td></td> <td></td>						Avg				
959.933 39.8 V 54.0 -14.2 Avg 242 1.4 439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.930 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b						v				
439.845 56.5 V 74.0 -17.5 Pk 239 1.2 2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.977 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b						Ŭ.				
2399.89 55.8 V 74.0 -18.2 Pk 360 1.2 439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.330 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3						¥				
439.275 55.7 H 74.0 -18.3 Pk 0 1.0 2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.330 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.968 32.7 H 54.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -25.8 Pk 0 1.3 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b										
2399.89 54.8 H 74.0 -19.2 Pk 0 1.1 919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.330 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b										
919.977 54.4 V 74.0 -19.6 Pk 125 1.0 919.330 54.3 H 74.0 -19.7 Pk 0 1.0 959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3										
919.330 54.3 H 74.0 -19.7 Pk 0 1.0 9959.968 32.7 H 54.0 -21.3 Avg 0 1.3 959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3							.			
959.707 48.2 V 74.0 -25.8 Pk 242 1.4 960.188 45.7 H 74.0 -28.3 Pk 0 1.3 To remissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b			Н							
960.188 45.7 H 74.0 -28.3 Pk 0 1.3 sto 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b	959.968	32.7	Н	54.0	-21.3	Avg	0	1.3		
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB b	959.707									
to 1	960.188	45.7	Н	74.0	-28.3	Pk	0	1.3		
the level of the fundamental.	to 1.	For emiss	ions in re	estricted bar	nds, the limit	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB be
	le I.	the level o	f the fun	damental.						
		the level o	if the fun	damental.						




	Ellic	ott			EN	IC Test Data
	t: ActionTec				Job Number	: J49140
Mode	el: BMDC200)			T-Log Number	: T49181
					Proj Eng	: Mark Briggs
Contac	t: Angela Ya	10				
Spec	c: FCC15.24	7(FHSS), 15.109	Class	: N/A		
Run #3: (Output Pow	ver (Peak Power Me	ter)			
	Channel	Frequency (MHz)	Measured power	Cable Loss	Power Output (dBm)	1
	Low	2402	2.4	0.6	3.0	1
	Mid	2441	3.1	0.6	3.7	
	High	2480	2.5	0.6	3.1]
	Magazine					nkuo achio lass
Note 1:					ver is measured power gain is approximately 2	
Note 2:		mitted under 15.247			yain is approximately 2	udi. Maximum output



	ActionTec							lob Number:	J49140	
Model: BMDC200							T-Log Number:			
									Mark Briggs	
Contact: Angela Yao								T toj Elig.	Mark Diggs	
Spec: FCC15.247(FHSS), 15.109								Class:	N/A	
		· · ·	asurements	•				01033.		
unuunoi		,								
requency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2401.945		V	-	-	Pk	277	1.4			
2401.999		V	-	-	Avg	277	1.4			
2401.960		H	-	-	Pk	158	1.4			
2401.965		H	-	-	Avg	158	1.4			
2479.972		V	-	-	Pk	266	1.3	ļ		
2479.989		V	-	-	Avg	266	1.3			
2479.968 2479.992		H H	-	-	Pk	354 354	1.3 1.3			
2417.772	74.0	11	-	-	Avg	554	1.3			
Spurious Signal MHz		Fundamental Level (dBuV/m @3m)		Detector Pk/Avg	-dBc	us Level dBuV/m	Limit dBuV/m	Margin dB	Polarization	
2385.98			<i>,</i> 99.6	Pk	61.5	38.1	74.0	-35.9	V	
2000	2385.98		99.4	Avg	61.5	37.9	54.0	-16.1	V	
238					61.5	29.9	74.0	-44.1	L.	
238 238	5.98	(91.4	Pk					h	
238 238 238	5.98 5.98	(90.3	Avg	61.5	28.8	54.0	-25.2	h	
238 238 238 238 2484	5.98 5.98 4.04	(90.3 99.0	Avg Pk	61.5 65.2	28.8 33.8	54.0 74.0	-25.2 -40.2	h v	
238 238 238 238 2484 2484	5.98 5.98 4.04 4.04	(90.3 99.0 98.4	Avg Pk Avg	61.5 65.2 65.2	28.8 33.8 33.2	54.0 74.0 54.0	-25.2 -40.2 -20.8	h v v	
238 238 238 238 248 248 248	5.98 5.98 4.04 4.04 4.04		90.3 99.0 98.4 94.7	Avg Pk Avg Pk	61.5 65.2 65.2 65.2	28.8 33.8 33.2 29.5	54.0 74.0 54.0 74.0	-25.2 -40.2 -20.8 -44.5	h V V h	
238 238 238 238 2484 2484	5.98 5.98 4.04 4.04 4.04		90.3 99.0 98.4	Avg Pk Avg	61.5 65.2 65.2	28.8 33.8 33.2	54.0 74.0 54.0	-25.2 -40.2 -20.8	h v v	
238 238 238 238 248 248 248	5.98 5.98 4.04 4.04 4.04 4.04 4.04		20.3 29.0 28.4 24.7 24.0	Avg Pk Avg Pk Avg	61.5 65.2 65.2 65.2 65.2	28.8 33.8 33.2 29.5 28.8	54.0 74.0 54.0 74.0 54.0	-25.2 -40.2 -20.8 -44.5 -25.2	h V V h h	
238 238 238 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 4.04 EUT opera	ating on	20.3 29.0 28.4 24.7 24.0 the lowest c	Avg Pk Avg Pk Avg hannel avai	61.5 65.2 65.2 65.2 65.2 1000	28.8 33.8 33.2 29.5 28.8 2390 - 2412 M	54.0 74.0 54.0 74.0 54.0	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level	h v v h h calculated using the	
238 238 238 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 4.04 EUT opera relative m	ating on	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run #	Avg Pk Avg Pk Avg hannel avai	61.5 65.2 65.2 65.2 65.2 lable in the 2 preadsheet (6	28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app	54.0 74.0 54.0 74.0 54.0	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level	h V V h h	
238 238 238 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 4.04 EUT opera relative mo strength m	ating on reasurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the	Avg Pk Avg Pk Avg hannel avai t8, of CE sp fundamenta	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (<i>d</i> al signal leve	28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app 4.	54.0 74.0 54.0 74.0 54.0 //Hz band.	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peal	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 4.04 EUT opera strength m EUT opera	ating on easurem heasuren ating on	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char	Avg Pk Avg Pk Avg hannel avai f8, of CE sp fundamenta nnel availab	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246	28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app 1. 2 - 2483.5 M	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app I. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246	28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app I. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app I. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app I. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 65.2 ilable in the 2 preadsheet (6 al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app I. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 ilable in the 2 preadsheet (al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app 4. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	
238 238 238 248 248 248 248 248 248	5.98 5.98 4.04 4.04 4.04 EUT opera relative mo strength n EUT opera relative mo	ating on easurem ating on easurem ating on easurem	20.3 29.0 28.4 24.7 24.0 the lowest cl ents in run # nents of the highest char ents in run #	Avg Pk Avg Pk Avg hannel avai 48, of CE sp fundament 48, of CE sp	61.5 65.2 65.2 65.2 ilable in the 2 preadsheet (al signal leve ble in the 246 preadsheet (28.8 33.8 33.2 29.5 28.8 2390 - 2412 M 51.5 dBc) app 4. 2 - 2483.5 M (65.2 dBc) ap	54.0 74.0 54.0 74.0 54.0 //Hz band. blied to the Hz band. S	-25.2 -40.2 -20.8 -44.5 -25.2 Signal level highest peak	h v v h h calculated using the cand average field	

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Detailed Photographs of ActionTec Electronics, Inc. Model BMDC200 Construction

EXHIBIT 5: Block Diagram of ActionTec Electronics, Inc. Model BMDC200

EXHIBIT 6: Schematic Diagrams of ActionTec Electronics, Inc. Model BMDC200

EXHIBIT 7: Theory of Operation for ActionTec Electronics, Inc. Model BMDC200

EXHIBIT 8: Operator's Manual