FCC ID: LLBY84092-1

This calculation is based on the highest EIRP possible from the EUT considering maximum power and antenna gain. The highest peak output power of the EUT is 1.06 W and the max gain of the antenna is 2.2 dBi.

There is a firmware-controlled duty cycle. The firmware is set to limit duty cycle at 40% duty cycle or less in any given 6-minute period.

1.0 RF EXPOSURE PER FCC 1.1310

	MHz	Max Power dBm	Max Ant Gain dBi	Duty Cycle %	EIRP Watts	(S) GP Limit mW/cm^2	seperation	EUT power Density mW/cm2	Result
ľ	450	29.95	2.2	40	0.656	0.300	20.0	0.131	Pass
ĺ	460	29.95	2.2	40	0.656	0.307	20.0	0.131	Pass
	470	30.25	2.2	40	0.703	0.313	20.0	0.140	Pass

Notes on the above table:

- a. S is the power density General Population Limit from FCC 1.1310 Table 1
- b. EIRP Power is the Peak Effective Radiated Power.
 - EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

POWER DENSITY

Power density is given by:

S = EIRP / (4 * Pi * D^2)

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Since the calculated power density is less than the limit, this product fully meets the OET 65 requirements for the general population.